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Chapter 1

Origins of NumPy

NumPy builds on (and is a successor to) the successful Numeric array object. Its

goal is to create the corner-stone for a useful environment for scientific computing.

In order to better understand the people surrounding NumPy and (its library-

package) SciPy, I will explain a little about how SciPy and (current) NumPy orig-

inated. In 1998, as a graduate student studying biomedical imaging at the Mayo

Clinic in Rochester, MN, I came across Python and its numerical extension (Nu-

meric) while I was looking for ways to analyze large data sets for Magnetic Res-

onance Imaging and Ultrasound using a high-level language. I quickly fell in love

with Python programming which is a remarkable statement to make about a pro-

gramming language. If I had not seen others with the same view, I might have

seriously doubted my sanity. I became rather involved in the Numeric Python com-

munity, adding the C-API chapter to the Numeric documentation (for which Paul

Dubois graciously made me a co-author).

As I progressed with my thesis work, programming in Python was so enjoyable

that I felt inhibited when I worked with other programming frameworks. As a result,

when a task I needed to perform was not available in the core language, or in the

Numeric extension, I looked around and found C or Fortran code that performed

the needed task, wrapped it into Python (either by hand or using SWIG), and used

the new functionality in my programs.

Along the way, I learned a great deal about the underlying structure of Numeric

and grew to admire it’s simple but elegant structures that grew out of the mechanism

by which Python allows itself to be extended.
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NOTE

Numeric was originally written in 1995 largely by Jim Hugunin

while he was a graduate student at MIT. He received help from

many people including Jim Fulton, David Ascher, Paul Dubois,

and Konrad Hinsen. These individuals and many others added

comments, criticisms, and code which helped the Numeric exten-

sion reach stability. Jim Hugunin did not stay long as an active

member of the community — moving on to write Jython and, later,

Iron Python.

By operating in this need-it-make-it fashion I ended up with a substantial li-

brary of extension modules that helped Python + Numeric become easier to use

in a scientific setting. These early modules included raw input-output functions,

a special function library, an integration library, an ordinary differential equation

solver, some least-squares optimizers, and sparse matrix solvers. While I was doing

this laborious work, Pearu Peterson noticed that a lot of the routines I was wrap-

ping were written in Fortran and there was no simplified wrapping mechanism for

Fortran subroutines (like SWIG for C). He began the task of writing f2py which

made it possible to easily wrap Fortran programs into Python. I helped him a little

bit, mostly with testing and contributing early function-call-back code, but he put

forth the brunt of the work. His result was simply amazing to me. I’ve always been

impressed with f2py, especially because I knew how much effort writing and main-

taining extension modules could be. Anybody serious about scientific computing

with Python will appreciate that f2py is distributed along with NumPy.

When I finished my Ph.D. in 2001, Eric Jones (who had recently completed his

Ph.D. at Duke) contacted me because he had a collection of Python modules he had

developed as part of his thesis work as well. He wanted to combine his modules with

mine into one super package. Together with Pearu Peterson we joined our efforts,

and SciPy was born in 2001. Since then, many people have contributed module

code to SciPy including Ed Schofield, Robert Cimrman, David M. Cooke, Charles

(Chuck) Harris, Prabhu Ramachandran, Gary Strangman, Jean-Sebastien Roy, and

Fernando Perez. Others such as Travis Vaught, David Morrill, Jeff Whitaker, and

Louis Luangkesorn have contributed testing and build support.

At the start of 2005, SciPy was at release 0.3 and relatively stable for an early

version number. Part of the reason it was difficult to stabilize SciPy was that the

array object upon which SciPy builds was undergoing a bit of an upheaval. At about
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the same time as SciPy was being built, some Numeric users were hitting up against

the limited capabilities of Numeric. In particular, the ability to deal with memory

mapped files (and associated alignment and swapping issues), record arrays, and

altered error checking modes were important but limited or non-existent in Numeric.

As a result, numarray was created by Perry Greenfield, Todd Miller, and Rick White

at the Space Science Telescope Institute as a replacement for Numeric. Numarray

used a very different implementation scheme as a mix of Python classes and C

code (which led to slow downs in certain common uses). While improving some

capabilities, it was slow to pick up on the more advanced features of Numeric’s

universal functions (ufuncs) — never re-creating the C-API that SciPy depended

on. This made it difficult for SciPy to “convert” to numarray.

Many newcomers to scientific computing with Python were told that numarray

was the future and started developing for it. Very useful tools were developed

that could not be used with Numeric (because of numarray’s change in C-API),

and therefore could not be used easily in SciPy. This state of affairs was very

discouraging for me personally as it left the community fragmented. Some developed

for numarray, others developed as part of SciPy. A few people even rejected adopting

Python for scientific computing entirely because of the split. In addition, I estimate

that quite a few Python users simply stayed away from both SciPy and numarray,

leaving the community smaller than it could have been given the number of people

that use Python for science and engineering purposes.

It should be recognized that the split was not intentional, but simply an out-

growth of the different and exacting demands of scientific computing users. My

describing these events should not be construed as assigning blame to anyone. I

very much admire and appreciate everyone I’ve met who is involved with scientific

computing and Python. Using a stretched biological metaphor, it is only through

the process of dividing and merging that better results are born. I think this concept

applies to NumPy.

In early 2005, I decided to begin an effort to help bring the diverging community

together under a common framework if it were possible. I first looked at numarray

to see what could be done to add the missing features to make SciPy work with

it as a core array object. After a couple of days of studying numarray, I was not

enthusiastic about this approach. My familiarity with the Numeric code base no

doubt biased my opinion, but it seemed to me that the features of Numarray could

be added back to Numeric with a few fundamental changes to the core object. This

would make the transition of SciPy to a more enhanced array object much easier

in my mind.
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Therefore, I began to construct this hybrid array object complete with an en-

hanced set of universal (broadcasting) functions that could deal with it. Along the

way, quite a few new features and significant enhancements were added to the array

object and its surrounding infrastructure. This book describes the result of that

year-and-a-half-long effort which culminated with the release of NumPy 0.9.2 in

early 2006 and NumPy 1.0 in late 2006. I first named the new package, SciPy Core,

and used the scipy namespace. However, after a few months of testing under that

name, it became clear that a separate namespace was needed for the new package.

As a result, a rapid search for a new name resulted in actually coming back to the

NumPy name which was the unofficial name of Numerical Python but never the

actual namespace. Because the new package builds on the code-base of and is a

successor to Numeric, I think the NumPy name is fitting and hopefully not too

confusing to new users.

This book only briefly outlines some of the infrastructure that surrounds the

basic objects in NumPy to provide the additional functionality contained in the older

Numeric package (i.e. LinearAlgebra, RandomArray, FFT). This infrastructure in

NumPy includes basic linear algebra routines, Fourier transform capabilities, and

random number generators. In addition, the f2py module is described in its own

documentation, and so is only briefly mentioned in the second part of the book.

There are also extensions to the standard Python distutils and testing frameworks

included with NumPy that are useful in constructing your own packages built on top

of NumPy. The central purpose of this book, however, is to describe and document

the basic NumPy system that is available under the numpy namespace.

NOTE

The numpy namespace includes all names under the numpy.core

and numpy.lib namespaces as well. Thus, import numpy will

also import the names from numpy.core and numpy.lib. This is the

recommended way to use numpy.

The following table gives a brief outline of the sub-packages contained in numpy

package.
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Sub-Package Purpose Comments

core basic objects all names exported to numpy

lib additional utilities all names exported to numpy

linalg basic linear algebra old LinearAlgebra from Numeric

fft discrete Fourier transforms old FFT from Numeric

random random number generators old RandomArray from Numeric

distutils enhanced build and distribution improvements built on standard distutils

testing unit-testing utility functions useful for testing

f2py automatic wrapping of Fortran code a useful utility needed by SciPy
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Chapter 2

Object Essentials

NumPy provides two fundamental objects: an N-dimensional array object

(ndarray ) and a universal function object (ufunc ). In addition, there are other

objects that build on top of these which you may find useful in your work, and these

will be discussed later. The current chapter will provide background information

on just the ndarray and the ufunc that will be important for understanding the

attributes and methods to be discussed later.

An N-dimensional array is a homogeneous collection of “items” indexed using N

integers. There are two essential pieces of information that define an N -dimensional

array: 1) the shape of the array, and 2) the kind of item the array is composed of.

The shape of the array is a tuple of N integers (one for each dimension) that

provides information on how far the index can vary along that dimension. The

other important information describing an array is the kind of item the array is

composed of. Because every ndarray is a homogeneous collection of exactly the

same data-type, every item takes up the same size block of memory, and each block

of memory in the array is interpreted in exactly the same way1.

i TIP

All arrays in NumPy are indexed starting at 0 and ending at M-1

following the Python convention.

For example, consider the following piece of code:

1By using OBJECT arrays, one can effectively have heterogeneous arrays, but the system still
sees each element of the array as exactly the same thing (a reference to a Python object).

18



>>> a = array([[1,2,3],[4,5,6]])

>>> a.shape

(2, 3)

>>> a.dtype

dtype(’int32’)

NOTE

for all code in this book it is assumed that you have first entered

from numpy import * . In addition, any previously defined ar-

rays are still defined for subsequent examples.

This code defines an array of size 2×3 composed of 4-byte (little-endian) integer

elements (on my 32-bit platform). We can index into this two-dimensional array

using two integers: the first integer running from 0 to 1 inclusive and the second

from 0 to 2 inclusive. For example, index (1, 1) selects the element with value 5:

>>> a[1,1]

5

All code shown in the shaded-boxes in this book has been (automatically) exe-

cuted on a particular version of NumPy. The output of the code shown below shows

which version of NumPy was used to create all of the output in your copy of this

book.

>>> import numpy; print numpy. version

1.0.2.dev3478

2.1 Data-Type Descriptors

In NumPy, an ndarray is an N -dimensional array of items where each item takes

up a fixed number of bytes. Typically, this fixed number of bytes represents a

number (e.g. integer or floating-point). However, this fixed number of bytes could

also represent an arbitrary record made up of any collection of other data types.

NumPy achieves this flexibility through the use of a data-type (dtype) object. Every

array has an associated dtype object which describes the layout of the array data.

Every dtype object, in turn, has an associated Python type-object that determines
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header ...
ndarray

scalar
array

head

data−type

Figure 2.1: Conceptual diagram showing the relationship between the three fun-
damental objects used to describe the data in an array: 1) the ndarray itself, 2)
the data-type object that describes the layout of a single fixed-size element of the
array, 3) the array-scalar Python object that is returned when a single element of
the array is accessed.

exactly what type of Python object is returned when an element of the array is

accessed. The dtype objects are flexible enough to contain references to arrays

of other dtype objects and, therefore, can be used to define nested records. This

advanced functionality will be described in better detail later as it is mainly useful

for the recarray (record array) subclass that will also be defined later. However, all

ndarrays can enjoy the flexibility provided by the dtype objects. Figure 2.1 provides

a conceptual diagram showing the relationship between the ndarray, its associated

data-type object, and an array-scalar that is returned when a single-element of the

array is accessed. Note that the data-type points to the type-object of the array

scalar. An array scalar is returned using the type-object and a particular element

of the ndarray.

Every dtype object is based on one of 21 built-in dtype objects. These built-

in objects allow numeric operations on a wide-variety of integer, floating-point,

and complex data types. Associated with each data-type is a Python type object

whose instances are array scalars. This type-object can be obtained using the type

attribute of the dtype object. Python typically defines only one data-type of a

particular data class (one integer type, one floating-point type, etc.). This can be

convenient for some applications that don’t need to be concerned with all the ways

data can be represented in a computer. For scientific applications, however, this is

not always true. As a result, in NumPy, their are 21 different fundamental Python

data-type-descriptor objects built-in. These descriptors are mostly based on the

types available in the C language that CPython is written in. However, there are a
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few types that are extremely flexible, such as str , unicode , and void .

The fundamental data-types are shown in Table 2.1. Along with their (mostly)

C-derived names, the integer, float, and complex data-types are also available using

a bit-width convention so that an array of the right size can always be ensured

(e.g. int8, float64, complex128). The C-like names are also accessible using a

character code which is also shown in the table (use of the character codes, however,

is discouraged). Names for the data types that would clash with standard Python

object names are followed by a trailing underscore, ’ ’. These data types are so

named because they use the same underlying precision as the corresponding Python

data types. Most scientific users should be able to use the array-enhanced scalar

objects in place of the Python objects. The array-enhanced scalars inherit from the

Python objects they can replace and should act like them under all circumstances

(except for how errors are handled in math computations).

i TIP

The array types bool , int , complex , float , object , uni-

code , and str are enhanced-scalars. They are very similar to

the standard Python types (without the trailing underscore) and

inherit from them (except for bool and object ). They can be used

in place of the standard Python types whenever desired. Whenever

a data type is required, as an argument, the standard Python types

are recognized as well.

Three of the data types are flexible in that they can have items that are of an

arbitrary size: the str type, the unicode type, and the void type. While, you

can specify an arbitrary size for these types, every item in an array is still of that

specified size. The void type, for example, allows for arbitrary records to be defined

as elements of the array, and can be used to define exotic types built on top of the

basic ndarray .

NOTE

The two types intp and uintp are not separate types. They are

names bound to a specific integer type just large enough to hold a

memory address (a pointer) on the platform.
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Table 2.1: Built-in array-scalar types corresponding to data-types for an ndarray.
The bold-face types correspond to standard Python types. The object type is
special because arrays with dtype=’O’ do not return an array scalar on item access
but instead return the actual object referenced in the array.

Type Bit-Width Character

bool boolXX ’?’
byte intXX ’b’
short ’h’
intc ’i’
int ’l’

longlong ’q’
intp ’p’

ubyte uintXX ’B’
ushort ’H’
uintc ’I’
uint ’L’

ulonglong ’Q’
uintp ’P’
single floatXX ’f’
float ’d’

longfloat ’g’
csingle complexXX ’F’

complex ’D’
clongfloat ’G’
object ’O’

str ’S#’
unicode ’U#’

void ’V#’
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WARNING

Numeric Compatibility: If you used old typecode characters in

your Numeric code (which was never recommended), you will need

to change some of them to the new characters. In particular,

the needed changes are ’c->’S1’, ’b’->’B’, ’1’->’b’, ’s’->’h’, ’w’-

>’H’, and ’u’->’I’. These changes make the typecharacter conven-

tion more consistent with other Python modules such as the struct

module.

The fundamental data-types are arranged into a hierarchy of Python type-

objects shown in Figure 2.2. Each of the leaves on this hierarchy correspond to

actual data-types that arrays can have (in other words, there is a built in dtype ob-

ject associated with each of these new types). They also correspond to new Python

objects that can be created. These new objects are “scalar” types corresponding

to each fundamental data-type. Their purpose is to smooth out the rough edges

that result when mixing scalar and array operations. These scalar objects will be

discussed in more detail in Chapter 6. The other types in the hierarchy define

particular categories of types. These categories can be useful for testing whether

or not the object returned by self.dtype.type is of a particular class (using

issubclass ).

2.2 Basic indexing (slicing)

Indexing is a powerful tool in Python and NumPy takes full advantage of this power.

In fact, some of capabilities of Python’s indexing were first established by the needs

of Numeric users.2 Indexing is also sometimes called slicing in Python, and slicing

for an ndarray works very similarly as it does for other Python sequences. There

are three big differences: 1) slicing can be done over multiple dimensions, 2) exactly

one ellipsis object can be used to indicate several dimensions at once, 3) slicing

cannot be used to expand the size of an array (unlike lists).

A few examples should make slicing more clear. Suppose A is a 10 × 20 array,

then A[3] is the same as A[3, :] and represents the 4th length-20 “row” of the array.

On the other hand, A[:, 3] represents the 4th length-10 “column” of the array. Every

2For example, the ability to index with a comma separated list of objects and have it correspond
to indexing with a tuple is a feature added to Python at the request of the NumPy community.
The Ellipsis object was also added to Python explicitly for the NumPy community. Extended
slicing (wherein a step can be provided) was also a feature added to Python because of Numeric.
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Figure 2.2: Hierarchy of type objects representing the array data types. Not shown
are the two integer types intp and uintp which just point to the integer type
that holds a pointer for the platform. All the number types can be obtained using
bit-width names as well.
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third element of the 4th column can be selected as A[:: 3, 3]. Ellipses can be used to

replace zero or more “:” terms. In other words, an Ellipsis object expands to zero

or more full slice objects (“:”) so that the total number of dimensions in the slicing

tuple matches the number of dimensions in the array. Thus, if A is 10×20×30×40,

then A[3 :, ..., 4] is equivalent to A[3 :, :, :, 4] while A[..., 3] is equivalent to A[:, :, :, 3].

The following code illustrates some of these concepts:

>>> a = arange(60).reshape(3,4,5); print a

[[[ 0 1 2 3 4]

[ 5 6 7 8 9]

[10 11 12 13 14]

[15 16 17 18 19]]

[[20 21 22 23 24]

[25 26 27 28 29]

[30 31 32 33 34]

[35 36 37 38 39]]

[[40 41 42 43 44]

[45 46 47 48 49]

[50 51 52 53 54]

[55 56 57 58 59]]]

>>> print a[...,3]

[[ 3 8 13 18]

[23 28 33 38]

[43 48 53 58]]

>>> print a[1,...,3]

[23 28 33 38]

>>> print a[:,:,2]

[[ 2 7 12 17]

[22 27 32 37]

[42 47 52 57]]

>>> print a[0,::2,::2]

[[ 0 2 4]

[10 12 14]]
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2.3 Memory Layout of ndarray

On a fundamental level, an N -dimensional array object is just a one-dimensional se-

quence of memory with fancy indexing code that maps an N -dimensional index into

a one-dimensional index. The one-dimensional index is necessary on some level be-

cause that is how memory is addressed in a computer. The fancy indexing, however,

can be very helpful for translating our ideas into computer code. This is because

many concepts we wish to model on a computer have a natural representation as

an N -dimensional array. While this is especially true in science and engineering,

it is also applicable to many other arenas which can be appreciated by considering

the popularity of the spreadsheet as well as “image processing” applications.

