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Abstract

Suppose that, for a learning task, we have to
select one hypothesis out of a set of hypothe-
ses (that may, for example, have been gener-
ated by multiple applications of a randomized
learning algorithm). A common approach is
to evaluate each hypothesis in the set on some
previously unseen cross-validation data, and
then to select the hypothesis that had the
lowest cross-validation error. But when the
cross-validation data is partially corrupted
such as by noise, and if the set of hypotheses
we are selecting from is large, then “folklore”
also warns about “overfitting” the cross-
validation data [Klockars and Sax, 1986,
Tukey, 1949, Tukey, 1953]. In this paper, we
explain how this “overfitting” really occurs,
and show the surprising result that it can
be overcome by selecting a hypothesis with a
higher cross-validation error, over others with
lower cross-validation errors. We give reasons
for not selecting the hypothesis with the low-
est cross-validation error, and propose a new
algorithm, LOOCVCYV, that uses a computa-
tionally efficient form of leave—one—out cross-
validation to select such a hypothesis. Fi-
nally, we present experimental results for one
domain, that show LOOCVCYV consistently
beating picking the hypothesis with the low-
est cross-validation error, even when using
reasonably large cross-validation sets.

1 Introduction

A basic problem in learning is that of selecting a hy-
pothesis out of a set of hypotheses — that is, deter-
mining which in a given set of hypotheses is “best.”
When given such a set of hypotheses (that was, for
example, generated by multiple applications of a ran-
domized learning algorithm to a set of training data,

or equivalently, applying a deterministic algorithm
multiple times but using randomly re-chosen parame-
ters each time), a common approach is to test all of
them on some set of previously unseen cross-validation
(CV) data, and then to pick the hypothesis that
had the smallest CV error [Mosteller and Tukey, 1968,
Stone, 1974, Stone, 1977]. For example, we may gen-
erate a set of hypotheses by training multiple Neural
Networks with Backpropagation on a fixed set of train-
ing data, with each Neural Network having different
initial weights, and then pick the Neural Network that
has the lowest error on a set of hold-out CV data. But
if the CV data is partially corrupted by noise, then
“folklore” also warns that if we used too small a set
of CV data to test too large a number of hypothe-
ses, we may end up picking a poor hypothesis that
had fit the corrupted CV data well “just by chance”
[Klockars and Sax, 1986, Tukey, 1949, Tukey, 1953].

In this paper, we examine this problem of “overfit-
ting” of CV data. This is an unusual form of over-
fitting because, unlike overfitting by single applica-
tions of learning algorithms such as Decision Trees
and Neural Networks, this overfitting comes from hav-
ing tested too many hypotheses, rather than from hav-
ing chosen a too compler a hypothesis. For exam-
ple, within the set of hypotheses we are selecting
from, there is no notion of a structure or a sequence
of nested hypothesis classes of increasing complex-
ity such as assumed in some models [Kearns, 1996,
Vapnik and Chervonenkis, 1971], or of some hypothe-
ses having been trained using a more complex hypoth-
esis class. Because of this, even thought the literature
treating overfitting is rich with algorithms for select-
ing/limiting the complezity of the output hypothesis,
this literature does not generalize to this other impor-
tant problem of “overfitting” through having tested
too many hypotheses with too small a CV set. (The
mentioned literature is too wide to survey here, but for
a sample, see [Baum and Haussler, 1989, Judd, 1990,
Kearns et al., 1995, Miller, 1990, Rissanen, 1978].)

And, while there are interesting similarities between



“too many” and “too complex,” the relationship be-
tween them is not obvious, and we defer a further dis-
cussion of them to Section 8, when we will have devel-
oped a notation for addressing these issues.

This paper examines this problem of “overfitting” of
cross-validation data. Our contributions are two-fold:
First, we explain how this overfitting really occurs,
and show the surprising result that we can do bet-
ter than picking the hypothesis with the lowest CV
error. Note that this is a much stronger result than
merely that the hypothesis with the lowest CV er-
ror is unlikely to be the hypothesis with the lowest
generalization error; we are claiming that it is some-
times possible to actually find a hypothesis that we
can expect to have lower generalization error than the
minimum-CV-error hypothesis. And second, we will
present an algorithm, Leave-one-out Cross-Validated
Cross-Validation (LOOCVCV), to choose such a hy-
pothesis, and show experimentally that LOOCVCV
does consistently beat picking the minimum-CV-error
hypothesis in one domain.

