

Python对Airbnb北京租房与上海链家租房数据用逻辑回归LR、决策树、岭回归、Lasso回归、随机森林、XGBoost、神经网络kmeans聚类分析市场影响因素|数据分享
在数据驱动的时代,数据科学家肩负着从海量数据中挖掘价值的重任。本专题合集聚焦于租房市场数据的深度剖析,涵盖了北京短租房评价影响因素研究以及上海链家租房数据的探索。北京短租房研究中,从 Airbnb 获取 2019 年 4 月 17 日北京地区公开数据,包括房源基础信息、时间表信息、评论信息以及行政区划数据。通过筛选变量,对离散型和连续型变量进行相关性检验,再进行特征转换,构建逻辑回归和决策树模型,并对模型优化。结果显示,城区和郊区短租房评分影响因素差异显著,郊区租客重居住体验,城区租客重房源可靠性。。