WARNING

Some high-level languages give pre-eminence to a particular use of

2-dimensional arrays as Matrices. In NumPy, however, the core

object is the more general N -dimensional array. NumPy defines a

matrix object as a sub-class of the N-dimensional array.

In order to more fully understand the array object along with its attributes

and methods it is important to learn more about how an N -dimensional array is

represented in the computer’s memory. A complete understanding of this layout is

only essential for optimizing algorithms operating on general purpose arrays. But,

even for the casual user, a general understanding of memory layout will help to

explain the use of certain array attributes that may otherwise be mysterious.

2.3.1 Contiguous Memory Layout

There is a fundamental ambiguity in how the mapping to a one-dimensional index

can take place which is illustrated for a 2-dimensional array in Figure 2.3. In that

figure, each block represents a chunk of memory that is needed for representing

the underlying array element. For example, each block could represent the 8 bytes

needed to represent a double-precision floating point number.

In the figure, two arrays are shown, a 4x3 array and a 3x4 array. Each of these

arrays takes 12 blocks of memory shown as a single, contiguous segment. How this

memory is used to form the abstract 2-dimensional array can vary, however, and

the ndarray object supports both styles. Which style is in use can be interrogated

by the use of the flags attribute which returns a dictionary of the state of array

flags.

26



11109876543210

C

11109

876

543

210

(0,0) (0,2)

(1,0) (1,2)(1,1)

(2,2)

(3,2)

(0,1)

(2,0)

(3,0)

(2,1)

(3,1)

Fortran

11

10

9

8

7

6

5

4

3

2

1

0

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(1,3)

(2,3)

(0,3)

Figure 2.3: Options for memory layout of a 2-dimensional array.

In the C-style of N -dimensional indexing shown on the left of Figure 2.3 the

last N -dimensional index “varies the fastest.” In other words, to move through

computer memory sequentially, the last index is incremented first, followed by the

second-to-last index and so forth. Some of the algorithms in NumPy that deal with

N -dimensional arrays work best with this kind of data.

In the Fortran-style of N -dimensional indexing shown on the right of Figure 2.3,

the first N -dimensional index “varies the fastest.” Thus, to move through computer

memory sequentially, the first index is incremented first until it reaches the limit in

that dimension, then the second index is incremented and the first index is reset to

zero. While NumPy can be compiled without the use of a Fortran compiler, several

modules of SciPy (available separately) rely on underlying algorithms written in

Fortran. Algorithms that work on N -dimensional arrays that are written in Fortran

typically expect Fortran-style arrays.

The two-styles of memory layout for arrays are connected through the transpose

operation. Thus, if A is a (contiguous) C-style array, then the same block of mem-

ory can be used to represent AT as a (contiguous) Fortran-style array. This kind

of understanding can be useful when trying to optimize the wrapping of Fortran

subroutines, or if a more detailed understanding of how to write algorithms for

generally-indexed arrays is desired. But, fortunately, the casual user who does not

care if an array is copied occasionally to get it into the right orientation needed for

a particular algorithm can forget about how the array is stored in memory and just

visualize it as an N -dimensional array (that is, after all, the whole point of creating

the ndarray object in the first place).
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2.3.2 Non-contiguous memory layout

Both of the examples presented above are single-segment arrays where the entire

array is visited by sequentially marching through memory one element at a time.

When an algorithm in C or Fortran expects an N-dimensional array, this single

segment (of a certain fundamental type) is usually what is expected along with

the shape N -tuple. With a single-segment of memory representing the array, the

one-dimensional index into computer memory can always be computed from the

N -dimensional index. This concept is explored further in the following paragraphs.

Let ni be the value of the ith index into an array whose shape is represented by

the N integers di (i = 0 . . .N − 1). Then, the one-dimensional index into a C-style

contiguous array is

nC =

N−1∑

i=0

ni

N−1∏

j=i+1

dj

while the one-dimensional index into a Fortran-style contiguous array is

nF =

N−1∑

i=0

ni

i−1∏

j=0

dj .

In these formulas we are assuming that

m∏

j=k

dj = dkdk+1 · · ·dm−1dm

so that if m < k, the product is 1. While perfectly general, these formulas may be

a bit confusing at first glimpse. Let’s see how they expand out for determining the

one-dimensional index corresponding to the element (1, 3, 2) of a 4× 5× 6 array. If

the array is stored as Fortran contiguous, then

nF = n0 · (1) + n1 · (4) + n2 · (4 · 5)

= 1 + 3 · 4 + 2 · 20 = 53.

On the other hand, if the array is stored as C contiguous, then

nC = n0 · (5 · 6) + n1 · (6) + n2 · (1)

= 1 · 30 + 3 · 6 + 2 · 1 = 50.

The general pattern should be more clear from these examples.
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The formulas for the one-dimensional index of the N-dimensional arrays reveal

what results in an important generalization for memory layout. Notice that each

formula can be written as

nX =

N−1∑

i=0

nis
X
i

where sX
i gives the stride for dimension i.3 Thus, for C and Fortran contiguous

arrays respectively we have

sC
i =

N−1∏

j=i+1

dj = di+1di+2 · · · dN−1,

sF
i =

i−1∏

j=0

dj = d0d1 · · · di−1.

The stride is how many elements in the underlying one-dimensional layout of

the array one must jump in order to get to the next array element of a specific

dimension in the N-dimensional layout. Thus, in a C-style 4× 5× 6 array one must

jump over 30 elements to increment the first index by one, so 30 is the stride for

the first dimension (sC
0 = 30). If, for each array, we define a strides tuple with N

integers, then we have pre-computed and stored an important piece of how to map

the N -dimensional index to the one-dimensional one used by the computer.

In addition to providing a pre-computed table for index mapping, by allowing

the strides tuple to consist of arbitrary integers we have provided a more general

layout for the N -dimensional array. As long as we always use the stride information

to move around in the N -dimensional array, we can use any convenient layout we

wish for the underlying representation as long as it is regular enough to be defined

by constant jumps in each dimension. The ndarray object of NumPy uses this

stride information and therefore the underlying memory of an ndarray can be laid

out dis-contiguously.

NOTE

Several algorithms in NumPy work on arbitrarily strided arrays.

However, some algorithms require single-segment arrays. When an

irregularly strided array is passed in to such algorithms, a copy is

automatically made.

3Our definition of stride here is an element-based stride, while the strides attribute returns a
byte-based stride. The byte-based stride is the element itemsize multiplied by the element-based
stride.

29



An important situation where irregularly strided arrays occur is array indexing.

Consider again Figure 2.3. In that figure a high-lighted sub-array is shown. Define

C to be the 4 × 3 C contiguous array and F to be the 3 × 4 Fortran contiguous

array. The highlighted areas can be written respectively as C[1:3,1:3] and F [1:3,1:3].

As evidenced by the corresponding highlighted region in the one-dimensional view

of the memory, these sub-arrays are neither C contiguous nor Fortran contiguous.

However, they can still be represented by an ndarray object using the same striding

tuple as the original array used. Therefore, a regular indexing expression on an

ndarray can always produce an ndarray object without copying any data. This

is sometimes referred to as the “view” feature of array indexing, and one can see

that it is enabled by the use of striding information in the underlying ndarray

object. The greatest benefit of this feature is that it allows indexing to be done

very rapidly and without exploding memory usage (because no copies of the data

are made).

2.4 Universal Functions for arrays

NumPy provides a wealth of mathematical functions that operate on then ndarray

object. From algebraic functions such as addition and multiplication to trigonomet-

ric functions such as sin, and cos. Each universal function (ufunc ) is an instance of

a general class so that function behavior is the same. All ufuncs perform element-

by-element operations over an array or a set of arrays (for multi-input functions).

The ufuncs themselves and their methods are documented in Part 9.

One important aspect of ufunc behavior that should be introduced early, how-

ever, is the idea of broadcasting. Broadcasting is used in several places throughout

NumPy and is therefore worth early exposure. To understand the idea of broad-

casting, you first have to be conscious of the fact that all ufuncs are always element-

by-element operations. In other words, suppose we have a ufunc with two inputs

and one output (e.g. addition) and the inputs are both arrays of shape 4 × 6 × 5.

Then, the output is going to be 4 × 6 × 5, and will be the result of applying the

underlying function (e.g. +) to each pair of inputs to produce the output at the

corresponding N -dimensional location.

Broadcasting allows ufuncs to deal in a meaningful way with inputs that do not

have exactly the same shape. In particular, the first rule of broadcasting is that

if all input arrays do not have the same number of dimensions, then a “1” will

be repeatedly pre-pended to the shapes of the smaller arrays until all the arrays

have the same number of dimensions. The second rule of broadcasting ensures that
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arrays with a size of 1 along a particular dimension act as if they had the size of the

array with the largest shape along that dimension. The value of the array element

is assumed to be the same along that dimension for the “broadcasted” array. After

application of the broadcasting rules, the sizes of all arrays must match.

While a little tedious to explain, the broadcasting rules are easy to pick up by

looking at a couple of examples. Suppose there is a ufunc with two inputs, A and

B. Now supposed that A has shape 4 × 6 × 5 while B has shape 4 × 6 × 1. The

ufunc will proceed to compute the 4 × 6 × 5 output as if B had been 4 × 6 × 5 by

assuming that B[..., k] = B[..., 0] for k = 1, 2, 3, 4.

Another example illustrates the idea of adding 1’s to the beginning of the array

shape-tuple. Suppose A is the same as above, but B is a length 5 array. Because

of the first rule, B will be interpreted as a 1× 1 × 5 array, and then because of the

second rule B will be interpreted as a 4 × 6 × 5 array by repeating the elements of

B in the obvious way.

The most common alteration needed is to route-around the automatic pre-

pending of 1’s to the shape of the array. If it is desired, to add 1’s to the end

of the array shape, then dimensions can always be added using the newaxis name

in NumPy: B[..., newaxis, newaxis] returns an array with 2 additional 1’s appended

to the shape of B.

One important aspect of broadcasting is the calculation of functions on regularly

spaced grids. For example, suppose it is desired to show a portion of the multipli-

cation table by computing the function a ∗ b on a grid with a running from 6 to 9

and b running from 12 to 16. The following code illustrates how this could be done

using ufuncs and broadcasting.

>>> a = arange(6, 10); print a

[6 7 8 9]

>>> b = arange(12, 17); print b

[12 13 14 15 16]

>>> table = a[:,newaxis] * b

>>> print table

[[ 72 78 84 90 96]

[ 84 91 98 105 112]

[ 96 104 112 120 128]

[108 117 126 135 144]]
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2.5 Summary of new features

More information about using arrays in Python can be found in the old Numeric doc-

umentation at http://numeric.scipy.org http://numeric.scipy.org . Quite a

bit of that documentation is still accurate, especially in the discussion of array ba-

sics. There are significant differences, however, and this book seeks to explain them

in detail. The following list tries to summarize the significant new features (over

Numeric) available in the ndarray and ufunc objects of NumPy:

1. more data types (all standard C-data types plus complex floats, Boolean,

string, unicode, and void *);

2. flexible data types where each array can have a different itemsize (but all

elements of the same array still have the same itemsize);

3. there is a true Python scalar type (contained in a hierarchy of types) for every

data-type an array can have;

4. data-type objects define the data-type with support for data-type objects with

fields and subarrays which allow record arrays with nested records;

5. many more array methods in addition to functional counterparts;

6. attributes more clearly distinguished from methods (attributes are intrinsic

parts of an array so that setting them changes the array itself);

7. array scalars covering all data types which inherit from Python scalars when

appropriate;

8. arrays can be misaligned, swapped, and in Fortran order in memory (facilitates

memory-mapped arrays);

9. arrays can be more easily read from text files and created from buffers and

iterators;

10. arrays can be quickly written to files in text and/or binary mode;

11. arrays support the removal of the 64-bit memory limitation as long as you

have Python 2.5 or later;

12. fancy indexing can be done on arrays using integer sequences and Boolean

masks;
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13. coercion rules are altered for mixed scalar / array operations so that scalars

(anything that produces a 0-dimensional array internally) will not determine

the output type in such cases.

14. when coercion is needed, temporary buffer-memory allocation is limited to a

user-adjustable size;

15. errors are handled through the IEEE floating point status flags and there is

flexibility on a per-thread level for handling these errors;

16. one can register an error callback function in Python to handle errors are set

to ’call’ for their error handling;

17. ufunc reduce, accumulate, and reduceat can take place using a different type

then the array type if desired (without copying the entire array);

18. ufunc output arrays passed in can be a different type than expected from the

calculation;

19. ufuncs take keyword arguments which can specify 1) the error handling explic-

itly and 2) the specific 1-d loop to use by-passing the type-coercion detection.

20. arbitrary classes can be passed through ufuncs ( array wrap and

array priority expand previous array method);

21. ufuncs can be easily created from Python functions;

22. ufuncs have attributes to detail their behavior, including a dynamic doc string

that automatically generates the calling signature;

23. several new ufuncs (frexp, modf, ldexp, isnan, isfinite, isinf, signbit);

24. new types can be registered with the system so that specialized ufunc loops

can be written over new type objects;

25. new types can also register casting functions and rules for fitting into the

“can-cast” hierarchy;

26. C-API enhanced so that more of the functionality is available from compiled

code;

27. C-API enhanced so array structure access can take place through macros;

28. new iterator objects created for easy handling in C of non-contiguous arrays;
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29. new multi-iterator object created for easy handling in C of broadcasting;

30. types have more functions associated with them (no magic function lists in

the C-code). Any function needed is part of the type structure.

All of these enhancements will be documented more thoroughly in the remaining

portions of this book.

2.6 Summary of differences with Numeric

An effort was made to retain backwards compatibility with Numeric all the way to

the C-level. This was mostly accomplished, with a few changes that needed to be

made for consistency of the new system. If you are just starting out with NumPy,

then this section may be skipped.

There are two steps (one required and one optional) to converting code that

works with Numeric to work fully with NumPy The first step uses a com-

patibility layer and requires only small changes which can be handled by the

numpy.oldnumeric.alter code1 module. Code written to the compatibility layer will

work and be supported. The purpose of the compatibility layer is to make it easy to

convert to NumPy and many codes may only take this first step and work fine with

NumPy. The second step is optional as it removes dependency on the compatibility

layer and therefore requires a few more extensive changes. Many of these changes

can be performed by the numpy.oldnumeric.alter code2 module, but you may still

need to do some final tweaking by hand. Because many users will probably be con-

tent to only use the first step, the alter code2 module for second-stage migration

may not be as complete as it otherwise could be.

2.6.1 First-step changes

In order to use the compatibility layer there are still a few changes that need to be

made to your code. Many of these changes can be made by running the alter code1

module with your code as input.

1. Importing (the alter code1 module handles all these changes)

(a) import Numeric –> import numpy.oldnumeric as Numeric

(b) import Numeric as XX –> import numpy.oldnumeric as XX

(c) from Numeric import <name1>,...<nameN> –> from

numpy.oldnumeric import <name1>,...,<nameN>
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(d) from Numeric import * –> from numpy.oldnumeric import *

(e) Similar name changes need to be made for Matrix, MLab, UserAr-

ray, LinearAlgebra, RandomArray RNG, RNG.Statistics, and FFT. The

new names are numpy.oldnumeric.<pkg> where <pkg> is matrix, mlab,

user array, linear algebra, random array, rng, rng stats, and fft.

(f) multiarray and umath (if you used them directly) are now

numpy.core.multiarray and numpy.core.umath, but it is more future

proof to replace usages of these internal modules with numpy.oldnumeric.

2. Method name changes and methods converted to attributes. The alter code1

module handles all these changes.

(a) arr.typecode() –> arr.dtype.char

(b) arr.iscontiguous() –> arr.flags.contiguous

(c) arr.byteswapped() –> arr.byteswap()

(d) arr.toscalar() –> arr.item()

(e) arr.itemsize() –> arr.itemsize

(f) arr.spacesaver() eliminated

(g) arr.savespace() eliminated

3. Some of the typecode characters have changed to be more consistent with

other Python modules (array and struct). You should only notice this change

if you used the actual typecode characters (instead of the named constants).

The alter code1 module will change uses of ’b’ to ’B’ for internal Numeric func-

tions that it knows about because NumPy will interpret ’b’ to mean a signed

byte type (instead of the old unsigned). It will also change the character codes

when they are used explicitly in the .astype method. In the compatibility layer

(and only in the compatibility layer), typecode-requiring function calls (e.g.

zeros, array) understand the old typecode characters.

The changes are (Numeric –> NumPy):

(a) ’b’ –> ’B’

(b) ’1’ –> ’b’

(c) ’s’ –> ’h’

(d) ’w’ –> ’H’
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(e) ’u’ –> ’I’

4. arr.flat now returns an indexable 1-D iterator. This behaves correctly when

passed to a function, but if you expected methods or attributes on arr.flat

— besides .copy() — then you will need to replace arr.flat with arr.ravel()

(copies only when necessary) or arr.flatten() (always copies). The alter code1

module will change arr.flat to arr.ravel() unless you used the construct arr.flat

= obj or arr.flat[ind].

5. If you used type-equality testing on the objects returned from arrays, then you

need to change this to isinstance testing. Thus type(a[0]) is float or type(a[0])

== float should be changed to isinstance(a[0], float). This is because array

scalar objects are now returned from arrays. These inherit from the Python

scalars where they can, but define their own methods and attributes. This

conversion is done by alter code1 for the types (float, int, complex, and Ar-

rayType)

6. If your code should produce 0-d arrays. These no-longer have a length as they

should be interpreted similarly to real scalars which don’t have a length.