2 Definitions

Henceforth, for simplicity, let us assume a boolean tar-
get function f. Let H = {h;}}_; be the set of n hy-
potheses that we are choosing from, and let us also
assume that each hypothesis was drawn i.i..d. from
some fixed distribution of hypotheses Dy (possibly a
distribution induced by application of a randomized
learning algorithm). We will also consider the case
when we are also given access to an oracle that sam-
ples h € Dy, but will not distinguish between this and
the case where we do not have access such an oracle,
because of the two cases’ vast similarities. For exam-
ple, when n is large, statements pertaining to when
we have access to an oracle can naturally be approx-
imately translated to when we do not, by “construct-
ing” our own oracle that samples, possibly with re-
placement, from H. Continuing, let S = {(z;, vi)}2,
be the set of m samples forming the CV data, where
each z; is an arbitrary-dimensioned input vector drawn
i.i.d. from some distribution D, and y; € {0,1}, the
labels of the data, have independently been corrupted
with some fixed but unknown noise rate 5, so that
yi = f(=;) with probability 1 —», and y; = —f(2;) with
probability 7. We shall also write p; = (2;, y;), so that
S = {pi}2,, and let us also define S_; = S\ {p;}.
Furthermore, we shall say that hypothesis h; appar-
ently misclassifies some element of the CV set (z;,y;)
if hi(z;) # y;, and that it truly misclassifies it if
hi(z;) # f(z;). Let the CV error ég(h;) € [0,1] be
the fraction of the CV set S that hypothesis h; ap-
parently misclassifies, and let the generalization error
(with respect to uncorrupted data) of each hypothe-
sis h; be ep ¢(h;) = Preeplhi(z) # f(2)], following

the PAC framework (although we will, for notational
brevity, often drop the subscripts in ég and ep ¢). Fi-
nally, the hypothesis h; in a set H of size n that has the
lowest CV error ég(h;) will be called the “best-of-n
hypothesis.”

Note that by CV, we mean what is sometimes called
“simple cross-validation,” where there is a fixed cross-
validation set, rather than m-fold or leave-one-out
cross-validation. And in our notation, the goal of hy-
pothesis selection, informally, is then to choose a hy-
pothesis h such that ep f(h) is expected to be “small,”
and the conventional approach is choosing the best—of-
n hypothesis.

3 Overfitting by a Simulated Learning
Algorithm

As mentioned, when we choose the hypothesis h that
has the lowest £(h), we may be choosing a poor
hypothesis that had fit the CV data well “just by
chance.” For example, if £(h) = 0 so that it appar-
ently classifies the CV data perfectly, but some of the
CV data’s labels had been corrupted, then the hypoth-
esis must actually be truly misclassifying the corrupted
samples in the CV data, and therefore have non-zero
(and possibly large) generalization error.

3.1 A Simulated Learning Algorithm

To examine the overfitting effect, let us first look at a
particular model of a learning algorithm and learning
task:

e We have a black box that draws successive hy-
potheses h; i.i.d. from Dy (say, by applying a
randomized algorithm to a set of training data),
such that the random variable ep ¢ (h;) (induced
by drawing h; € Dpg), is distributed ep f(hs) ~
Uniform(0, 1).

e We fix S to have m = 100 CV samples, and as-
sume that our noise process happened to corrupt
exactly 20 of this set’s labels. (Note that, in this
example, it is only to make our exposition cleaner
that we have “fixed” the noise, which should tech-
nically be random.)

e FEach hypothesis h; has an independent e(h;)
chance of truly misclassifying each of the m CV
samples, where the independence is across both
hypotheses and CV samples.

