
【AI 赋能:Python 人工智能应用实战】2. 深度学习基石:从感知机到反向传播,NumPy实现神经网络框架
摘要:本文系统解析深度学习的核心基础,从生物启发的神经元模型到神经网络的数学原理,构建完整知识体系。理论部分阐释麦卡洛克-皮茨神经元模型的工作机制,通过NumPy实现AND/OR逻辑门并可视化决策边界,揭示神经网络的布尔逻辑表达能力。深入剖析前向传播的矩阵运算本质,用维度校验表明确Y=σ(W·X+b)的维度匹配规则;拆解反向传播四步流程,结合链式法则解释梯度从输出层到隐藏层的传播机制。实战模块基于NumPy手写双层神经网络框架,实现激活函数对比实验,演示Sigmoid的梯度消失问题,通过梯度检查验证反向传播