7. Arrays cannot be tested for truth value unless they are empty (returns False)

or have only one element. This means that if Z: where Z is an array will fail

(unless Z is empty or has only one element). Also the ’and’ and ’or’ operations

(which test for object truth value) will also fail on arrays of more than one

element. Use the .any() and .all() methods to test for truth value of an array.

8. Masked arrays return a special nomask object instead of None when there is

no mask on the array for the functions getmask and attribute access arr.mask

9. Masked array functions have a default axis of None (meaning ravel), make

sure to specify an axis if your masked arrays are larger than 1-d.

10. If you used the construct arr.shape=<tuple> , this will not work for array

scalars (which can be returned from array operations). You cannot set the

shape of an array-scalar (you can read it though). As a result, for more general

code you should use arr=arr.reshape(<tuple>) which works for both

array-scalars and arrays.

The alter code1 script should handle the changes outlined in steps 1-5 above. The

final incompatibilities in 6-9 are less common and must be modified by hand if

necessary.
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2.6.2 Second-step changes

During the second phase of migration (should it be necessary) the compatibility

layer is dropped. This phase requires additional changes to your code. There is

another conversion module (alter code2) which can help but it is not complete.

The changes required to drop dependency on the compatibility layer are

1. Importing

(a) numpy.oldnumeric –> numpy

(b) from numpy.oldnumeric import * –> from numpy import * (this may

clobber more names and therefore require further fixes to your code but

then you didn’t do this regularly anyway did you). The recommended

procedure if this replacement causes problems is to fix the use of from

numpy.oldnumeric import * to extract only the required names and then

continue.

(c) numpy.oldnumeric.mlab –> None, the functions come from other places.

(d) numpy.oldnumeric.linear algebra –> numpy.lilnalg with name changes to

the functions (made lower case and shorter).

(e) numpy.oldnumeric.random array –> numpy.random with some name

changes to the functions.

(f) numpy.oldnumeic.fft –> numpy.fft with some name changes to the func-

tions.

(g) numpy.oldnumeric.rng –> None

(h) numpy.oldnumeric.rng stats –> None

(i) numpy.oldnumeric.user array –> numpy.lib.user array

(j) numpy.oldnumeric.matrix –> numpy

2. The typecode names are all lower-case and refer to type-objects corresponding

to array scalars. The character codes are understood by array-creation func-

tions but are not given names. All named type constants should be replaced

with their lower-case equivalents. Also, the old character codes ’1’, ’s’, ’w’,

and ’u’ are not understood as data-types. It is probably easiest to manually

replace these with Int8, Int16, UInt16, and UInt32 and let the alter code2

script convert the names to lower-case typeobjects.

3. Keyword and argument changes

37



(a) All typecode= keywords must be changed to dtype= .

(b) The savespace keyword argument has been removed from all functions

where it was present (array, sarray, asarray, ones, and zeros). The sarray

function is equivalent to asarray.

4. The default data-type in NumPy is float unlike in Numeric (and

numpy.oldnumeric) where it was int. There are several functions affected

by this so that if your code was relying on the default data-type, then it must

be changed to explicitly add dtype=int.

5. The nonzero function in NumPy returns a tuple of index arrays just like

the corresponding method. There is a flatnonzero function that first ravels

the array and then returns a single index array. This function should be

interchangeable with the old use of nonzero.

6. The default axis is None (instead of 0) to match the methods for the func-

tions take, repeat, sum, average, product, sometrue, alltrue, cumsum, and

cumproduct (from Numeric) and also for the functions average, max, min,

ptp, prod, std, and mean (from MLab).

7. The default axis is None (instead of -1) to match the methods for the functions

argmin, argmax, compress

2.6.3 Updating code that uses Numeric using alter codeN

Despite the long list of changes that might be needed given above, it is likely that

your code does not use any of the incompatible corners and it should not be too

difficult to convert from Numeric to NumPy. For example all of SciPy was converted

in about 2-3 days. The needed changes are largely search-and replace type changes,

and the alter codeN modules can help. The modules have two functions which help

the process:

convertfile (filename, orig=1)

Convert the file with the given filename to use NumPy. If orig is True, then

a backup is first made and given the name filename.orig. Then, the file is

converted and the updated code written over the top of the old file.

convertall (direc=os.path.curdir, orig=1)
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Converts all the “.py” files in the given directory to use NumPy. Backups of all

the files are first made if orig is True as explained for the convertfile function.

convertsrc (direc=os.path.curdir, ext=None, orig=1)

Replace ’’Numeric/arrayobject.h’’ with ’’numpy/oldnumeric.h’’

in all files ending in the list of extensions given by ext (if ext is None, then all

files are updated). If orig is True, then first make a backup file with “.orig”

as the extension.

converttree (direc=os.path.curdir)

Walks the tree pointed to by direc and converts all “.py” modules in each sub-

directory to use NumPy. No backups of the files are made. Also, con-

verts all .h and .c files to replace ’’Numeric/arrayobject.h’’ with

’’numpy/oldnumeric.h’’ so that NumPy is used.

2.6.4 Changes to think about

Even if you don’t make changes to your old code. If you are used to coding in

Numeric, then you may need to adjust your coding style a bit. This list provides

some helpful things to remember.

1. Switch from using typecode characters to bitwidth type names or c-type names

2. Convert use of uppercase type-names Int32, Float, etc., to lower case int32,

float, etc.

3. Convert use of functions to method calls where appropriate but explicitly

specify any axis arguments for arrays greater than 1-d.

4. The names for standard computations like Fourier transforms, linear algebra,

and random-number generation have changed to conform to the standard of

lower-case names possibly separated by an underscore.

5. Look for ways to take advantage of advanced slicing, but remember it always

returns a copy and may be slower at times.

6. Remove any kludges you inserted to eliminate problems with Numeric that

are now gone.

7. Look for ways to take advantage of new features like expanded data-types

(record-arrays).
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8. See if you can inherit from the ndarray directly, rather than using

user array.container (UserArray). However, if you were using UserArray in

a multiple-inheritance hierarchy this is going to be more difficult and you

can continue to use the standard container class in user array (but notice the

name change).

9. Watch your usage of scalars extracted from arrays. Treating Numeric arrays

like lists and then doing math on the elements 1 by 1 was always about 2x

slower than using real lists in Python. This can now be 3x-6x slower than using

lists in NumPy because of the increased complexity of both the indexing of

ndarrays and the math of array scalars. If you must select individual scalars

from NumPy, you can get some speed increases by using the item method

to get a standard Python scalar from an N-d array and by using the itemset

method to place a scalar into a particular location in the N-d array. This

complicates the appearance of the code, however. Also, when using these

methods inside a loop, be sure to assign the methods to a local variable to

avoid the attribute look-up at each loop iteration.

Throughout this book, warnings are inserted when compatibility issues with old

Numeric are raised. While you may not need to make any changes to get code to

run with the ndarray object, you will likely want to make changes to take advantage

of the new features of NumPy. If you get into a jam during the conversion process,

you should be aware that Numeric and NumPy can both be used together and they

will not interfere with each other. In addition, if you have Numeric 24.0 or newer,

they can even share the same memory. This makes it easy to use NumPy as well

as third-party tools that have not made the switch from Numeric yet.

2.7 Summary of differences with Numarray

Conversion from Numarray can also be relatively painless, depending on how de-

pendent your code is on the specific structure of the Numarray ufuncs, cfuncs,

and various array-like objects. The internals of Numarray can be quite differ-

ent and so depending on how intimately you used those internals adapting to

NumPy can be more or less difficult. C-code that used the Numarray C-API

can be easily adapted because NumPy includes a Numarray-compatible C-API

module. All you need to do is replace usage of “numarray/libnumarray.h” with

“numpy/libnumarray.h” and be sure the directory returned from the Python com-

mand numpy.get numarray include() is included in the list of directories used for
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compilation.

On the Python-side the largest number of differences are in the methods and

attributes of the array and the way array data-types are represented. In addition,

arrays containing Python Objects, strings, and records are an integral part of the

array object and not handled using a separate class (although enhanced separate

classes do exist for the case of character arrays and record arrays).

As is the case with Numeric, there is a two-step process available for migrat-

ing code written for Numarray to work with NumPy. This process involves run-

ning functions in the modules alter code1 and alter code2 located in the numar-

ray sub-package of NumPy. These modules have interfaces identical to the ones

that convert Numeric code, but they work to convert code written for numarray.

The first module will convert your code to use the numarray compatibility module

(numpy.numarray), while the second will try and help convert code to move away

from dependency on the compatibility module. Because many users will proba-

bly be content to only use the first step, the alter code2 module for second-stage

migration may not be as complete as it otherwise could be.

Also, the alter code1 module is not guaranteed to convert every piece of working

numarray code to use NumPy. If your code relied on the internal module structure of

numarray or on how the class hierarchy was laid out, then it will need to be changed

manually to run with NumPy. Of course you can still use your code with Numarray

installed side-by-side and the two array objects should be able to exchange data

without copying.

2.7.1 First-step changes

The alter code1 script makes the following import and attribute/method changes

2.7.1.1 Import changes

• import numarray –> import numpy.numarray as numarray

• import numarray.package –> import numpy.numarray.package as numar-

ray package with all usages of numarray.package in the code replaced by nu-

marray package

• import numarray as <name> –> import numpy.numarray s <name>

• import numarray.package as <name> –> import numpy.numarray.package as

<name>
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• from numarray import <names> –> from numpy.numarray import <names>

• from numarray.package import <names> –> from numpy.numarray.package

import <names>

2.7.1.2 Attribute and method changes

• .imaginary –> .imag

• .flat –> probably .ravel() (Many usages will still work correctly because you

can index and assign to self.flat)

• .byteswapped() –> .byteswap(False)

• .byteswap() –> .byteswap(True) (Returns a reference to self instead of None).

• self.info() –> numarray.info(self)

• .isaligned() –> .flags.aligned

• .isbyteswapped() –> not .dtype.isnative (the byte-order is a property of the

data-type object not the array itself in NumPy).

• .iscontiguous() –> .flags.c contiguous

• .is c array() –> .dtype.isnative and .flags.carray

• .is fortran contiguous() –> .flags.f contiguous

• .is f array() –> .dtype.isnative and .flags.farray

• .itemsize() –> .itemsize

• .nelements() –> .size

• self.new(type) –> numarray.newobj(self, type)

• .repeat(r) –> .repeat(r, axis=0)

• .size() –> .size

• .type() –> numarray.typefrom(self)

• .typecode() –> .dtype.char

• .stddev() –> .std()
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• .togglebyteorder() –> numarray.togglebyteorder(self)

• .getshape() –> .shape

• .setshape(obj) –> .shape = obj

• .getflat() –> .ravel()

• .getreal() –> .real

• .setreal(obj) –> .real = obj

• .getimag() –> .imag

• .setimag(obj) –> .imag = obj

• .getimaginary() –> .imag

• .setimaginary(obj) –> .imag = obj

2.7.2 Second-step changes

One of the notable differences is that several functions (array, arange, fromfile, and

fromstring) do not take the shape= keyword argument. Instead you simply reshape

the result using the reshape method. Another notable difference is that instead of

allowing typecode=, type=, and dtype= variants for specifying the data-types, you

must use the dtype= keyword. Other differences include

• matrixmultiply(a,b) –> dot(a,b)

• innerproduct(a,b) –> inner(a,b)

• outerproduct(a,b) –> outer(a,b)

• kroneckerproduct(a,b) –> kron(a,b)

• tensormultiply(a,b) –> None

2.7.3 Additional Extension modules

There are three extension packages that come included with numarray which are

now downloaded separately. Stubs for these packages exist in numpy.numarray but

they try and find the actual code by looking at what is currently installed. These

packages are available in SciPy but can be installed separately as well:
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• nd image –> scipy.ndimage

• convolve –> scipy.stsci.convolve

• image –> scipy.stsci.image

If you don’t want to install all of scipy, you can grab just these packages from SVN

using

svn co http://svn.scipy.org/svn/scipy/trunk/Lib/ndima ge ndimage

svn co http://svn.scipy.org/svn/scipy/trunk/Lib/stsci stsci

and then run

cd ndimage; sudo python setup.py install

cd stsci; sudo python setup.py install

On a Windows system, you can use the Tortoise SVN client which is integrated into

the Windows Explorer. It can be downloaded from http://tortoisesvn.tigris.org.

Instructions on how to use it are also provided on that site. After downloading

the packages from SVN, installation will still require a C-compiler (the mingw32

compiler works fine even with MSVC-compiled Python as long as you specify –

compiler=mingw32). Alternatively you can download binary releases of scipy from

http://www.scipy.org to get the needed functionality or use the Enthon edition of

Python.

44



Chapter 3

The Array Object

3.1 ndarray Attributes

Array attributes reflect information that is intrinsic to the array itself. Generally,

accessing an array through its attributes allows you to get and sometimes set intrin-

sic properties of the array without creating a new array. The exposed attributes are

the core parts of an array and only some of them can be reset meaningfully without

creating a new array. Table 3.1 shows all the attributes with a brief description.

Detailed information on each attribute is given below.

WARNING

Numeric Compatibility: you should check your old use of the .flat

attribute. This attribute now returns an iterator object which acts

like a 1-d array in terms of indexing. while it does not share all

the attributes or methods of an array, it will be interpreted as

an array in functions that take objects and convert them to arrays.

Furthermore, Any changes in an array converted from a 1-d iterator

will be reflected back in the original array when the converted array

is deleted.

3.1.1 Memory Layout attributes

flags
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Table 3.1: Attributes of the ndarray .

Attribute Settable Description

flags No special array-connected dictionary-like object with
attributes showing the state of flags in this ar-
ray; only the flags WRITEABLE, ALIGNED, and
UPDATEIFCOPY can be modified by setting at-
tributes of this object

shape Yes tuple showing the array shape; setting this at-
tribute re-shapes the array

strides Yes tuple showing how many bytes must be jumped in
the data segment to get from one entry to the next

ndim No number of dimensions in array

data Yes buffer object loosely wrapping the array data (only
works for single-segment arrays)

size No total number of elements

itemsize No size (in bytes) of each element

nbytes No total number of bytes used

base No object this array is using for its data buffer, or
None if it owns its own memory

dtype Yes data-type object for this array

real Yes real part of the array; setting copies data to real
part of current array

imag Yes imaginary part, or read-only zero array if type is
not complex; setting works only if type is complex

flat Yes one-dimensional, indexable iterator object that
acts somewhat like a 1-d array

ctypes No object to simplify the interaction of this array with
the ctypes module

array interface No dictionary with keys (data, typestr, descr, shape,
strides) for compliance with Python side of array
protocol

array struct No array interface on C-level

array priority No always 0.0 for base type ndarray
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Array flags provide information about how the memory area used for the array is

to be interpreted. There are 6 Boolean flags in use which govern whether or

not:

C CONTIGUOUS (C) the data is in a single, C-style contiguous segment;

F CONTIGUOUS (F) the data is in a single, Fortran-style contiguous seg-

ment;

OWNDATA (O) the array owns the memory it uses or if it borrows it from

another object (if this is False, the base attribute retrieves a reference to

the object this array obtained its data from);

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hard-

ware (as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (refer-

enced by .base ). When this array is deallocated, the base array will be

updated with the contents of this array.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be

changed by the user. This can be done using the special array-connected,

dictionary-like object that the flags attribute returns. By setting elements in

this dictionary, the underlying array obect’s flags are altered. Flags can also

be changed using the method setflags (...). All flags in the dictionary can

be accessed using their first (upper case) letter as well as the full name.

Certain logical combinations of flags can also be read using named keys to the

special flags dictionary. These combinations are

FNC Returns F CONTIGUOUS and not C CONTIGUOUS

FORC Returns F CONTIGUOUS or C CONTIGUOUS (one-segment test).

BEHAVED (B) Returns ALIGNED and WRITEABLE

CARRAY (CA) Returns BEHAVED and C CONTIGUOUS

FARRAY (FA) Returns BEHAVED and F CONTIGUOUS and not

C CONTIGUOUS
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NOTE

The array flags cannot be set arbitrarily. UPDATEIFCOPY can

only be set False. the ALIGNED flag can only be set True if the

data is truly aligned. The flag WRITEABLE can only be set True

if the array owns its own memory or the ultimate owner of the

memory exposes a writeable buffer interface (or is a string). The

exception for string is made so that unpickling can be done without

copying memory.

Flags can also be set and read using attribute access with the lower-

case key equivalent (without first letter support). Thus, for example,

self.flags.c contiguous returns whether or not the array is C-style contiguous,

and self.flags.writeable=True changes the array to be writeable (if possible).

shape

The shape of the array is a tuple giving the number of elements in each dimension.

The shape can be reset for single-segment arrays by setting this attribute to

another tuple. The total number of elements cannot change. However, a -1

may be used in a dimension entry to indicate that the array length in that

dimension should be computed so that the total number of elements does not

change. a.shape=x is equivalent to a=a.reshape(x) except the latter can

be used even if the array is not single-segment and even if a is an array scalar.

NOTE

Setting the shape attribute to () for a 1-element array will turn self

into a 0-dimensional array. This is one of the few ways to get a

0-dimensional array in Python. Most other operations will return

an array scalar. Other ways to get a 0-dimensional array in Python

include calling array with a scalar argument and calling the squeeze

method of an array whose shape is all 1’s.

strides

The strides of an array is a tuple showing for each dimension how many bytes

must be skipped to get to the next element in that dimension. Setting this

attribute to another tuple will change the way the memory is viewed. This
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attribute can only be set to a tuple that will not cause the array to access

unavailable memory. If an attempt is made to do so, ValueError is raised.

ndim

The number of dimensions of an array is sometimes called the rank of the array.

Getting this attribute reveals the length of the shape tuple and the strides

tuple.

data

A buffer object referencing the actual data for this array if this array is single-

segment. If the array is not single-segment, then an AttributeError is raised.