So, to simulate testing a hypothesis with a given gener-
alization error €(h;), we would flip a 0-1 coin with bias
¢(h;) 100 times, negate the result of (say) the last 20
flips, and calculate the fraction of resulting ‘1’s to get
the CV error £(h;). Note also that of the assumptions
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Figure 1: posterior distribution for e(h)|£(h) =
0.17. Enep,, [¢(h)|E(h) = 0.17]  0.0648.
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Figure 3: posterior distribution for e(h)|£(h) =
0.23. Enep,, [e(h)|2(h) = 0.23] ~ 0.0727.

above, the one of uncorrelated errors across hypothe-
ses is probably the most unrealistic, but we include it
to have a simple and analyzable example of a learning
algorithm. The goal, then, is to generate some number
of hypotheses, test them on the 100-sample CV data,
and then to somehow pick a hypothesis h with “small”
expected generalization error.

3.2 Why Picking the “Best” is Bad

In this section, we will explain why picking the “ap-
parent best” hypothesis may not be optimal when the
CV data’s labels have been corrupted by noise, and
this will lead to results that will be the cornerstone
of the rest of this work. While, for the purpose of
clarity in exposition, we will continue to assume that
exactly 20 CV data labels had been corrupted, it is
worth keeping in mind that our main results will read-
ily apply for the same problem using any other fixed
CV sample S with some corrupted labels, whatever
the level of label corruption may be. Naturally, the
algorithms we propose later in this paper will also be
applicable without requiring knowledge of the level of
label corruption in S.

To motivate the rest of this discussion, let us first
consider a simpler distribution of hypotheses than de-
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Figure 2: posterior distribution for e(h)|£(h) =
0.20. Enep,, [e(h)|2(h) = 0.20] ~ 0.0252.
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Figure 4: n on z-axis, generalization error on y-
axis. Top curve is best—of-n, middle, stepped, line
is k-th percentile hypothesis, with & = 100(1 —
(1/(n+1))), bottom line is LOOCVCV.

scribed above, that clearly shows why one might not
want to pick the “apparent best” hypothesis. Let us
continue to assume that exactly 20 of the 100 CV data
labels were corrupted, but that Dg is now such that
each hypothesis h € Dp has either e(h) = 0.00 or
e(h) = 0.10. Now, consider the particular case of
choosing between two hypotheses h; and hs, where
£(h1) = 0.17, and £(hz) = 0.20. Suppose we chose h;.
Then, we know that we must necessarily have chosen
a hypothesis with e(h) = 0.10, because if (h) = 0.00,
then h would have classified all of the CV sample cor-
rectly with respect to the true target function, and
would therefore have had é(h) = 0.20 because 20 el-
ements of the CV sample were corrupted. On the
other hand, if we chose hy with &(h2) = 0.20, then
we have a non-zero chance of picking a hypothesis
with e(h) = 0.00. Hence, Enep,[e(h)]|é(h) = 0.20] <
Ehepye(h)|é(h) = 0.17] for this case.

The previous example might have seemed slightly con-
trived, but a more general explanation for the hy-
pothesis with lower £(h) not having lower expected
generalization error is in the differing wvariances of
é(h). Given S, D, Dy and f, then ég(h), as a
random variable dependent with e(h) (which is in
turn induced by drawing h € Dpg), is such that
Enepy[€s(h)] e(h)] monotonically increases with £(h)



as expected; but, its variance Varpep,, (E(h)|£(h)) also
increases as a function of ¢(h), at least for e(h) €
[0,0.5]. For example, if e(h) = 0, then é(h) =
0.20 always, so that Varpep, (é(h)|e(h) = 0) = 0;
but Varpep, (é(h)|e(h) = 0.5) = 0.25 > 0. So,
despite hypotheses with lower ¢(h)’s having lower
Enepy [E(R)|e(h)]’s, it is possible for them to have have
a smaller probability of having “extremely low” é(h)’s
“by chance,” because their distributions of £(h) are less
spread-out (lower variance). In words, hypotheses with
lower generalization errors do have lower expected C'V
errors, but may have a smaller chance of having “ezx-
tremely low” CV errors because their distributions of
CV errors are less spread-out than those of hypothe-
ses with higher generalization errors (and higher ex-
pected CV errors). And for certain “priors” such as
the simplified Dy above, this leads to the effect of
low & # low Epepy [e(R)|€(h) = €], which causes the
overfitting phenomenon.