The buffer object is writeable depending on the status of self.flags.writeable.

size

The total number of elements in the array.

itemsize

The number of bytes each element of the array requires.

nbytes

The total number of bytes used by the array. This is equal to

self.itemsize * self.size .

base

If the array does not own its own memory, then this attribute returns the object

whose memory this array is referencing. The returned object may not be the

original allocator of the memory, but may be borrowing it from still another

object. If this array does own its own memory, then None is returned unless

the UPDATEIFCOPY flag is True in which case self.base is the array that

will be updated when self is deleted. UPDATEIFCOPY gets set for an array

that is created as a behaved copy of a general array. The intent is for the

misaligned array to get any changes that occur to the copy.

3.1.2 Data Type attributes

There are several ways to specify the kind of data that the array is composed of.

The fullest description that preserves field information is always obtained using
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an actual dtype object. See Chapter 7 for more discussion on data-type objects

and acceptable arguments to construct data-type objects. Three commonly-used

attributes of the data-type object returned are also documented here.

dtype

A data-type object that fully describes (including any defined fields) each fixed-

length item in the array. Whether or not the data is in machine byte-order

is also determined by the data-type. The data-type attribute can be set to

anything that can be interpreted as a data-type (see Chapter 7 for more

information). Setting this attribute allows you to change the interpretation of

the data in the array. The new data-type must be compatible with the array’s

current data-type. The new data-type is compatible if it has the same itemsize

as the current data-type descriptor, or (if the array is a single-segment array)

if the the array with the new data-type fits in the memory already consumed

by the array.

dtype.type

A Python type object gives the typeobject whose instances represent elements of

the array. This type object can be used to instantiate a scalar of that type.

dtype.char

A typecode character unique to each of the 21 built-in types.

dtype.str

This string consists of a required first character giving the “endianness” of the

data (“<” for little endian, “>” for big endian, and “|” for irrelevant), the

second character is a code for the kind of data (’b’ for Boolean, ’i’ for signed

integer, ’u’ for unsigned integer, ’f’ for floating-point, ’c’ for complex floating

point, ’O’ for object, ’S’ for ASCII string, ’U’ for unicode, and ’V’ for void),

the final characters give the number of bytes each element uses.

3.1.3 Other attributes

T

Equivalent to self.transpose(). For self.ndim < 2, it returns a view of self.

real
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The real part of an array. For arrays that are not complex this attribute returns

the array itself. Setting this attribute allows setting just the real part of an

array. If the array is already real then setting this attribute is equivalent to

self[...] = values.

imag

A view of the imaginary part of an array. For arrays that are not complex, this

returns a read-only array of zeros. Setting this array allows in-place alteration

of the complex part of an imaginary array. If the array is not complex, then

trying to set this attribute raises an Error.

flat

Return an iterator object (numpy.flatiter) that acts like a 1-d version of the array.

1-d indexing works on this array and it can be passed in to most routines as

an array wherein a 1-d array will be constructed from it. The new 1-d array

will reference this array’s data if this array is C-style contiguous, otherwise,

new memory will be allocated for the 1-d array, the UPDATEIFCOPY flag

will be set for the new array, and this array will have its WRITEABLE flag

set FALSE until the the last reference to the new array disappears. When the

last reference to the new 1-d array disappears, the data will be copied over to

this non-contiguous array. This is done so that a.flat effectively references the

current array regardless of whether or not it is contiguous or non-contiguous.

As an example, consider the following code:

>>> a = zeros((4,5))

>>> b = ones(6)

>>> add(b,b,a[1:3,0:3].flat)

array([[ 2., 2., 2.],

[ 2., 2., 2.]])

>>> print a

[[ 0. 0. 0. 0. 0.]

[ 2. 2. 2. 0. 0.]

[ 2. 2. 2. 0. 0.]

[ 0. 0. 0. 0. 0.]]

The numpy.flatiter object has two methods: array () and copy() and one

attribute: base. The base attribute returns a reference to the underlying

array.
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array priority

The array priority attribute is a floating point number useful in mixed operations

involving two subtypes to decide which subtype is returned. The base ndarray

object has priority 0.0 and 1.0 is the default subtype priority.

3.1.4 Array Interface attributes

The array interface (sometimes called array protocol) was created in 2005 as a

means for array-like Python objects to re-use each other’s data buffers intelligently

whenever possible. The ndarray object supports both the Python-side and the C-

side of the array interface. The system is able to consume objects that expose the

array interface, and array objects can expose their inner workings to other objects

that support the array interface.

array interface

The python-side of the array interface. It is a dictionary with the following

attributes:

data A 2-tuple (dataptr, read-only flag). The dataptr is a string giving the

address (in hexadecimal format) of the array data. The read-only flag is

True if the array memory is read-only.

strides The strides tuple. Same as strides attribute except None is returned

if the array is C-style contiguous.

shape The shape tuple. Same as shape attribute.

typestr A string giving the format of the data. Same as dtype.str attribute.

descr A list of tuples providing the detailed description of this data type.

This information is obtained from the arrdescr attribute of the dtypedescr

object associated with each array. For arrays with fields, this will return

a valid array-protocol descriptor list. For arrays without defined fields,

this returns [(”,typestr)].

array struct

A PyCObject that wraps a pointer to a PyArrayInterface structure. This is only

useful on the C-level for rapid implementation of the array interface, using a

single attribute lookup.

ctypes
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This attribute creates an object that makes it easier to use arrays when calling

out to shared libraries with the ctypes module. The returned object has data,

shape, and strides attributes which return ctypes objects that can be used as

arguments to a shared library. These attributes are:

data A pointer to the memory area of the array as a Python integer. This

memory area may contain data that is not aligned, or not in correct

byte-order. The memory area may not even be writeable. The array

flags and data-type of this array should be respected when passing this

attribute to arbitrary C-code to avoid trouble that can include Python

crashing. User Beware! The value of this attribute is exactly the same

as self. array interface [’data’][0] .

shape (c intp*self.ndim) A ctypes array of length self.ndim where the base-

type is the C-integer corresponding to dtype(’p’) on this platform. This

base-type could be c int, c long, or c longlong depending on the platform.

The c intp type is defined accordingly in numpy.ctypeslib. The ctypes

array contains the shape of the underlying array.

strides (c intp*self.ndim) A ctypes array of length self.ndim where the base-

type is the same as for the shape attribute. This ctypes array contains the

strides information from the underlying array. This strides information

is important for showing how many bytes must be jumped to get to the

next element in the array.

as parameter (c void p) Returns the data-pointer to the array as a ctypes

object. Among other possible uses, this enables this ctypes object to be

used directly in a ctypes-loaded call to an arbitrary function. Be sure

to respect the flags on the array and the size and strides of the array so

as not to use this memory in-appropriately (see the ndpointer function

for how to return a class that can be used with the argtypes attribute of

ctypes functions).

The ctypes object also has several methods which can alter how the shape, strides,

and data of the underlying object is returned.

data as (obj) Return the data pointer cast-to a particular c-types ob-

ject. For example, calling self. as parameter is equivalent

to self.data as(ctypes.c void p) . Perhaps you want to use

the data as a pointer to a ctypes array of floating-point data:

self.data as(ctypes.POINTER(ctypes.c double)) .
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shape as (obj) Return the shape tuple as an array of some other c-types

type. For example: self.shape as(ctypes.c short) .

strides as (obj) Return the strides tuple as an array of some other c-types

type. For example: self.strides as(ctypes.c longlong) .

If the ctypes module is not available, then the ctypes attribute of array objects still

returns something useful, but ctypes objects are not returned and errors may

be raised instead. In particular, the object will still have the as parameter

attribute which will return an integer equal to the data attribute.

3.2 ndarray Methods

In NumPy, the ndarray object has many methods which operate on or with the

array in some fashion, typically returning an array result. In Numeric, many of

these methods were only library calls. These methods are explained in this chapter.

Whenever the array whose method is being called needs to be referenced it will be

referred to as this array, or self. Keyword arguments will be shown. Methods that

only take one argument do not have keyword arguments. Default values for one

argument methods will be shown in braces {default}.

WARNING

If you are converting code from Numeric, then you

will need to make the following (search and re-

place) conversions: .typecode() --> .dtype.char ;

.iscontiguous() --> .flags.contiguous ;

.byteswapped() --> .byteswap() ; .toscalar()

--> .item() ; and .itemsize() --> .itemsize . The

numpy.oldnumeric.alter code1 module can automate this for you.

3.2.1 Array conversion

tolist ()

The contents of self as a nested list.

>>> a = array([[1,2,3],[4,5,6]]); print a.tolist()

[[1, 2, 3], [4, 5, 6]]
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item (*args)

If no arguments are passed in, then this method only works for arrays with one

element (a.size == 1). In this case, it returns a standard Python scalar object

(if possible) copied from the first element of self. When the data type of self

is longdouble or clongdouble, this returns a scalar array object because there

is no available Python scalar that would not lose information. Void arrays

return a buffer object for item() unless fields are defined in which case a tuple

is returned.

>>> asc = a[0,0].item()

>>> type(asc)

<type ’int’>

>>> asc

1

>>> type(a[0,0])

<type ’numpy.int32’>

If arguments are provided, then they indicate indices into the array (either a flat

index or an nd-index). A standard Python scalar corresponding to the item

at the given location is then returned. This is very similar to self[args] except

instead of an array scalar, a standard Python scalar is returned. This can be

useful for speeding up access to elements of the array and doing arithmetic

on elements of the array using Python’s optimized math.

itemset (*args)

There must be at least 1 argument and define the last argument as item. Then,

this is equivalent to but faster than self[args] = item. The item should be a

scalar value and args must select a single item in the array.

tostring (order=’C’)

A Python string showing a copy of the raw contents of data memory. The string

can be produced in either ’C’ or ’Fortran’, or ’Any’ order (the default is ’C’-

order). ’Any’ order means C-order unless the F CONTIGUOUS flag in the

array is set, then ’Fortran’ order.

tofile (file=, sep=”, format=”)
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Write the contents of self to the open file object. If file is a string, then open a file

of that name first. If sep is the empty string, then write the file in binary mode.

If sep is any other string, write the array in simple text mode separating each

element with the value of the sep string. When the file is written in text mode,

the format string can be used to alter the appearance of each entry. If format

is the empty string, then it is equivalent to ‘‘%s’’ . Each element of the array

will be converted to a Python scalar, o, and written to the file as ‘‘format’’

% o. Note that writing an array to a file does not store any information about

the shape, type, or endianness of an array. When written in binary mode, tofile

is functionally equivalent to fid.write(self.tostring()) .

>>> a.tofile(’myfile.txt’,sep=’:’,format=’%03d’)

Contents of myfile.txt

001:002:003:004:005:006

dump (file)

Pickle the contents of self to the file object represented by file. Equivalent to

cPickle.dump(self, file, 2)

dumps ()

Return pickled representation of self as a string. Equivalent to cPickle.dumps(self,

2)

astype ({None})

Force conversion of this array to an array with the data type provided as the

argument. If the argument is None, or equal to the data type of self, then

return a copy of the array.

byteswap ({False})

Byteswap the elements of the array and return the byteswapped array. If the argu-

ment is True, then byteswap in-place and return a reference to self. Otherwise,

return a copy of the array with the elements byteswapped. The data-type de-

scriptor is not changed so the array will have changed numbers.

copy ()
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Return a copy of the array (which is always single-segment, and ALIGNED).

However, the data-type is preserved (including whether or not the data is

byteswapped).

view ({None})

Return a new array using the same memory area as self. If the optional argument

is given, it can be either a typeobject that is a sub-type of the ndarray or an

object that can be converted to a data-type descriptor. If the argument is a

typeobject then a new array of that Python type is returned that uses the

information from self. If the argument is a data-type descriptor, then a new

array of the same Python type as self is returned using the given data-type.

>>> print a.view(single)

[[ 1.40129846e-45 2.80259693e-45 4.20389539e-45]

[ 5.60519386e-45 7.00649232e-45 8.40779079e-45]]

>>> a.view(ubyte)

array([[1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0],

[4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0]], dtype=uint8)

getfield (dtype=, offset=0)

Return a field of the given array as an array of the given data type. A field is a

view of the array’s data at a certain byte offset interpreted as a given data

type. The returned array is a reference into self, therefore changes made to

the returned array will be reflected in self. This method is particularly useful

for record arrays that use a void data type, but it can also be used to extract

the low (high)-order bytes of other array types as well. For example, using

getfield, you could extract fixed-length substrings from an array of strings.

>>> a = array([’Hello’,’World’,’NumPy’])

>>> a.getfield(’S2’,1)

array([’el’, ’or’, ’um’],

dtype=’|S2’)

setflags (write=None, align=None, uic=None)
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Table 3.2: Array conversion methods

Method Arguments Description

astype (dtype {None}) Cast to another data type

byteswap (inplace {False}) Byteswap array elements

copy () Copy array

dump (file) Pickle to stream or file

dumps () Get pickled string

fill (scalar) Fill an array with scalar value

getfield (dtype=, offset=0) Return a field of the array

setflags (write=None,
align=None, uic=None)

Set array flags

tofile (file=, sep=”,
format=”)

Raw write to file

tolist () Array as a nested list

item (*args) Python scalar extraction

itemset (*args) Insert scalar (last argument) into array

tostring (order=’C’) String of raw memory

view (obj) View as another data type or class

Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

The ALIGNED flag can only be set to True if the data is actually aligned

according to the type. The UPDATEIFCOPY flag can never be set to True.

The flag WRITEABLE can only be set True if the array owns its own memory

or the ultimate owner of the memory exposes a writeable buffer interface (or

is a string). The exception for string is made so that unpickling can be done

without copying memory.

fill (scalar)

Fill an array with the scalar value (appropriately converted to the type of self). If

the scalar value is an array or a sequence, then only the first element is used.

This method is usually faster than a[...]=scalar or self.flat=scalar, and always

interprets its argument as a scalar.
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3.2.2 Array shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with

n integers which will be interpreted as an n-tuple.

reshape (newshape, order=’C’)

Return an array that uses the same data as this array but has a new shape given

by the newshape tuple (or a scalar to reshape as 1-d). The new shape must

define an array with the same total number of elements. If one of the elements

of the new shape tuple is -1, then that dimension will be determined such that

the overall number of items in the array stays constant. If possible, the new

array will reference the data of the old one. If the data must be moved in

order to accomplish the reshape, then then the new array will contain a copy

of the data in self. The order argument specifies how the array data should

be viewed during the reshape (either in ’C’ or ’FORTRAN’ order). This order

argument specifies both how the intrinsic raveling to a 1-d array should occur

as well as how that 1-d array should be used to fill-up the new output array.

resize (newshape, refcheck=1, order=’C’)

Resize an array in-place. This changes self (in-place) to be an array with the

new shape, reallocating space for the data area if necessary. If the data

memory must be changed because the number of new elements is different

than self.size, then an error will occur if this array does not own its data or

if another object is referencing this one. Only a single-segment array can be

resized. The method returns None. To bypass the reference count check, then

set refcheck=0. The purpose of the reference count check is to make sure you

don’t use this array as a buffer for another Python object and then reallocate

the memory. However, reference counts can increase in other ways so if you

are sure that you have not shared the memory for this array to another Python

object, then you may safely set refcheck=0.

transpose (<None>)

Return an array view with the shape transposed according to the argument. An

argument of None is equivalent to range(self.ndim)[::-1]. The argument can

either be a tuple or multiple integer arguments. This method returns a new

array with permuted shape and strides attributes using the same data as self.
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>>> a = arange(40).reshape((2,4,5))

>>> b = a.transpose(2,0,1)

>>> print a.shape, b.shape

(2, 4, 5) (5, 2, 4)

>>> print a.strides, b.strides

(80, 20, 4) (4, 80, 20)

>>> print a

[[[ 0 1 2 3 4]

[ 5 6 7 8 9]

[10 11 12 13 14]

[15 16 17 18 19]]

[[20 21 22 23 24]

[25 26 27 28 29]

[30 31 32 33 34]

[35 36 37 38 39]]]

>>> print b

[[[ 0 5 10 15]

[20 25 30 35]]

[[ 1 6 11 16]

[21 26 31 36]]

[[ 2 7 12 17]

[22 27 32 37]]

[[ 3 8 13 18]

[23 28 33 38]]

[[ 4 9 14 19]

[24 29 34 39]]]

swapaxes (axis1, axis2)

Return an array view with axis1 and axis2 swapped. This is a special case of the

transpose method with argument equal to arg=range(self.ndim); arg[axis1],

arg[axis2] = arg[axis2], arg[axis1]. See the rollaxis function for a routine that

transposes the array with the axes rolled instead of swapped.
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flatten (order=’C’)

Return a new 1-d array with data copied from self. Equivalent to but slightly

faster then a.flat.copy().

ravel (order=’C’)

Return a 1-d version of self. If self is single-segment, then the new array references

self, otherwise, a copy is made.

squeeze ()

Return an array with all unit-length dimensions squeezed out.

3.2.3 Array item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None,

then the array is treated as a 1-D array. Any other value for axis represents the

dimension along which the operation should proceed.

take (indices=, axis=None, out=None, mode=’raise’)

The functionality of this method is available using the advanced indexing ability

of the ndarray object. However, for doing selection along a single axis it is

usually faster to use take. If axis is not None, this method is equivalent to

self[indxobj] preceeded by indxobj=[slice(None)] * self.ndim;

indxobj[ axis] = indices. It returns the elements or sub-arrays from self

indicated by the index numbers in indices. If axis is None, then this method

is equivalent to self.flat[indices] . The out and mode arguments allow

for specification of the output array and how out-of-bounds indices will be

handled (’raise’: raise an error, ’wrap’: wrap around, ’clip’: clip to range)

put (indices=, values=, mode=’raise’)

Performs the equivalent of

for n in indices:

self.flat[n] = values[n]

Values is repeated if it is too short. The mode argument specifies what to do if n

is too large.

repeat (repeats=, axis=None)
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Copy elements (or sub-arrays selected along axis) of self repeats times. The

repeats argument must be a sequence of length self.shape[axis] or a scalar.

The repeats argument dictates how many times the element (or sub-array)

will be repeated in the result array.

choose (choices, out=None, mode=’raise’)

The array must be an integer (or bool) array with entries from 0 to n. Choices

is a tuple of n choice arrays: b0, b1, . . . , bn. (Alternatively, choices can be

replaced with n arguments where each argument is a choice array). The return

array will be formed from the elements of the choice arrays according to the

value of the elements of self. In other words, the output array will merge

the choice arrays together by using the value of self at a particular position

to select which choice array should be used for the output at a particular

position. The out keyword allows specification of an output array and the

clip keyword allows different behavior when self contains entries outside the

number of choices. The acceptable arguments to mode are ’raise’ (RAISE),

’wrap’ (WRAP), and ’clip’ (CLIP) (’raise’ produces an error, ’wrap’ converts

the number into range by periodic wrapping so that numbers <0 have n

repeatedly added and numbers >= n have n repeatedly subtracted, and ’clip’

will clip all entries to be within the range [0,n).

>>> a = array([0,3,2,1])

>>> a.choose([0,1,2,3],[10,11,12,13],

... [20,21,22,23],[30,31,32,33])

array([ 0, 31, 22, 13])

sort (axis=-1, kind=’quick’, order=None)

Sort the array in-place and return None. The sort takes place over the given axis

using an underlying sort algorithm specified by kind. The sorting algorithms

available are ’quick’, ’heap’, and ’merge’. For flexible types only the quicksort

algorithm is available. For arrays with fields defined, the order keyword allows

specification of the order in which to use the field names in the sort. If order

is a string then it is the field name to use to define the sort. If order is a list

(or tuple) of strings, then it specifies a lexicographic ordering so that the first

listed field name is compared first if that results in equality, the second listed

field name is used for the comparison and so on. If order is None, then arrays

with fields use the first field for comparison.
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>>> a=array([[0.2,1.3,2.5],[1.5,0.1,1.4]]);

>>> b=a.copy(); b.sort(0); print b

[[ 0.2 0.1 1.4]

[ 1.5 1.3 2.5]]

>>> b=a.copy(); b.sort(1); print b

[[ 0.2 1.3 2.5]

[ 0.1 1.4 1.5]]

argsort (axis=-1, kind=’quick’, order=None)

Return an index array of the same size as self showing which indices along the

given axis should be selected to sort self along that axis. Uses an underlying

sort algorithm specified by kind. The sorting algorithms available are ’quick’,

’heap’, and ’merge’. For arrays with fields defined, the order keyword allows

specification of the order in which to use the field names in the sort. If order

is a string then it is the field name to use to define the sort. If order is a list

(or tuple) of strings, then it specifies a lexicographic ordering so that the first

listed field name is compared first if that results in equality, the second listed

field name is used for the comparison and so on. If order is None, then arrays

with fields use the first field for comparison.

>>> b=a.copy(); print b.argsort(0)

[[0 1 1]

[1 0 0]]

>>> b=a.copy(); print b.argsort(1)

[[0 1 2]

[1 2 0]]

i TIP

Complex valued arrays sort lexicographically by comparing first

the real parts and then the imaginary parts if the real parts are

the same.

searchsorted (values, side=’left’)

Return an index array (dtype=intp) of the same shape as values showing the

index where the value would fit in self. The index is such that self[index-1]
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< value ≤ self[index] when side is ’left’. In this formula self[self.size]=∞ and

self[-1]=−∞. Therefore, if value is larger than all elements of self, then index

is self.size. If value is smaller than all elements of self, then index is 0. Self

must be a sorted 1-d array. If elements of self are repeated, the index of the

first occurrence is used. If side is ’right’, then the search rule is switched so

that the < sign is on the “right” instead of the left in the search rule. In other

words, the index returned is such that self[index-1] ≤value < self[index].

>>> b=a.ravel(); b.sort()

>>> b.searchsorted([0.0, 1.35, 2.0, 3.0])

array([0, 3, 5, 6])

nonzero ()

Return the n-dimensional indices for elements of the n-dimensional array self that

are nonzero into an n-tuple of equal-length index arrays. In particular, notice

that a 0-dimensional array always returns an empty tuple.

>>> x = arange(15); y=x.reshape(3,5)

>>> (x>8).nonzero()

(array([ 9, 10, 11, 12, 13, 14]),)

>>> (y>8).nonzero()

(array([1, 2, 2, 2, 2, 2]), array([4, 0, 1, 2, 3, 4]))

compress (condition=, axis=None, out=None)

This method expects condition to be a one-dimensional mask array of the same

length as self.shape[axis]. If the array is less than self.shape[axis], then False

is assumed for the missing elements. The method returns the elements (or

sub-arrays along the given axis) of self where condition is true. The shape of

the return array is self.shape with the axis dimension replaced by the number

of True elements of condition. The same effect can often be accomplished

using array indexing.

>>> x=array([0,1,2,3])

>>> x.compress(x > 2)

array([3])

>>> x[x>2]

array([3])
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diagonal (offset=0, axis1=0, axis2=1)

If self is 2-d, return the offset (from the main diagonal) diagonal of self. If self

is larger than 2-d, then return an array constructed from all the diagonals

created from all the 2-d sub-arrays formed using all of axis1 and axis2. The

offset parameter is with respect to axis2. The shape of the returned array

is found by removing the axis1 and axis2 entries from self.shape and then

appending the length of the offset diagonal of each 2-d sub-array.

>>> a=arange(25).reshape(5,5); print a

[[ 0 1 2 3 4]

[ 5 6 7 8 9]

[10 11 12 13 14]

[15 16 17 18 19]

[20 21 22 23 24]]

>>> print a.diagonal()

[ 0 6 12 18 24]

>>> print a.diagonal(1)

[ 1 7 13 19]

>>> print a.diagonal(-1)

[ 5 11 17 23]

3.2.4 Array calculation

Many of these methods take an argument named axis. In such cases, if axis is None

(the default), the array is treated as a 1-d array and the operation is performed over

the entire array. This behavior is also the default if self is a 0-dimensional array or

array scalar. If axis is an integer, then the operation is done over the given axis (for

each 1-d subarray that can be created along the given axis). The parameter dtype

specifies the data type over which a reduction operation (like summing) should take

place. The default reduce data type is the same as the data type of self. To avoid

overflow, it can be useful to perform the reduction using a larger data type. For

several methods, an optional out argument can be provided and the result will be

placed into the output array given. The out argument must be an ndarray and have

the same number of elements. It can be of a different type in which case casting

will be performed.

max (axis=None, out=None)
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Table 3.3: Array item selection and shape manipulation methods. If axis is an
argument, then the calculation is performed along that axis. An axis value of None
means the array is flattened before calculation proceeds.

Method Arguments Description

argsort argsort (axis=None, kind=’quick’) Indices showing how to
sort array.

choose choose (c0, c1 , ..., cn, out=None,
clip=’raise’)

Choose from different ar-
rays based on value of
self.

compress (condition=, axis=None, out=None) Elements of self where
condition is true.

diagonal (offset=0, axis1=0, axis2=1) Return a diagonal from
self.

flatten (order=’C’) A 1-d copy of self.

nonzero () True where self is not
zero.

put (indices=, values=, mode=’raise’) Place values at 1-d index
locations of self.

ravel (order=’C’) 1-d version of self (no
data copy if self is C-style
contiguous).

repeat (repeats=, axis=None) Repeat elements of self.

reshape (d1,d2,...,dn, order=’C’) Return reshaped version
of self.

resize (d1,d2,...,dn, refcheck=1, order=’Any’) Resize self in-place.

searchsorted (values) Show where values would
be placed in self (as-
sumed sorted).

sort (axis=None, kind=’quick’) Copy of self sorted along
axis.

squeeze () Squeeze out all length-1
dimensions.

swapaxes (axis1, axis2) Swap two dimensions of
self.

take (indices=, axis=None, out=None,
mode=’raise’)

Select elements of self
along axis according to
indices.

transpose (permute <None>) Rearrange shape of self
according to permute.
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Return the largest value in self. This is a better way to compute the maximum

over an array, than using max(self). The latter uses the generic sequence in-

terface to self. This will be slower, and will try to get an answer by comparing

whole sub-arrays of self. This will be incorrect for arrays larger than 1-d.

argmax (axis=None, out=None)

Return the (first, 1-d) index of the largest value in self.

min (axis=None, out=None)

Return the smallest value in self. This is a better way to compute the minimum

over an array, than using min(self). The latter uses the generic sequence in-

terface to self. This will be slower, and will try to get an answer by comparing

whole sub-arrays of self. This will be incorrect for arrays larger than 1-d.

argmin (axis=None, out=None)

Return the (first, 1-d) index of the smallest value in self.

ptp (axis=None, out=None)

Return the difference of the largest to the smallest value in self. Equivalent to

self.max(axis) - self.min(axis)

clip (min=,max=, out=None)

Return a new array where any element in self less than min is set to min and

any element less than max is set to max. Equivalent to self[self<min]=min;

self[self>max]=max.

conj (out=None)

conjugate (out=None)

Return the conjugate of elements of the array.

round (decimals=0, out=None)

Round the elements of the array to the nearest decimal. For decimals < 0, the

rounding is done to the nearest tens, hundreds, etc. Rounding of exactly the

half-interval is to the nearest even integer. This is the only difference with

standard Python rounding.

trace (offset=0, axis1=0, axis2=1, dtype=None, out=None)
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Perform a summation along each diagonal specified by offset, axis1, and axis2.

Equivalent to diagonal(offset,axis1,axis2).sum(axis=-1, dtype=dtype)

sum (axis=None, dtype=None, out=None)

Return the sum
N−1∑

i=0

self[:, . . . , :
︸ ︷︷ ︸

axis

, i]

where axis ’:’ objects are placed before the i.

cumsum (axis=None, dtype=None, out=None)

Return the cumulative sum. If ret is the return array of the same shape as self,

then

ret[:, . . . , :
︸ ︷︷ ︸

axis

, j] =

j
∑

i=0

self[:, . . . , :
︸ ︷︷ ︸

axis

, i].

mean (axis=None, dtype=None, out=None)

Return the average value caculated as

1

N

N−1∑

i=0

self[:, . . . , :
︸ ︷︷ ︸

axis

, i]

where N is self.shape[axis] and axis ’:’ objects are placed before the i. The sum

is done in the data-type of self unless self is an integer or Boolean data-type

and then it is done over the float data-type.

var (axis=None, dtype=None, out=None)

Return the variance of the data calculated as

1

N

N−1∑

i=0



self[:, . . . , :
︸ ︷︷ ︸

axis

, i] − µ





2

where N is self.shape[axis] and µ is the mean (restored to the same number of

dimensions as self with µ copied along the axis dimension). This is equivalent

to (self**2).mean - self.mean()**2 and ((self-self.mean())**2).mean(). The

value of N − 1 was not chosen for normalization because while it gives an

“unbiased” estimate, it is not always prudent to return unbiased estimates

68



as they may have larger mean-square error. The sum is done using a float

data-type if self has integer or Boolean data-type, otherwise it is done using

the same data-type as self.

std (axis=None, dtype=None, out=None)

Return the standard deviation calculated as

√
√
√
√
√

1

N

N−1∑

i=0



self[:, . . . , :
︸ ︷︷ ︸

axis

, i] − µ





2

where N is self.shape[axis] and µ is the mean (restored to the same number of

dimensions as self with µ copied along the axis dimension). The sum is done

using the same data-type as self unless self is an integer or Boolean data-type

and then it is done using a float data-type.

prod (axis=None, dtype=None, out=None)

Return the product calculated as

N−1∏

i=0

self[:, . . . , :
︸ ︷︷ ︸

axis

, i].

cumprod (axis=None, dtype=None, out=None)

Return the cumulative product so that the return array, ret, is the same shape as

self and

ret[:, . . . , :
︸ ︷︷ ︸

axis

, j] =

j
∏

i=0

self[:, . . . , :
︸ ︷︷ ︸

axis

, i].

all (axis=None, out=None)

Return True if all entries along axis evaluate True, otherwise return False.

any (axis=None, out=None)

Return True if any entries along axis evaluate True, otherwise return False.

69



Table 3.4: Array object calculation methods. If axis is an argument, then the
calculation is performed along that axis. An axis value of None means the array
is flattened before calculation proceeds. All of these methods can take an optional
out= argument which can specify the output array to write the results into.

Method Arguments Description

all (axis=None) true if all entries are true.

any (axis=None) true if any entries are true.

argmax (axis=None) index of largest value.

argmin (axis=None) index of smallest value.

clip (min=, max=) self[self>max]=max; self[self<min]=min

conj () complex conjugate

cumprod (axis=None,
dtype=None)

cumulative product

cumsum (axis=None,
dtype=None)

cumulative sum

max (axis=None) maximum of self

mean (axis=None,
dtype=None)

mean of self

min (axis=None) minimum of self

prod (axis=None,
dtype=None)

multiply elements of self together

ptp (axis=None) self.max(axis)-self.min(axis)

var (axis=None,
dtype=None)

variance of self

std (axis=None,
dtype=None)

standard deviation of self

sum (axis=None,
dtype=None)

add elements of self together

trace (offset, axis1=0,
axis2=0, dtype=None)

sum along a diagonal
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3.3 Array Special Methods

Methods in this chapter are not generally meant to be called directly by the user.

They are called by Python and are used to customize behavior of the ndarray object

as it interacts with the Python language and standard library.

3.3.1 Methods for standard library functions

copy ()

To allow copy.copy(a) to perform a shallow copy of an array. Exactly the same

as self.copy() (contents of object arrays are not copied).

deepcopy (memodict)

To allow copy.deepcopy(a) to perform a deep copy. This is the same as a shallow

copy unless self is an object array. Then, after the shallow copy is made, a

copy.deepcopy(item) is called for every item in the object array.

reduce ()

setstate (shape, typestr, isfortran, data)

Pickling support for arrays is provided by these two methods. When an array

needs to be pickled, the reduce () method is called to provide a 3-tuple of

already-pickleable objects. To construct a new object from the pickle, the

first two elements of the 3-tuple are used to construct a new (0-length) array

of the correct type and the last element of the 3-tuple, which is itself a 4-tuple

of (shape, typestr, isfortran, data) is passed to the setstate method of the

newly created array to restore its contents.

The reduce method returns a 3-tuple consisting of (callable, args, state) where

callable is a simple constructor function that handles subclasses of the ndar-

ray. Also, args is a 3-tuple of arguments to pass to this constructor function

(type(self), (0,), self.dtypechar), and state is a 4-tuple of information giving

the object’s state (self.shape, self.dtypedescr, isfortran, string or list). In this

tuple, isfortran is a Bool stating whether the following flattened data is in

Fortran order or not, and string or list is a string formed by self.tostring() if

the data type is not object. If the data type of self is an object array, then

string or list is a flat list equivalent to self.ravel().tolist().
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On load from a pickle, the pickling code uses the first two elements from the

tuple returned by reduce to construct an empty 0-dimensional subclass of the

correct type. The last element is then passed to the setstate method of

the newly created array to restore its contents.

NOTE

When data is a string, the setstate method will directly use the

string memory as the array memory (new.base will point to the

string). The typestr contains enough information to decode how

the memory should be interpreted.

3.3.2 Basic customization

new (subtype, shape=, dtype=long , buffer=None, offset=0, strides=None, or-

der=None)

This method creates a new ndarray. It is typically only used in the new method

of a subclass. This method is called to construct a new array whenever the

object name is called, a=ndarray(...) . It supports two basic modes of

array creation:

1. a single-segment array of the specified shape and data-type from newly allo-

cated memory;

(a) uses shape, dtype, strides, and order arguments; others are ignored;

(b) The order argument allows specification of a Fortran-style contiguous

memory segment (order=’Fortran’);

(c) If strides is given, then it specifies the new strides of the array (and the

order keyword is ignored). The strides will be checked for consistency

with the dimension size so that steps outside of the memory won’t occur.

2. an array of the given shape and data type using the provided object, buffer,

which must export the buffer interface.

(a) all arguments can be used;

(b) strides can be given and will be checked for consistency with the shape,

data type, and available memory in buffer;
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(c) order indicates whether the data buffer should be interpreted as Fortran-

style contiguous (order=’Fortran’) or not;

(d) offset can be used to start the array data at some offset in the buffer.

NOTE

The ndarray uses the default no-op init function because the

array is completely initialized after new is called.

array (dtype {None})

This is a special method that should always return an object of type ndarray.

Useful for subclasses that need to get to the ndarray object.

array wrap (arr)

This is a special method that always returns an object of the same Python type as

self using the array passed as an argument. This is mainly useful for subclasses

as it is an easy way to get the subclass back from an ndarray.

lt (other)

le (other)

gt (other)

ge (other)

eq (other)

ne (other)

Defined to support rich comparisons (<, <=, >, >=, ==, !=) on ndarrays using

universal functions.

str ()

repr ()

These functions print the array when called by str(self) and repr(self) respectively.

Array printing can be changed using set string function(..). Default array

printing has been borrowed from numarray whose printing code was written

by Perry Greenfield and J. Todd Miller. By default, arrays print such that
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1. The last axis is always printed left to right.

2. The next-to-last axis is printed top to bottom.

3. Remaining axes are printed top to bottom with increasing numbers of sepa-

rators.

Five parameters of the printing can be set using keyword arguments with

set printoptions(...) . The parameters can all be retrieved using

get printoptions() . These printing options are

precision the number of digits of precision for floating point output (default

8);

threshold total number of array elements which triggers summarization

rather than full representation (default 1000);

edgeitems number of array items in summary at beginning an end of each

dimension (default 3);

linewidth the number of characters per line for the purpose of inserting line

breaks (default 71);

suppress Boolean indicating whether or not to suppress printing of small

floating point values using scientific notation (default False).

nonzero ()

Truth-value testing for the array as a whole. It is called whenever the truth value

of the ndarray as a whole object is required. This raises an error if the number

of elements in the the array is larger than 1 because the truth value of such

arrays is ambiguous. Use .any() and .all() instead to be clear about what is

meant in such cases. If the number of elements is 0 then False is returned.