Finally, let us return to the model of Section 3.1. Re-
call that exactly 20 of the 100 CV data labels were
corrupted. Then, using our “prior” for h € Dy that
is such that ep ¢(h) ~ Uniform(0,1), we can calcu-

late, for each value of ¢, the posterior distribution
e(h)|é(h) = ¢, which we denote by f|.:

foe(e(h)lé(h) =€) =

B(20,1 — (h), 100 — 7))

where k is a normalizing constant, and B(n,p,z) =
(2)p" (1 — p)»~7 is the probability of a Binomial(n, p)
distribution returning z (so that ¢ in the summation
is the number of apparent misclassifications that are
also true misclassifications). These posterior distribu-
tions of ¢(h) for ¢ = 0.17, 0.20, and 0.23 are shown
in Figures 1-3. From the figures, we see that if we
picked a hypothesis with £(h) = 0.17 or £(h) = 0.23,
we can expect the hypothesis to have higher general-
ization error than one with é(h) = 0.20. It was, of
course, expected that picking a hypothesis with CV
error (.20 beat picking one with 0.23, but it was sur-
prising that picking a hypothesis with a higher error
on the CV data (é(h) = 0.20 rather than 0.17) could,
on average, result in a hypothesis with lower general-
ization error.

This was unexpected because we expect hypotheses
with lower generalization error to have lower CV er-
ror. The point is that the reverse is not necessar-
tly true, and hypotheses with lower CV error do not
necessarily have lower expected generalization error.

That is, given fixed S, Dy, and f for this problem,
low £ = low Esep,[e(h)|e(h) = 2], but low ¢ #

low Epep,[e(h)|€(R) = €]

4 Not Choosing the “Best”

Because of this “overfitting” of CV data, “folklore”
suggests generating only a limited number of hypothe-
ses from Dy before picking the one that has the lowest
CV error. The rationale is that if we generate too few
hypotheses, then we might not generate any good hy-
potheses; whereas if we generate too many, we increase
the risk of generating poor hypotheses that fit the CV
data well “by chance,” and overfit. So, the optimal
number of hypotheses to generate should be between
the two extremes, and we will call this number n,p;.
But, such practice seems sub-optimal. For example,
it is not clear how n,,; can be found. Moreover, if
we knew the value of n,,:, but have already gener-
ated more than n,p; hypotheses, then it is unclear if
we should throw-away all but n,,; of them, or if there
is a better way to use the extra hypotheses. Finally,
we would also like an algorithm that asymptotically
improves as it is given more hypotheses.

The problem with generating “too many” hypotheses
was that those with very low CV errors were actually
“overfitting,” and had high generalization error. Be-
cause, of any large set of hypotheses drawn from the
fixed distribution of hypotheses, the fraction of them
that “overfit” should be approximately the same, we
propose the following, which we call percentile-cv:

1. Generate as many hypotheses as is computation-
ally feasible.

2. Test them all on our CV data S, and sort them
in descending order of £g(h;).

3. For some k, pick the hypothesis in the k-th per-
centile in the list of sorted hypotheses. (i.e. if we
have n hypotheses, then choose the one that was

ranked [kn/100] in the sorted list.)

If multiple hypotheses fall into the k-percentile by hav-
ing the same CV error, then we pick uniformly from
them. Note also that we have introduced a new vari-
able, k, that we have not specified a way to choose yet,
but also that we no longer need to guess the value of
Nopt-

The motivation behind percentile-cv is that when we
sort the hypotheses in order of £’s as in Step 2 above,
we hope that the hypotheses are approximately sorted
into order of “truly bad” (high &, high &), followed by
“good” (low ¢, low £), followed by “bad, but overfit
CV data by chance” (high &, very low é). Then, if
we chose k well, we would pick something between the
“truly bad” and “bad, but overfit CV data by chance,”



and choose a good hypothesis. Note, however, that we
will be choosing a hypothesis with higher C'V error over
some others with lower CV errors.

Also, as the number of hypotheses generated tends to-
wards oo, since the hypotheses are drawn i.:.d. from a
fixed distribution, we expect fixed proportions of them
to be “truly bad,” “good,” and “bad, but overfit,” so
we will still be choosing a hypothesis that is “good.”
And as an example, in the domain of the simulated
algorithm described in Section 3, we would hope that
k is chosen such that the k-th percentile hypothesis is
one that has £(h) = 0.20.

We now present a result that further justifies using
percentile-cv, which generates a large set of hypothe-
ses and picks some k-th percentile hypothesis from it,
instead of best—of-n, which generates some finite set
of n hypotheses, and picks the minimum CV-error hy-
pothesis in it. The following theorem states that, with
a well chosen k, percentile-cv always does at least well
as best-of-n (i.e. 3k such that k-th percentile beats
best—of-n, for all n).

Theorem 1 For any Dy, f, and S, 3k such that, Vn,
choosing the k-th percentile hypothesis from a (suffi-
ciently) large set of hypotheses drawn i.i.d. from Dy,
gives an expected generalization error no higher than
picking the “apparent best” of n randomly generated
hypotheses.

Proof (Sketch): For any fixed n, picking the best—
of-n is equivalent to the following in terms of perfor-
mance: (1) Generating a set I of n hypotheses, noting
down the lowest CV error €9 = minpem €(h), and then
(2) generating fresh hypotheses until one has the same
CV error of &y, and outputting that hypothesis, which
we shall call hy. Now, step (2) is simply drawing hs
from the conditional distribution h € Dg|é(h) = &g;
and of the possible &3’s that could be chosen, one is
“best” in terms of giving the conditional distribution
that minimizes Ep,ep, [e(ht)|é(he) = éo] during this
step. Call this épe. Then, there exists k such that
the k-th percentile hypothesis will have é(h) = éqpt
with probability 1, meaning that this k-th percentile
hypothesis has an expected generalization error of
Enepnyle(h)|é(h) = éopt]. So, for all n, Ik such that
k-th percentile (not strictly) beats the apparent best
of n. This implies that some optimal & must beat all
n, which is the statement of the theorem.

Corollary 2 If Ep.cp,,[e(he)|é(he) = €o] is not con-
stant over all possible €, Ak such that ¥n, the expected
generalization error of the k-th percentile hypothesis is
strictly less than that of the best—of-n hypothesis.

5 Choosing a Percentile

Using the conventional hypothesis selection method,
we had to estimate n,,;, the number of hypotheses to
generate before picking the one that had the lowest
CV error. In this section, we describe Leave-one-out
Cross-Validated Cross- Validation (LOOCVCV), a new
algorithm that first finds an estimate 7 of n,p¢, then
chooses £k from that, and finally applies percentile-cv
using that value of k. We will first show how to choose
k from n,p; or an estimate n of it, and then how to
estimate 7.

5.1 Choosing k from n,,;

For a fixed CV set S, since the hypotheses h;’s are
drawn from a fixed distribution, their CV errors £g(h;)
are also drawn from some fixed distribution. Hence, if
we generate n,p; hypotheses and pick the one with the
lowest CV error, then to a “good approximation,” we
expect to pick a hypothesis whose CV error just falls
into the bottom 1/(n,p: + 1) fraction of all CV errors
drawn from our distribution of &’s. (The proof of this is
from the literature on the statistical theory of Extreme
Value Distributions. See [Leadbetter et al., 1980], for
example.) We therefore propose using the following
value of k:

1

k=100 -(1 - ——
( nopt+1

(1)

Using notation from the proof of Theorem 1, we can
also think of picking the best—of-n hypothesis as a
way of choosing éy (and then picking a hypothesis h
with é(h) = &¢). Now, suppose we already have a
good estimate n of n,p¢; then a natural alternative
to picking the apparent best of n is to pick the k-th
percentile hypothesis, where k& = 100(1 — (1/(n + 1))),
with the advantage of doing this being reducing the
variance of €y, and hopefully the “variance” of the
hypothesis we pick as well. Later, we will also give
experimental results that demonstrate that this can
do significantly better than picking the best—of-n.

5.2 Estimating n,,;

We will only sketch the main ideas of the algorithm
here; and leave the details to the Appendix. We want
to use Leave-one-out Cross-Validation (LOOCV) as
follows: For each value of n, we want a measure of
the generalization error of the best—of-n hypothesis.
So, for each sample p; € S, we shall “leave-out” p;
and use S_; only, choosing the hypothesis h;"n that
has the minimum empirical error on S_; among a set
of n randomly generated hypothesis; and then test h;ﬁ

on p; and see if A} ;(2;) Z y;. Then, the fraction of



values of 7 for which h} ;(z;) # yi, which we call the
LOOCV-error, is a measure of the generalization error
of the best—of-n hypothesis. And running this process
on different n’s, we can get a measure of the LOOCV-
error for each value of n, and pick the value of n that
minimizes the LOOCV-error.