If there is one element in the array, then the truth-value of this element is

returned.

3.3.3 Container customization

len ()

Returns self.shape[0]. It is called in response to len(self). Use self.size to get the

total number of elements in the array.
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Notice that the default Python iterator for sequences is used when arrays are used

in places that expect an iterator. This iterator returns successively self[0],

self[1], ..., self[self. len ()]. Use self.flat to get an iterator that walks through

the entire array one element at a time.

getitem (key)

Called when evaluating self[key] construct. Items from the array can be selected

using this customization. This construct has both standard and extended

indexing abilities which are explained in Section 3.4. A named field can be

retrieved if key is a string and fields are defined in the dtypedescr object

associated with this array.

setitem (key, value)

Called when evaluating self[key]=value. Items in the array can be set using this

construct. This construct is explained in Section 3.4. A named field can be

set if key is a string and fields are defined in the dtypedescr object associated

with this array.

getslice (i, j)

Equivalent to self. getitem (slice(i,j)) but defined mainly so that C code can use

the sequence interface. Called to evaluate self[i:j]

setslice (i, j, value)

Equivalent to self. setitem (slice(i,j), value) but defined mainly so C code can

use the sequence interface. Called to evaluate self[i:j] = value.

contains (item)

Called to determine truth value of the item in self construct. Returns the

equivalent of (self==item).any()

3.3.4 Arithmetic customization

3.3.4.1 Binary

add (other)

sub (other)

mul (self, other)
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div (other)

truediv (other)

floordiv (other)

mod (other)

divmod (other)

pow (other[,modulo])

lshift (other)

rshift (other)

and (other)

or (other)

xor (other)

These methods are defined for ndarrays to implement the operations (+, - , * , /,

/, // , %, divmod() , ** or pow() , <<, >> , &, ˆ , | ). This is done using calls

to the corresponding universal function object (add, subtract, multiply, divide,

true divide, floor divide, remainder, divide and remainder, power, left shift,

right shift, bitwise and, bitwise xor, bitwise or). These implement element-

by-element operations for arrays that are broadcastable to the same shape.

• any third argument to pow() is silently ignored as the underlying ufunc

(power) only takes two arguments.

• the three division operators are all defined, div is active by default, truediv is

active when future .division is in effect.

NOTE

Because it is a built-in type (written in C), the r<op> special

methods are not directly defined for the ndarray.
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3.3.4.2 In-place

iadd (other)

isub (other)

imul (other)

idiv (other)

itruediv (other)

ifloordiv (other)

imod (other)

ipow (other)

ilshift (other)

irshift (other)

iand (other)

ixor (other)

ior (other)

These methods are implemented to handle the inplace operatiors (+=, -= , * =,

/= , /= , //= , %=, ** =, <<=, >>=, &=, ˆ= , |= ). The inplace operators are

implemented using the corresponding ufunc and its ability to take an output

argument (which is set as self). Using inplace operations can save space and

time and is therefore encouraged whenever appropriate.

WARNING

In place operations will perform the calculation using the precision

decided by the data type of the two operands, but will silently

downcast the result (if necessary) so it can fit back into the array.

Therefore, for mixed precision calculations, a <op>= B can be

different than a = a <op> B. For example, suppose a=ones((3,3)).

Then a+=3j is different than a=a+3j While they both perform the

same computation, a+=3j casts the result to fit back in a, while

a=a+3j re-binds the name a to the result.
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3.3.4.3 Unary operations

neg (self)

pos (self)

abs (self)

invert (self)

These functions are called in response to the unary operations (- , +, abs() , ˜ ).

With the exception of pos , these are implemented using ufuncs (negative,

absolute, invert). The unary + operator, however simply calls self.copy(), and

can therefore be used to get a copy of an array.

complex (self)

int (self)

long (self)

float (self)

oct (self)

hex (self)

These functions are also defined for the ndarray object to handle the operations

complex() , int() , long() , float() , oct() , and hex() . They work

only on arrays that have one element in them and return the appropriate

scalar.

i TIP

The function called to implement many arithmetic special meth-

ods for arrays can be modified using the function set numeric ops.

This function is called with keyword arguments indicating which

operation(s) to replace. A dictionary is returned containing show-

ing the old functions. By default, these functions are set to the

corresponding ufunc.
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3.4 Array indexing

More powerful array indexing was an important extension introduced by numarray,

and was therefore an important part of the development of NumPy. In particular,

the desire to select arbitrary elements based on their position in the array, and

according to a mask was desirable.

There are two kinds of indexing available using the X[obj] syntax: basic slicing,

and advanced indexing. For the description of this syntax given below, X is the array

to-be-sliced and obj is the selection object. Furthermore, define N ≡X.ndim. These

two methods of slicing have different behavior and are triggered depending on obj.

Adding additional functionality yet remaining compatible with old uses of slicing

complicated the rules a little. Hopefully, after studying this section, you will have

a firm grasp of what kind of selection will be initiated depending on the selection

object.

i TIP

in Python X[(exp1, exp2, ..., expN)] is equivalent to X[exp1, exp2,

..., expN] as the latter is just syntactic sugar for the former.

3.4.1 Basic Slicing

Basic slicing extends Python’s basic concept of slicing to N dimensions. Basic

slicing occurs when obj is a slice object (constructed by start:stop:step notation

inside of brackets), an integer, or a tuple of slice objects and integers. Ellipsis and

newaxis objects can be interspersed with these as well. In order to remain backward

compatible with a common usage in Numeric, basic slicing is also initiated if the

selection object is any sequence (such as a list) containing slice objects, the ellipsis

object, or the newaxis object, but no integer arrays or other embedded sequences.

The standard rules of sequence slicing apply to basic slicing on a per-dimension

basis (including using a step index). Some useful concepts to remember include:

• The basic slice syntax is ’i : j : k’ where i is the starting index, j is the

stopping index, and k is the step (k 6= 0). This selects the m elements (in the

corresponding dimension) with index values i, i + k, . . . , i + (m − 1)k where

m = q + (r 6= 0) where q and r are the quotient and remainder obtained by

dividing j − i by k: j − i = qk + r, so that i + (m − 1) k < j.

• Assume n is the number of elements in the dimension being sliced. Then, if

i is not given it defaults to 0 for k > 0 and n for k < 0. If j is not given it
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defaults to n for k > 0 and −1 for k < 0. If k is not given it defaults to 1.

Note that ’::’ is the same as ’:’ and means select all indices along this axis.

• If the number of objects in the selection tuple is less than N , then ’:’ is

assumed for any remaining dimensions.

• Ellipsis expand to the number of ’:’ objects needed to make a selection tuple

of the same length as X.ndim. Only one ellipsis is expanded, any others are

interpreted as more ’:’

• Each newaxis object in the selection tuple serves to expand the dimensions of

the resulting selection by one unit-length dimension. The added dimension is

the position of the newaxis object in the selection tuple.

• An integer, i, returns the same values as i : i + 1 except the dimensionality

of the returned object is reduced by 1. In particular, a selection tuple with

the pth element an integer (and all other entries ’:’) returns the corresponding

sub-array with dimension N − 1. If N = 1, then the returned object is an

Array Scalar. These objects are explained in Chapter 6.

• If the selection tuple has all entries ’:’ except the pth entry which is a slice

object i : j : k, then the returned array has dimension N formed by con-

catenating the sub-arrays returned by integer indexing of elements i, i + k,

i + (m − 1)k < j,

• Basic slicing with more than one non-’:’ entry in the slicing tuple, acts like

repeated application of slicing using a single non-’:’ entry, where the non-’:’

entries are successively taken (with all other non-’:’ entries replaced by ’:’).

Thus, X[ind1,...,ind2,:] acts like X[ind1][...,ind2,:] under basic slicing. Note

this is NOT true for advanced slicing.

• You may use slicing to set values in the array, but (unlike lists) you can never

grow the array. The size of the value to be set in X[obj] = value must be

(broadcastable) to the same shape as X[obj].

Basic slicing always returns another view of the array. In other words, the returned

array from a basic slicing operation uses the same data as the original array. This

can be confusing at first, but it is faster and can save memory. A copy can always

be obtained if needed using the unary + operator (which has lower precedence than

slicing) or the .copy() method.
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i TIP

Remember that a slicing tuple can always be constructed as

obj and used in the x[obj] notation. Slice objects can be used

in the construction in place of the [start:stop:step] notation.

For example, x[1:10:5,::-1] can also be implemented

as obj=(slice(1,10,5), slice(None,None,-1));

X[obj] . This can be useful for constructing generic code that

works on arrays of arbitrary dimension.

3.4.2 Advanced selection

Advanced selection is triggered when the selection object, obj, is a non-tuple se-

quence object, an ndarray (of data type integer or bool), or a tuple with at least

one sequence object or ndarray (of data type integer or bool). There are two types

of advanced indexing: integer and Boolean. Advanced selection always returns a

copy of the data (contrast with basic slicing that returns a view).

3.4.2.1 Integer

Integer indexing allows selection of arbitrary items in the array based on their

N -dimensional index. This kind of selection occurs when advanced selection is trig-

gered and the selection object is not an array of data type bool. For the discussion

below, when the selection object is not a tuple, it will be referred to as if it had

been promoted to a 1-tuple, which will be called the selection tuple. The rules of

advanced integer-style indexing are:

• if the length of the selection tuple is larger than N(=X.ndim) an error is

raised.

• all sequences and scalars in the selection tuple are converted to intp indexing

arrays.

• all selection tuple objects must be convertible to intp arrays, or slice objects,

or the Ellipsis (...) object.

• Exactly one Ellipsis object will be expanded, any other Ellipsis objects will be

treated as full slice (’:’) objects. The Ellipsis object is replaced with as many

full slice (’:’) objects as needed to make the length of the selection tuple N .
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• If the selection tuple is smaller than N , then as many ’:’ objects as needed

are added to the end of the selection tuple so that the modified selection tuple

has length N .

• The shape of all the integer indexing arrays must be broadcastable to the

same shape. Arrays are broadcastable if any of the following are satisfied

1. The arrays all have exactly the same shape.

2. The arrays all have the same number of dimensions and the length of

each dimensions is either a common length or 1.

3. The arrays that have too few dimensions can have their shapes pre-

pended with a dimension of length 1 to satisfy property 2.

• The shape of the output (or the needed shape of the object to be used for

setting) is the broadcasted shape.

Example: If a.shape is (5,1), b.shape is (1,6), c.shape is (6,) and d.shape

is () so that d is a scalar, then a, b, c, and d are all broadcastable to

dimension (5,6). The array “a” acts like a (5,6) array where a[:,0] is

broadcast to the other columns, “b” acts like a (5,6) array where b[0,:]

is broadcast to the other rows, “c” acts like a (1,6) array and therefore

a (5,6) where c[:] is broadcast to every row, and finally “d” acts like a

(5,6) array where the single values is repeated.

• After expanding any ellipses and filling out any missing (’:’) objects in the

selection tuple, then let Nt be the number of indexing arrays, and let Ns =

N − Nt be the number of slice objects. Note that Nt > 0 (or we wouldn’t be

doing advanced integer indexing).

• If Ns = 0 then the M -dimensional result is constructed by varying the index

tuple (i1, . . . , iM ) over the range of the result shape and for each value of the

index tuple setting:

result[i1, . . . , iM ]=X[ind1[i1, . . . iM ], ind2[i1, . . . , iM ], etc., indN [i1, . . . , iM ].

Example: Suppose the shape of the broadcasted indexing arrays is 3-

dimensional and N is 2. Then the result is found by letting i, j, k run

over the shape found by broadcasting ind1, and ind2,and for each i, j, k

setting result[i, j, k] = X[ind1[i, j, k], ind2[i, j, k]].
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• If Ns > 0, then partial indexing is done. This can be somewhat mind-boggling

to understand, but if you think in terms of the shapes of the arrays involved, it

can be easier to grasp what happens. In simple cases (i.e. one indexing array

and N −1 slice objects) it does exactly what you would expect (concatenation

of repeated application of basic slicing). The rule for partial indexing is that

the shape of the result (or the interpreted shape of the object to be used

in setting) is the shape of X with the indexed subspace replaced with the

broadcasted indexing subspace. If the index subspaces are right next to each

other, then the broadcasted indexing space directly replaces all of the indexed

subspaces in X. If the indexing subspaces are separated (by slice objects), then

the broadcasted indexing space is first, followed by the sliced subspace of X.

Example 1: Suppose X.shape is (10,20,30) and ind is a (2,3,4) indexing intp

array, then result=X[...,ind,:] has shape (10,2,3,4,30) because the (20,)-

shaped subspace has been replaced with a (2,3,4)-shaped broadcasted

indexing subspace. If we let i, j, k loop over the (2,3,4)-shaped subspace

then result[...,i,j,k,:] = X[...,ind[i,j,k],:]. This example produces the same

result as X.take(ind,axis=-2).

Example 2: Now let X.shape be (10,20,30,40,50) and suppose ind1 and

ind2 are broadcastable to the shape (2,3,4). Then X[:,ind1,ind2] has

shape (10,2,3,4,40,50) because the (20,30)-shaped subspace from X has

been replaced with the (2,3,4) subspace from the indices. However,

X[:,ind1,:,ind2,:] has shape (2,3,4,10,30,50) because there is no unam-

biguous place to drop in the indexing subspace, thus it is tacked-on to

the beginning. It is always possible to use .transpose() to move the sups

pace anywhere desired. This example cannot be replicated using take.

3.4.2.2 Boolean

This advanced selection occurs when obj is an array object of Boolean type (such as

may be returned from comparison operators). It is always equivalent to (but faster

than) X[obj.nonzero()] where as described above obj.nonzero() returns a tuple (of

length obj.ndim) of integer index arrays showing the True elements of obj.

The special case when obj.ndim == X.ndim is worth mentioning. In this case

X[obj] returns a 1-dimensional array filled with the elements of X corresponding to

the True values of obj. It The search order will be C-style (last index varies the

fastest). If obj has True values at entries that are outside of the bounds of X, then

an index error will be raised.
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You can also use Boolean arrays as element of the selection tuple. In such

instances, they will always be interpreted as nonzero(obj) and the equivalent integer

indexing will be done. In general you can think of indexing with Boolean arrays as

indexing with nonzero(<Boolean>).

WARNING

the definition of advanced selection means that X[(1,2,3),] is fun-

damentally different than X[(1,2,3)]. The latter is equivalent to

X[1,2,3] which will trigger basic selection while the former will trig-

ger advanced selection. Be sure to understand why this is True.

You should also recognize that x[[1,2,3]] will trigger advanced se-

lection, but X[[1,2,slice(None)]] will trigger basic selection.

3.4.3 Flat Iterator indexing

As mentioned previously, X.flat returns an iterator that will iterate over the entire

array (in C-contiguous style with the last index varying the fastest). This iterator

object can also be indexed using basic slicing or advanced indexing as long as the

selection object is not a tuple. This should be clear from the fact that X.flat is

a 1-dimensional view. X.flat can be used for integer indexing using 1-dimensional

C-style-flat indices. The shape of any returned array is therefore the shape of the

integer indexing object.
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Chapter 4

Basic Routines

4.1 Creating arrays

array (object=, dtype=None, copy=True, order=None, subok=False, ndmin=0)

Create a new ndarray of data type, dtype (or determined from object if dtype is

None). The shape of the new array will be determined from object. If copy

is True, then ensure a copy of the object is made. If copy is False, then the

returned object is a copy of the array only if dtype is not equivalent to the

data type of object. If order is ’Fortran’ then the resulting array will be in

Fortran order, otherwise it is in C order. If subok (subclasses are O.K.) is True

then pass through subclasses of the array object if possible. If subok is False

then only ndarray objects may be returned. The ndmin parameter specifies

that the returned array must have at least the given number of dimensions.

asarray (object=, dtype=None, order=None)

Exactly the same as array(...) except the default copy argument is False, and

subok is always False. Using this function always returns the base class ndar-

ray.

asanyarray (object, dtype=None, order=None)

Thin wrapper around array(...) with subok=1. You should use this routine if

you are only making use of the array attributes, and believe the calculations

that will follow would work with any subclass of the array. Use of this routine

increases the chance that array subclasses will interact seamlessly with your

function — returning the same subclasses.
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require (object, dtype=None, requirements=None)

Require a Python object to be an ndarray (or a sub-class) of the given

data-type if it can be cast safely, otherwise raise an error. The require-

ments, if given, are a sequence containing the requested combination of the

flags ’C CONTIGUOUS’ (’C’), ’F CONTIGUOUS’ (’F’), ’ALIGNED’ (’A’),

’WRITEABLE’ (’W’), ’OWNDATA’ (’O’), and the special directive ’EN-

SUREARRAY’ (’E’). These strings dictate which flags should be set on the re-

turn array (note only one of ’F CONTIGUOUS’ or ’C CONTIGUOUS’ should

be used and ’F CONTIGUOUS’ over-rides ’C CONTIGUOUS’). The special

directive ’ENSUREARRAY’ makes sure that a base-class ndarray is returned

instead of allowing sub-classes to pass through. This function is particularly

useful in a Python interface to C-code (say called using ctypes).

arange (start=, stop=None, step=1, dtype=None)

Function similar to Python’s built-in range() function except it returns an ndarray

object. Return a 1-d array of data type, dtype (or determined from the start,

stop, and step objects if None), that starts at start, ends before stop and is

incremented by step. The returned array has length n where

n =

⌈
stop − start

step

⌉

with element i equal to start+ i · step. If stop is None, then the first argument

is interpreted as stop and start is 0.