The problem with the current formulation of this al-
gorithm is that choosing the best—of-n hypothesis is
a noisy process, as it involves generating randomly
chosen hypotheses. So, the entire process has to be
repeated many times in a Monte Carlo fashion for
each value of n, to get estimates of the LOOCV-error.
This will, unfortunately, generally require generating
an intractably large number of hypotheses. So instead,
we will generate only a large but finite set H of hy-
potheses, and choose uniformly and with replacement
from this set whenever we need to generate a hypoth-
esis (this, from the Statistics literature, is very similar
to non-parametric bootstrap [Efron, 1979]). However,
even doing this, we found that we would still require
averaging over an intractable or otherwise very large
number of repetitions to get a smooth curve for the
LOOCV-error as a function of n. But, there is fortu-
nately a way to calculate explicitly, from n, H, and S,
the LOOCV-error value we would get if we really re-
peated this bootstrap-like process an infinite number
of times, and this is what LOOCVCV does. (Details
in appendix.)

So, for every value of n, we now have a tractable way
of estimating the generalization error of the best—of-n
hypothesis, and we can use the value of n that mini-
mizes the LOOCV-error as our estimate of ny,;. With
this, we can use Equation 1 to derive k, our desired
percentile, which we can then use to apply percentile-
cv. This completes our formulation of the LOOCVCV
algorithm.

6 Results Using the Simulated
Learning Algorithm

We ask the reader to refer to Figure 4, which shows
results of different hypothesis selection methods ap-
plied to the Simulated Learning Algorithm described
in Section 3. The value of n varies along the z-axis,
and the top-most curve is the expected generalization
error if we draw n hypotheses and pick the one with
the lowest CV error. The middle, stepped, line is the
expected generalization error if we picked the k-th per-
centile hypothesis, with & = 100(1 — (1/(n + 1))), us-
ing an “infinitely” large set of hypotheses. Finally, the
bottom horizontal line is the generalization error that
LOOCVCYV achieves, also using an “infinitely” large
set. of hypotheses.

For this particular problem, n,,; ~ 101. Notice,

however, that if we generated exactly n,p: hypothe-
ses and picked the one with the lowest CV error, our
expected generalization error would be about 0.035,
which is higher than if we picked the & = 100(1 —
(1/(101 + 1))) = 99.0-th percentile hypothesis from
an “infinitely” large sample of hypotheses, which gives
an expected generalization error of about 0.025. The
reason for this is that with best—of-n, the CV er-
ror £(h) of the hypothesis we choose in the end has
non-zero variance, and therefore performs worse than
percentile-cv, by our argument of Section 5.1. That is,

Enepye(R)|€(h) = €] is minimized when ¢ = 0.20.
However, in the process of drawing n,,; hypothe-
ses and picking the one with lowest CV error, we
may occasionally pick hypotheses with other values of
£(h), which is why its expected generalization error is
higher. On the other hand, in the “infinitely” large
sample of hypotheses, the 99.0-th percentile hypothe-
sis has &(h) = 0.20 with probability 1, which is why
picking the 99.0-th percentile hypothesis results in a
lower expected generalization error than best—of-101:
There is less variance in the CV error of the hypothesis
we pick.

Similarly, note too that, for most values of the curve,
k-th percentile (the middle curve) beats picking the
apparent best of n (the top curve). We argue that this
is due to the same reason: using k-th percentile results
in lower variance in the CV error of the chosen hypoth-
esis. This is further justification for our earlier argu-
ment that, if we did not want to apply LOOCVCV,
but already had an estimate n of n,p¢, then we may be
better off picking the 100(1—(1/(7+1)))-th percentile
hypothesis, instead of the best—of-n hypothesis.

Finally, we note that when LOOCVCYV is given an
“infinitely” large set of hypotheses for this problem, it
will always achieve an expected generalization error of
about 0.025 which, as is also suggested by the stepped
line in Figure 4 having a lowest value of 0.025, is prov-
ably the best that any algorithm using percentile-cv
can achieve on this problem. The best—of—co hypoth-
esis, in contrast, has a perhaps surprisingly high ex-
pected generalization error of about 0.206, which is
the value that the topmost curve of Figure 4 eventu-
ally asymtotes at.