NOTE

By definition of the ceiling function (denoted by ⌈x⌉), we know that

x ≤ ⌈x⌉ < x + 1, therefore this definition of the length of arange

guarantees that start+n·step ≥ stop as well as start+(n−1)·step <

stop.

isfortran (arr)

Equivalent to arr.flags.fnc and therefore returns True only if arr is Fortran-

contiguous but not also C-contiguous.

empty (shape=, dtype=int, order=’C’)
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Return an uninitialized array of data type, dtype, and given shape. The memory

layout defaults to C-style contiguous, but can be made Fortran-style contigu-

ous with a ’Fortran’ order keyword.

empty like (arr)

Syntactic sugar for empty(a.shape, a.dtype, isfortran(arr))

zeros (shape=, dtype=int, order=’C’)

Return an array of data type dtype and given shape filled with zeros. The memory

layout may be altered from the default C-style contiguous with the order

keyword.

zeros like (arr)

Syntactic sugar for zeros(a.shape, a.dtype, isfortran(arr))

ones (shape=, dtype=int, order=’C’)

Syntactic sugar for a = zeros(shape, dtype, order); a+= 1.

fromstring (string=,dtype=int, count=-1, sep=”)

If sep is ”, then return a new 1-d array with data-type descriptor given by dtype

and with memory initialized (copied) from the raw binary data in string.

If count is non-negative, the new array will have count elements (with a

ValueError raised if count requires more data than the string offers), other-

wise the size of the string must be a multiple of the itemsize implied by dtype,

and count will be the length of the string divided by the itemsize.

If sep is not ”, then interpret the string in ASCII mode with the provided separator

and convert the string to an array of numbers. Any additional white-space

will be ignored.

fromfile (file=, dtype=int, count=-1, sep=”)

Return a 1-d array of data type, dtype, from a file (open file object or string with

the name of a file to read). The file will be read in binary mode if sep is the

empty string. Otherwise, the file will be read in text mode with sep providing

the separator string between the entries. If count is -1, then the size will be

determined from the file, otherwise, up to count items will be read from the

file. If fewer than count items are read, then a RunTimeWarning is issued

indicating the number of items read.
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frombuffer (buffer, dtype=intp, count=-1, offset=0)

Very similar to (binary-mode) fromstring in interpretation of the arguments, ex-

cept buffer can be any object exposing the buffer interface (or any object

with a buffer attribute that returns a buffer exposing the buffer protocol).

The new array shares memory with the buffer object. The new array will be

read-only if the buffer does not expose a writeable buffer.

fromiter (iterator or generator, dtype=None)

Construct an array from an iterator or a generator. Only handles 1-dimensional

cases. By default the data-type is determined from the objects returned from

the iterator.

load (file)

Load a pickled array from an open file. If file is a string, then open a file

with that name first. Except for the automatic file opening equivalent to

cPickle.load(file)

loads (str)

Load a pickled array from a string. Equivalent to cPickle.loads(str).

indices (dimensions, dtype=intp)

Return an array of dtype representing n(=len(dimensions)) grids of indices

each with variation in a single direction. The returned array has shape

(n,)+dimensions. Compare with mgrid.

>>> indices((2,3))

array([[[0, 0, 0],

[1, 1, 1]],

[[0, 1, 2],

[0, 1, 2]]])

fromfunction (function, dimensions, **kwargs)

Construct an array from a function called on a tuple of index grids. The function

should be able to take array arguments and process them like ufuncs (use
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vectorize if it doesn’t). The function should accept as many arguments as

there are dimensions which is a sequence of numbers indicating the length of

the desired output for each axis. Keyword arguments to function may also be

passed in as keywords to fromfunction.

>>> print fromfunction(lambda i,j: i+j, (2,3))

[[ 0. 1. 2.]

[ 1. 2. 3.]]

identity (n, dtype=intp)

Return a 2-d array of shape (n,n) and data type, dtype with ones along the main

diagonal.

where (condition[, x, y])

Returns an array shaped like condition, that has the elements of x and y respec-

tively where condition is respectively true or false. If x and y are not given,

then it is equivalent to nonzero(condition).

flatnonzero (arr)

Return indices that are non-zero in a flattened version of arr. Equivalent to

a.ravel().nonzero()[0].

putmask (arr=, mask=, values=)

Performs the equivalent of

for n, obj in enumerate( mask.flat):

if obj:

self.flat[n] = values[n]

The values array is repeated if it is too short. In particular, this means that

indexing on the values array is modular it’s length, which might be surprising

you are expecting putmask to work the same as arr[mask]=values.

lexsort (keys=, axis=-1)

Return an array of indices similar to argsort except sorting is done using all of

the provided keys. First a sort is computed using key[0], then the indices

are further altered by sorting on key[1]. This is repeated until sorting has

been performed on all of the keys. This is a useful function for multiple-field

sorting.
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>>> a = [1,2,1,3,1,5]; b = [0,4,5,6,2,3]

>>> ind = lexsort((b,a))

>>> print take(a,ind)

[1 1 1 2 3 5]

>>> print take(b,ind)

[0 2 5 4 6 3]

Notice the order the keys had to be used in order to get a lexicographical sorting

order. To clarify, suppose three equal-length sequences are fields of an un-

derlying data-type: (f1,f2,f3). If we want to sort first on f1 and then on f2

and then on f3, the indices that would accomplish that sort are obtained as

lexsort((f3,f2,f1)).

4.2 Operations on two or more arrays

concatenate (seq=, axis=0)

Construct a new array from elements of the sequence object seq concatenated

along the given axis. The elements of the sequence object must have compat-

ible types and be the same shape. If axis is None, then flatten each element

of seq before concatenating together to construct a 1-d array.

correlate (x, y, mode=’valid’)

Compute the 1-d cross correlation of x and y keeping portions determined by mode

which may be ’valid’ (0), ’same’ (1), or ’full’ (2). The ’full’ cross-correlation

between two 1-d arrays is computed as

z [n] =

min(n,K)
∑

i=max(n−M,0)

x [i] y [n + i] ,

for n = 0 . . .K + M where K=len(x)-1 and M=len(y)-1, and we assume

K ≥ M (without loss of generality because we can interchange the roles of

x and y without effect). For this formula to work, we assume that x[i] = 0

when i /∈ [0, K − 1] and y[j] = 0 when j 6= [0, M − 1].

If mode is ’same’ then only the K middle values are returned starting at n =
⌊

M−1
2

⌋
. If the flag has a value of ’valid’ then only the middle K − M + 1 =

(K + 1) − (M + 1) + 1 output values are returned starting at n = M.
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convolve (x, y, mode=’valid’)

Convolution is very similar to correlation except it is defined with one sequence

reversed:

z [n] =
∑

i

x[i]y[n − i].

The mode keyword has the same effect as it does for correlation. Convolution

(’full’) between two 1-d arrays implements polynomial multiplication where

the array entries are viewed as coefficients for polynomials.

Example: Consider that (x3 + 4x2 + 2)
(
x4 + 3x + 1

)
=x7 + 4x6 +

5x4 + 13x3 + 4x2 + 6x + 2. This can be determined by using

the code convolve([1,4,0,2], [1,0,0,3,1]) which returns

[1,4,0,5,13,4,6,2]. Notice the one-to-one alignment between the

elements of the arrays and the coefficients on powers of x in the polyno-

mial.

outer (a, b)

compute an outerproduct which is syntactic sugar for a.ravel() [:,newaxis] *

b.ravel() [newaxis,:] (after first converting a and b to ndarrays).

>>> print outer([1,2,3],[10,100,1000])

[[ 10 100 1000]

[ 20 200 2000]

[ 30 300 3000]]

inner (a, b)

Computes the inner product between two arrays. This is an array that has shape

a.shape[:-1] + b.shape[:-1] with elements computed as the sum of the product

of the elements from the last dimensions of a and b. In particular, let I and J

be the super1 indices selecting the 1-dimensional arrays a[I, :] and b[J, :], then

the resulting array, r, is

r[I, J ] =
∑

k

a[I, k]b[J, k].

1A super index is 0 or more integer indices used to index into an N-dimensional array. How
many indices a super index represents should be implied by context.
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dot (a, b)

Computes the dot (matrix) product between two arrays. The product-sum is over

the last dimension of a and the second-to-last dimension of b. Specifically, if

I and J are super indices for a[I, :] and b[J, :, j] so that j is the index of the

last dimension of b. Then, the shape of the resulting array is a.shape[:-1] +

b.shape[:-2] + (b.shape[-1],) with elements.

r[I, J, j] =
∑

k

a[I, k]b[J, k, j],

vdot (a, b)

Computes the dot product between two arrays (flattened into one-dimensional

vectors) after conjugating the first vector. This is an inner-product following

the physicists convention of conjugating the first argument.

r =
∑

k

a.flat[k]b.flat[k].

tensordot (a, b, axes=(-1,0))

Computes a dot-product between two arrays where the sum is taken over the

axes specified by the 2-sequence which can have either scalar or sequence

entries. The axes specified are summed over and the remaining axes are used

to construct the result. So, for example, if a is 3 × 4 × 5 and b is 4 × 3 × 2

then if axes=([1,0],[0,1]) (or axes=([0,1],[1,0])) the result will be 5 × 2. Let I

represent the indices of the un-summed axes in a, let J represent the indices

of the un-summed axes in b and let K represent the the indices of the axes

summed over in both a and b. Also, let at represent a transposed version of a

where the axes to be summed over are pushed to the end, and let bt represent

a transposed version of b where the axes to be summed over are pushed to

the front. Then, using
∑

K to represent a multi-index sum, the result can be

written as

r[I, J ] =
∑

K

at[I, K]bt[K, J ]

cross (a, b, axisa=-1, axisb=-1, axisc=-1, axis=None)

Returns the cross product of two (arrays of) vectors. The cross product is per-

formed over the axes of the input arrays indicated by the axisa, and axisb
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arguments. For both arrays, the axis used must have dimension either 2 or 3.

If both axes used have dimension 2, then only the z-component of the equiv-

alent 3-d cross product is returned. Otherwise, the entire vector is returned.

The axisc argument gives the axis of the vectors in the returned cross-product

result. If axis is not None, then it is assumed that axisa=axisb=axisc=axis

(regardless of what else is specified).

allclose (a, b, rtol=10−5, atol=10−8)

Returns true if all components of a and b are equal subject to the given relative

and absolute tolerances. This returns true if every element of a and b satisfy

|a − b| < atol + rtol |b| .

4.3 Printing arrays

array2string (a)

The default printing mechanism uses this function to produce a string from an

array.

set printoptions (precision=None, theshold=None, edgeitems=None,

linewidth=None, suppress=None)

Set options associated with representing an array.

precision the default number of digits of precision for floating point output

(default 8);

threshold total number of array elements which triggers printing only the

“ends” of the array rather than a full representation (default 1000);

edgeitems number of array elements in summary at beginning and end of

each dimension (default 3);

linewidth the number of characters per line (default 75);

suppress Boolean value indicating whether or not to suppress printing of

small floating point values using scientific notation (default False).

get printoptions ()

Returns the values of precision, threshold, edgeitems, linewidth, and suppress

that control printing of arrays.
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set string function (func, repr=1)

Set the function to use in response to str(array) or repr(array). By default this

function is array2string. The function passed in must take an array argument

and return a string. If func is None, then the print function is reset to a simple

internal function.

4.4 Functions redundant with methods

Several functions are available primarily for purposes of backward compatibility

with old Numeric, and are therefore redundant. The functions are all simple wrap-

pers for asarray(a).<function>(*args, **kwds), or are replaceable by attribute ac-

cess. The following list documents them. It is not recommended that these functions

be used in new programs, but there are no plans for removing them as in functional

form they work with arbitrary sequences which is sometimes desirable. The func-

tions that mirror methods and attributes are: take, reshape, squeeze, choose,

repeat, put, swapaxes, transpose, real, imag, sort, argsort, amax, argmax,

amin, argmin, ptp, alen, searchsorted, diagonal, trace, ravel, nonzero,

shape, compress, clip, std, var, mean, sum, cumsum, product, cumprod-

uct, sometrue (method is .any), alltrue (method is .all), around (method is

.round), rank (attribute is .ndim), shape, size (.size or .shape[axis]), and copy.

4.5 Dealing with data types

dtype (obj, align=0)

Return a data-type object from any object. See Chapter 7 for a more detailed

explanation of what can be interpreted as a data-type object and the meaning

of the align keyword.

maximum sctype (arg)

Returns the array-scalar type of highest precision of the same general kind as arg

which can be any recognized form for describing a data-type.

issctype (obj)

Returns True if obj is an array data type (or a recognized alias for one)

obj2sctype (obj, default=None)
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Returns the array type object corresponding to obj which can be an array type

already, a python type object, an actual array, or any recognized alias for an

array type object. If no suitable data type object can be determined, return

default.

sctype2char (sctype)

Return the typecode character associated with an array-scalar type dtype. The

first argument is first converted to a dtype if it needs to be.

i TIP

the type attribute of data-type objects are actual Python type ob-

jects subclassed in a hierarchy of types. This can often be useful to

check data types generically. For example, issubclass(dtype.type,

integer) can check to see if the data type is one of the 10 different

integer types. The issubclass function, however, raises an error if ei-

ther argument is not an actual type object. NumPy defines (arg1,

arg2) that will return false instead of raise an error. Alternatively,

dtype.kind is a character describing the class of the data-type so

dtype.kind in ’iu’ would also check to see if the data-type is an

integer type.

can cast (from=d1, to=d2)

Return Boolean value indicating whether or not data type d1 can be cast to data

type d2 safely (without losing precision or information).
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Chapter 5

Additional Convenience

Routines

5.1 Shape functions

atleast 1d (a1,a2,...,an)

Force a sequence of arrays (including array scalars) to each be at least 1-d.

atleast 2d (a1,a2,...,an)

Force a sequence of arrays (including array scalars) to each be at least 2-d. Di-

mensions of length 1 are pre-pended to reach a two-dimensional array.

atleast 3d (a1,a2,...,an)

Force a sequence of arrays (including array scalars) to each be at least 3-d. Di-

mensions of length 1 are pre-pended to reach a two-dimensional array.

roll (arr, shift, axis=None)

Return a new array with the contents of arr shifted (rolled) by the amount given

in the integer argument shift along the axis specified. If axis is None, then the

shift takes place in the ravelled array (but the returned array has the same

shape as arr). Elements that shift outside the array are rolled back into the

array from the opposite side.

rollaxis (arr, axis, start)
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Return arr transposed so that the provided axis is inserted into the shape before

start with the other dimensions rolled. Thus, if arr.shape is (i,j,k,l) then

rollaxis(arr, 2, 0) has shape (k,i,j,l) and rollaxis(arr, 1, 3) has shape (i,k,j,l).

vstack (seq)

Stack a sequence of arrays along the first axis (row wise). Arrays in seq must have

the same shape along all dimensions but the first. Rebuilds array divided by

vsplit. All 1-d arrays will be stacked row-wise.

hstack (seq)

Stack a sequence of arrays along the second axis (column wise). Arrays in seq

must have the same shape along all dimensions but the second. Rebuilds

array divided by hsplit. Notice that 1-d arrays will be appended into a new

1-d array. Use column stack to get a 2-d array from 1-d arrays. If some arrays

are already 2-d, then the 1-d arrays need to have a dimension added to the

end (e.g. y[:,newaxis] ) in order to stack correctly.

column stack (seq)

Stack a sequence of arrays as columns into a 2-d array. 1-d arrays are converted to

2-d arrays and transposed. All arrays must have shapes so that the resulting

array is well defined. Compare with hstack.

row stack (seq)

Stack a sequence of 1-d arrays as rows into a 2-d array (alias for vstack).

dstack (seq)

Stack a sequence of arrays along the third axis (depth wise). Arrays in seq must

have the same shape along all dimensions but the third. Rebuilds array di-

vided by vsplit.

array split (ary, i or s, axis=0)

Divide ary into a list of sub-arrays along the specified axis. The i or s argument

stands for indices or sections. If i or s is an integer, ary is divided into that

many equally-sized arrays. If it is impossible to make an even split, each of

the leading arrays in the returned list have one additional member. If i or s

is a list of sorted integer, its entries define the indexes where ary is split. An

empty list for i or s results in a single sub-array equal to the original array.

97



split (ary, i or s, axis=0)

The same as array split() except if i or s is an integer and it is impossible to make

an even split, an error is raised.

hsplit (ary, i or s)

Split a single array into multiple columns of sub-arrays (along the first axis if

1-d or along the second second if >1-d). Only works on arrays of 1 or more

dimension.

vsplit ()

Split a single array into multiple rows of sub-arrays (along the first axis). Only

works on arrays of 2 or more dimensions.

dsplit ()

Split a single array into multiple sub-arrays along the third axis (depth). Only

works on arrays of 3 or more dimensions.

apply along axis (func1d, axis, arr, *args)

Execute func1d(arr[sel i], *args) where func1d takes 1-d arrays and arr is an N-d

array, where sel i is a selection object sufficient to select a 1-d sub-array along

the given axis. The function is executed for all 1-d arrays along axis in arr.

apply over axes (func, a, axes)

For each axis in the axes sequence, call func as res=func(a, axis) . If res is

the same shape as a then set a=res and continue. if res.ndim = a.ndim

-1 , then insert a dimension before axis and continue.

expand dims (a, axis)

Expand the shape of array a by including newaxis before the given axis.

resize (a, new shape)

Returns a new array with the specified shape which can be any size. The new

array is filled with repeated copies of a. This function is similar in spirit to

a.resize(new shape) except that it fills in the new array with repeated copies

and returns a new array.

kron (a, b)
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Return a composite array with blocks from b scaled by elements of a. The number

of dimensions of a and b should be the same. If not, then the input with fewer

dimensions is pre-pended with ones (broadcast) to the same shape as the input

with more dimensions. The return array has this same number of dimensions

with shape given by the product of the shape of a and the shape of b. If either

a or b is a scalar then this function is equivalent to multiply(a,b).