7 Experimental Results

To examine a slightly more realistic hypothesis se-
lection problem, we considered a small learning task
involving decision trees. The target function was a
boolean function over binary attributes xg to x4, with
flxo,x1, 22, 23, 24) = (xgAz1 A22)V (23A24). The in-
put distribution D was uniform over the instance space
of size 32, and n = 1000 hypotheses were generated to
form the set H. Finally, Dy was such that each hy-
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Figure 5: Noise rate on z-axis, generalization er-
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LOOCVCV.

pothesis was generated by drawing 20 samples from D
with their correct labels, and running an ID3-like de-
cision tree algorithm using a greedy information-gain
heuristic to choose splits [Quinlan, 1986]. (Of course,
no practitioner would ever see such a distribution of
hypotheses; but, we are primarily interested in the
problem of selecting a hypothesis out of a set, and
this was a convenient way of creating such a set of
hypotheses.)

All experimental results reported in this section are av-
erages of 400 trials. First, using m = 20 CV samples,
the results for different noise rates n in the CV data
are in Figure 5. We see that for noise rates of about
17 = 0.1 and higher, picking the best—of-1000 hypoth-
esis loses to LOOCVCV. Note too that picking the
apparent best could do even worse than these results
suggest, if we had used more than the 1000 hypothe-
ses we had restricted ourselves to for computational
reasons.

One might think that this effect would go away with
a larger CV sample. However, it was still significant
when the size of the CV sample was increased to 40
(and note that the size of the instance space is 32),
keeping everything else the same as before (Figure 6).
Also, we tried varying the CV-sample size, across the
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Figure 6: Noise rate on z-axis, generalization er-
ror on y-axis. m=40. Vertical dashes show 95%
confidence intervals for means.
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Figure 8: Noise on z-axis, error on y-axis. Upper-
most curve is best-of-n,,;, middle curve is k-th
percentile hypothesis, with & = 100(1 — (1/(nop: +
1))), bottom curve is kop¢-th percentile

larger range of 5 to 80, using a fixed noise rate n of
0.3, and the results (Figure 7) also show LOOCVCV

doing better consistently.

Next, to allow us to perform certain calculations ex-
actly such as finding n,,:, we carried out the next
few experiments by first drawing 1000 hypotheses from
Dy, and then sampling with replacement from this
pool of 1000 each time we needed to generate a hy-
pothesis, instead of drawing a new one from Dg. (We
also verified that these results are close to if we had
used Dp.)

Recall that in Section 5.1, we claimed that if we had
an estimate of a good n to use in picking best—of-n,
we might instead wish to use the k-th percentile hy-
pothesis instead, with & = 100(1 — (1/(7 + 1))). We
see this effect again in our next experiment. Using
m = 20 CV samples again, the top line of Figure § is
the expected error if we knew exactly what the best
n, Nops were and chose the best—of-n,,;. The mid-
dle curve is the error of the k-th percentile hypothesis,
where k& = 100(1 — (1/(nopt + 1))), and we see that
it consistently beats best—of-n,p:. Finally, the lower-
most curve is if we knew the optimal k, k,,:, and chose
the kopi-th percentile hypothesis, which, as predicted
by Theorem 1, beats best-of-n,,; also.



8 Discussion

The the results we have presented so far generally show
LOOCVCYV beating best—of-n, by picking a hypoth-
esis other than the one with the smallest CV error.
But best—of-n, especially with large n, is like using
k = 100, so if there were insufficient data to find an
accurate estimate k of k,p;, or if kop; is close to 100,
then we might expect best-of-n to beat LOOCVCV’s
using a possibly noisy estimate of kop;. In fact, at the
noise rate n = 0, LOOCVCV generally does lose to
best—of-n (Figures 5 and 6). Also, some preliminary
results (not reported) involving artificial neural net-
works, trained by backpropagation on a fixed set of
training data and with randomly re-initialized weights
each time, also showed LOOCVCYV losing slightly to
best—of-n.

Leaving considerations of a loss function of k aside, we
might therefore decide not to use LOOCVCYV unless we
had reason to believe that the “overfitting” problem
is significant in the distribution of hypotheses in our
hypothesis silgction problem, or that LOOCVCYV will

find a good kop: (such as when the CV sample is large).
However, if we do have an exceedingly large number
of hypotheses to choose from, and have a reasonably
large CV-set, then LOOCVCV may give much better
performance than simply selecting the hypothesis with
the lowest CV error.

Before closing, one reformulation of our problem is
worth commenting on here. Let us call try calling H a
“hypothesis class,” and S “training data.” With this
formulation, one might then have thought that for any
fixed input space, n would have been a good surrogate
measure for the “complexity” of H, and might have
tried to apply conventional complexity regularization
techniques using, say, logn as some “measure” of the
“complexity” of H. But this turns out to be unsound
as a general approach, because it fails to take into ac-
count the effect of Dg. For example, one can easily
produce two different Dg’s such that the “expressive-
ness” or richness of, say, n = 1000 hypotheses drawn
from the first Dg is vastly greater then the expres-
siveness of 1000 hypotheses drawn from the second.
However, with this “hypothesis class” and “training
data” formulation, one point of interest is in noting
that the arguments of this paper still apply exactly as
before, and suggest the surprising result that it might
not be optimal to pick the hypothesis from a hypoth-
esis class H that has the lowest training error, even
when there is no notion of complexity within H in
that H is not, for example, partitioned into a nested
sequence of hypothesis classes of increasing complex-
ity. This possibility will be a subject of our future
research.

Finally, these results might have implications for the

practitioner as well. If cross-validation is used to de-
cide how many epochs to train a backpropagation neu-
ral network (which, while not falling within our as-
sumed framework of i.i.d.h’s, is similar), and if the
practitioner does not somehow use the common as-
sumption that hypotheses trained with more epochs
are more “complex”; or if cross-validation is used to
select from a large pool of learning algorithms, then
our results suggest it may not be advisable to pick the
minimum cross-validation error hypothesis. However,
how strongly these results of this paper will bear out
in future practice remains to be seen.

9 Conclusions

This paper explained how overfitting of CV data oc-
curs despite there being no notion of complezity within
the set of hypotheses, and presented percentile-cv and
LOOCVCYV, that try to correct this problem. It also
proved that percentile-cv with an appropriately chosen
percentile will always do at least as well as best—of—
n, and demonstrated experimentally that LOOCVCV
consistently beats best—of-n in one domain. However,
there are also domains where overfitting of CV data is
not a significant problem, in which LOOCVCYV loses
slightly to best—of-n; and the characterization of such
domains is an open problem.
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Appendix: The LOOCVCV Algorithm

Please refer to Section 5 for the details of the
LOOCVCYV algorithm. Here, we describe how it finds
an estimate f of n,,; using I, from which we can de-
rive k, for picking the k-th percentile hypothesis.
Input: n, H[1..n], S, i

Output: leave-one-out error with p; “left-out,” for
best—of—n hypothesis drawn from H

Notes: The key idea is sorting H in order of leave-
one-out errors and then calculating, for each h € H,
the probability (first term in the summation in step 12)
that it will be the lowest-LOOCV-error hypothesis in
a set of n drawn from H. These probabilities can then
be used to find the probability that the selected hy-
pothesis will apparently misclassify p;. € is used to
accomodate multiple hypotheses in the set of n having
the same lowest LOOCV-error, in which case we pick
uniformly from them.

1. function loocv-error(n, H[1..n], S, 1)

2. create array H'[1..n].{é_1,¢}

3. for (j = 1 to n) do begin



H[) 61 = [{H) () # il (o, ) € S}
H'[j].e = 1if H[j](xs) # yi, 0 otherwise
end

Sort H'[] in ascending order of H'[].é_;

for (x = 0 to |S| — 1) do begin
A= ey = 2)

0. let &(z) = szeA H'[j].eif |A| #£ 0,

undefined otherwise.

= O 00 =1 O O

11. end o o
12. return 2?21 ((2=Lhyn —(2=0)2) 5(H[5].6-1)

n n

Input: H, S
Output: Recommended n
13. function loocvev-estimate-nopt(H,S)
14. return
argminﬁe[lyoo){z;il loocv-error(n, H, S, i)}
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