For example, if a and b are is 1-d the result is

[

a[0] ∗ b a[1] ∗ b · · · a[−1] ∗ b
]

while if a and b are 2-d, the result is









a[0, 0] ∗ b a[0, 1] ∗ b · · · a[0,−1] ∗ b

a[1, 0] ∗ b a[1, 1] ∗ b · · · a[1,−1] ∗ b
...

...
. . .

...

a[−1, 0] ∗ b a[−1, 1] ∗ b · · · a[−1,−1] ∗ b









Example:

>>> kron([1,10,100],[5,6,7])

array([ 5, 6, 7, 50, 60, 70, 500, 600, 700])

>>> kron([[1,10],[100,1000]],[[2,3],[4,5]])

array([[ 2, 3, 20, 30],

[ 4, 5, 40, 50],

[ 200, 300, 2000, 3000],

[ 400, 500, 4000, 5000]])

tile (a, reps)

Tile an N -dimensional array using the shape information in reps to create a larger

N -dimensional array. This is equivalent to kron(ones(reps, a.dtype), a). The

number of dimensions of a and the length of shape should be the same or else

1’s will be pre-pended to make them the same.

Example:
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>>> tile([5,6,7],(1,2,3))

array([[[5, 6, 7, 5, 6, 7, 5, 6, 7],

[5, 6, 7, 5, 6, 7, 5, 6, 7]]])

5.2 Basic functions

average (a, axis=None, weights=None, returned=0)

Computes the average along the indicated axis. If axis is None, average over

the entire array. Inputs can be integer or floating types; result is type float.

If weights are given, the result is sum(a*weights)/sum(weights). Therefore,

weights must have shape equal to a.shape or be 1-d with length a.shape[axis].

Integer weights are converted to float. If returned is True, then return a tuple

showing both the result and the sum of the weights (or count of the values).

The shape of these two results will be the same.

cov (x, y=None, rowvar=1, bias=0)

Compute the covariance matrix of data in x. If x is a vector and y is None, then

this function is equivalent to asarray(x).var(). Otherwise, x is interpreted as

observations of several random variables. If rowvar is True (default), then

the variables are in the rows and the observations of the variables are in the

columns. Otherwise, the variables are in the columns and the observations

are in the rows. If y is given then it is treated as another variable or set of

variables to be added to x. By default, a so-called unbiased estimate of the

covariance matrix is made. If bias is non-zero, then a biased normalization

factor (with better mean-square error performance) is used instead. If X is a

random vector, then the covariance matrix is defined as

C = E
[

(X− EX) (X− EX)
H
]

.

It can be approximated as

C ≈ 1

P

N−1∑

i=0

(xi − x̄) (xi − x̄)H

where xi is an observation of X (as a column-vector), N is the number of

observations made and P = N − 1 for an unbiased estimate or P = N for a

biased (but lower mean-squared error) estimate.
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corrcoef (x, y=None, rowvar=1, bias=0)

Estimate the correlation coefficient of x. By default, each row of x contains a

random variable with observations of the random variable in the columns of

x. (If rowvar is False, the each column is a random variable with observations

in the rows). The y argument can be used to append additional variables to

x. The ith row and jth column of the correlation coefficient matrix is defined

as

ρij =
Cij

√
CiiCjj

where C is the covariance matrix. The rowvar and bias arguments are passed

on to the cov function to estimate C.

msort (a)

Return a new array, sorted along the first axis. Equivalent to b=a.copy();

b.sort(0)

median (m)

Returns the median of m along its first dimension.

bincount (list=, weights=None)

The list argument is a 1-d integer array. Let r be the returned 1-d array whose

length is (list.max()+1). If weights is None, then r[i] is the number of occur-

rences of i in list. If weight is present, then the ith element is

r[i] =
∑

j:list[j]=i

weights[j].

Notice that if weights is None, it is equivalent to a weights array of all 1. The

length of weights must be the same as the length of list.

digitize (x=,bins=)

Return an array of integers the same length as x with values i such that

bins [i − 1] ≤ x < bins [i] if bins is monotonically increasing, or bins[i] ≤
x < bins[i − 1] if bins is monotonically decreasing. When x is beyond the

bounds of bins, return either i = 0 or i =len(bins) as appropriate.

histogram (x=, bins=None, range=None, normed=0)
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Construct a histogram for the data in x (treated as one-dimensional array of type

float). If bins is not a sequence, then bins should be the number of bins which

will be constructed ranging from range[0] to range[1] or x.min() to x.max() if

range is None. If normed is True, then the histogram will be normalized and

comparable with a probability density function, otherwise it will be a count

of the number of items in each bin. The return value is the tuple (n, bins)

where n is the histogram.

histogram2d (x, y, bins=10, range=None, normed=False)

Compute the two-dimensional histogram for a dataset (x,y) given the bins. Re-

turns (histogram, xedges, yedges). The bins argument can be either the num-

ber of bins or a sequence of the bin edges if the x and y directions should have

the same bins. If the bins argument is a sequence of length 2, then separate

bin edges will be computed. The first element can be either the number of bins

or the bin edges for the x-direction. The second element is interpreted as the

number of bins or the bin edges for the y-direction. The returned histogram

array, H, is a count of the number of samples in each bin. The array is ori-

ented such that H[i,j] is the number of samples falling into binx[j] and biny[i]

(notice the association x<->j and y<->i). Setting normed to True returns a

density rather than a bin-count. The range argument allows specifying lower

and upper bin edges (in a sequence of length 2 with 2-length sequences in each

entry). The default is [[x.min(), x.max()],[y.min(), y.max()]].

histogramdd (sample, bins=10, range=None, normed=False)

Compute the D-dimensional histogram for a (vector) dataset contained in sample

give the bins. The dataset is a sequence of D arrays or an N ×D array where

N is the number of samples and D is the number of dimensions. Returns

(histogram, edges) where histogram is a D-dimensional array of shape given

by the number of bins selected in each axis containing the number of counts

that a point in the sample data fell into the volume bin specified. The edges

sequence has D-entries to specify the edge boundaries for each dimension.

The bins argument is a sequence of edge arrays or a sequence of the number

of bins. If a scalar is given, it is assumed to be the number of bins for all

dimensions. The range is a length-D sequence containing lower and upper bin

edges which default to the min and maximum of the respective datasets. If

normed is True, then a density rather than a bin-count is returned.

logspace (start, stop, num=50, endpoint=True,base=10.0)
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Evenly spaced samples on a logarithmic scale. Returns num evenly spaced (in

logspace) samples from base**start to base**stop. If endpoint is True, then

the last sample is base**stop.

linspace (start, stop, num=50, endpoint=True, retstep=False):

Evenly spaced samples. Returns num evenly spaced samples from start to stop. If

endpoint is True, then the last sample is stop. If retstep is True, then return

the computed step size.

meshgrid (x, y)

For 1-d arrays x, y with lengths Nx=len(x) and Ny = len(y), return X, Y where

X and Y are (Ny, Nx) shaped arrays with the elements of x and y repeated

to fill the array.

>>> X,Y = meshgrid([1,2,3], [4,5,6,7]); print X; print Y

[[1 2 3]

[1 2 3]

[1 2 3]

[1 2 3]]

[[4 4 4]

[5 5 5]

[6 6 6]

[7 7 7]]

select (condlist, choicelist, default=0)

Returns an array comprised from different elements of choicelist depending on the

list of conditions. The condlist argument is a list of Boolean condition arrays.

The choicelist argument is a list of choice arrays (of the same size as the

arrays in condlist). The result has the same size as the arrays in choicelist. If

condlist is [c0, . . . , cN−1], then choicelist must be of length N . The elements of

choicelist can then be represented as [v0, . . . , vN−1]. The default choice if none

of the conditions are met is given as the default argument. The conditions

are tested in order and the first one satisfied is used to select the choice. In

other words, the elements of the output array are found from the following

tree (evaluated on an element-by-element basis)
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if c0: v0

elif c1: v1

...

elif cN−1: vN−1

else: default

piecewise (x, condlist, funclist, *args, **kw)

Compute a piecewise-defined function. A piecewise defined function is

f (x) =







f1 (x) x ∈ S1,

f2 (x) x ∈ S2,
...

...

fn (x) x ∈ Sn.

where S1 are sets. Thus, the function is defined differently over different sub-

domains of the input. Such a function can be computed using select but

such an implementation means calling each fi over the entire region of x. The

piecewise call guarantees that each function fi will only be called over those

values of x in Si.

Arguments: x is the array of values over which to call the function; condlist is a

sequence of Boolean (indicator) arrays (or a single Boolean array) of the same

shape as x that defines the sets (True indicates that element of x is in the set).

If needed, to match the length of funclist, an “otherwise” set will be added to

condlist. This otherwise set is defined as Sn =
⋃

Si. The argument funclist is

a list of functions to be called (or items to be inserted) corresponding to the

conditions. Each of these functions can take extra arguments and key-word

arguments which are passed in as *args, and **kw using standard Python

syntax. Each of these functions should return vector output for vector input.

If the function is a scalar, then it will simply be inserted where appropriate

into the output. It is the equivalent of a constant function.

Example: Suppose we want to compute f (x) = x2Π
(

x
3

)
+ u (x − 5) where

Π (x) = 1 only when |x| ≤ 1 and u (x) = 1 only when x ≥ 0. This could

be done using the code:
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>>> f1 = lambda x: x * x

>>> x = r [-4:6:20j]

>>> y = piecewise(x,abs(x)<=3,[f1,0])+piecewise(x,x>=0 ,[1,0])

>>> set printoptions(precision=4); print y

[ 0. 0. 8.687 5.8615 3.59 1.8726 0.7091 0.0997

1.0443 1.5429 2.5956 4.2022 6.3629 9.0776 1. 1. 1.

1. 1. 1. ]

trim zeros (filt, trim=’fb’):

Trim the leading (’f’ in trim) and trailing (’b’ in trim) zeros from a sequence

according to the trim keyword.

trapz (y, x=None, dx=1.0, axis=-1)

If y contains samples of a function: yi = f (xi) then trapz can be used to approx-

imate the integral of the function using the trapezoidal rule. If the sampling

is not evenly spaced use x to pass in the sample positions. Otherwise, only

the sample-spacing is needed in dx. The trapz function can work with many

functions at a time stored in an N -dimensional array. The axis argument con-

trols which axis defines the sampling axis (the other dimensions are different

functions). The number of dimensions of the returned result is y.ndim - 1.

diff (x, n=1, axis=-1)

Calculates the nth order, discrete difference along the given axis.

gradient (f, *varargs)

Calculate the gradient of an N-d scalar function, f. Uses central differences on

the interior and first differences on boundaries to give the same shape for

each component of the gradient. The varargs variable can contain 0, 1, or N

scalars corresponding to the sample distances in each direction (default 1.0).

If f is N-d, then N arrays are returned each of the same shape as f, giving the

derivative of f with respect to each dimension.

angle (z, deg=0)

Return the angle of a complex number z (in degrees if deg is True).

unwrap (p, discont=pi, axis=-1)
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Unwraps radian phase p by changing absolute jumps greater than discont to their

2π complement along the given axis.

sort complex (x)

This is syntactic sugar for asarray(x).sort().astype(<cmplx type>) where cm-

plx type is csingle if x.dtype is integral with fewer bits than intp, clongfloat if

x.dtype.type is longfloat, and cdouble for all other types. The sorting is done

by comparing the real part of the array, and then the imaginary part if the

real parts are the same.

disp (mesg, device=None, linefeed=1)

Display a message to device (defaults to sys.stdout) with or without a closing

linefeed.

unique (seq)

Returns unique items in the 1-dimensional seq.

extract (condition, arr)

Equivalent to arr.compress(condition.flat) and arr.flat[bool (condition.flat)] which

extracts the elements of (flattened) arr according to the elements of (flattened)

condition that are True.

place (arr, mask, vals)

Inverse of extract. Equivalent to arr[abool(mask)] = vals but it uses a different

algorithm.

delete (arr, indices, axis=None)

Return a new array with the sub-arrays indicated by indices along axis removed.

If axis is None, then first ravel the array and set axis to -1. The indices

argument describes which sub-arrays along the given axis should be removed.

It can be an integer, a slice object, or a sequence of integers. A new array is

created with the corresponding sub-arrays are removed.

insert (arr, indices, values, axis=None)

Create a new array with values inserted into arr before indices. If axis is None,

then first ravel the array and set axis to -1. The indices argument describes

which indices along the provided axis the values should be inserted before.
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It can be an integer, a slice object, or a sequence of integers. The values

argument must be broadcastable to the shape implied by where they will be

inserted.

append (arr, values, axis=None)

Return a new array with values appended to the end of the array along axis.

nansum (x, axis=None)

nanmax (x, axis=None)

nanargmax (x, axis=None)

nanargmin (x, axis=None)

nanmin (x, axis=None)

These functions perform their respective operations over the given axis (or the

entire array if axis is None), after replacing any nans with appropriate values

so as not to affect the calculation.

vectorize (pyfunc, otypes=None, doc=None)

This creates a class whose instances have a call method that invokes a ufunc that

has been dynamically built to call the python function pyfunc internally. The

output types can be controlled by the otypes argument. If it is None, then

the output types will be determined upon first call to the function using the

provided inputs. This can be reset, by re-setting the otypes attribute to “”.

The normal rules of array broadcasting are followed by the returned object.

>>> def myfunc(a,b):

... if (a>b): return a

... else: return b-1

>>> vecfunc = vectorize(myfunc)

>>> vecfunc([[1,2,3],[5,6,9]],[7,4,5])

array([[6, 3, 4],

[6, 6, 9]])

asarray chkfinite (x)

Like asarray(x) except an error is raised if any of the values in x are not finite.
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round (x, decimals=0)

Return an array with all the elements of x rounded to decimals places. Returns

x if array is not floating point and rounds both the real and imaginary parts

separately if array is complex. Rounds in the same way as standard python

except for half-way values are rounded to the nearest even number.

add docstring (obj, doc)

Adds a docstring to a built-in object, obj, that does not have a docstring defined

already. The obj can be a built-in function-or-method, a typeobject, a method

descriptor, a getset descriptor, or a member descriptor. This is useful for

improving the documentation of objects defined in C-compiled code without

re-compiling. If the object already has a docstring, a RuntimeError is raised.

If the object is not a supported type the code can add a docstring to, a

TypeError is raised.

add newdoc (place, obj, doc)

Adds a docstring to the obj imported from place using exec ’from %s import %s’

% (place, obj). Thus, both place and obj should be strings. If doc is a string,

then a single docstring is added to obj from place. If doc is a 2-tuple, then

obj must be an object with attributes that need to be commented. The first

element of the doc tuple is the attribute to be commented on and the second

element is the actual docstring. If doc is a list, then it must be composed of

elements that are 2-tuples indicating that obj has several attributes that need

to be documented.

5.3 Polynomial functions

There are two interfaces for dealing with polynomials: a class-based interface, and

a collection of functions to deal with a polynomials represented as a simple list of

coefficients. This latter representation results from the is a one-to-one correspon-

dence between a length-(n + 1) sequence of coefficients an ≡ a[n] and an nth order

polynomial:

p (x) = a0x
n + a1x

n−1 + · · · + an−1x + an.

Most of the functions below operate on and return a simple sequence of coeffi-

cients representing a polynomial. There is, however, a simple polynomial class that

provides some utility for doing simple algebra on polynomials.

108



poly1d (c or r, r=0)

This construction returns an instance of a simple polynomial class. It can take

either a list of coefficients on polynomial powers, or a sequence of roots (if

r=1). The returned polynomial can be added, subtracted, multiplied, divided,

and taken to integer powers, resulting in new polynomials.

.r roots of the polynomial

.o order of the polynomial

.c polynomial coefficients as an array (also array () )

call (x) evaluate the polynomial at x (can be an array)

getitem (x) p[k] returns the coefficient on the kth power of x (backwards

from indexing the coefficient array)

>>> p=poly1d([2,5,7])

>>> print p

2

2 x + 5 x + 7

>>> print p * [1,3,1]

4 3 2

2 x + 11 x + 24 x + 26 x + 7

>>> print p([0.5,0.6,3])

[ 10. 10.72 40. ]

>>> print p.r

[-1.25+1.3919j -1.25-1.3919j]

poly (roots or matrix)

Return a sequence of coefficients representing a polynomial given the sequence

of roots as an argument. Alternatively, if the argument is a 2-d array, then

return the characteristic polynomial of the matrix.

roots (poly)

Return the roots of the polynomial represented by coefficients in poly

polyint (poly, m=1, k=None)
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Return an exact mth-order integral of the polynomial represented in poly. If k is

None, then use 0 for the integrating constants. Otherwise, use the scalars in

the sequence k as integrating constants. Also available as .integ (m=1,k=0)

method of poly1d objects.

Example:

p (x) = x2 + 3x + 4
∫ ∫

p (x) =
1

12
x4 +

1

2
x3 + 2x2 + k0x + k1

>>> print polyint([1,3,4],m=2,k=[5,3])

[ 0.0833 0.5 2. 5. 3. ]

polyder (poly, m)

Return an exact mth-order derivative of the polynomial represented in poly. Also

available as .deriv(m=1) method of poly1d objects.

Example:

p (x) = x3 + 2x2 + 4x + 3

dp

dx
(x) = 3x2 + 4x + 4

>>> polyder([1,2,4,3])

array([3, 4, 4])

polyadd (p1, p2)

Add the two polynomials represented by coefficients: p1 (x) + p2 (x)

polysub (p1, p2)

Return coefficients for the polynomial found by subtracting the two polynomials

represented by p1 and p2: p1 (x) − p2 (x)

polymul (p1, p2)

Return the coefficients for p1 (x) p2 (x)
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polydiv (p1, p2)

Return the quotient, q (x), and remainder, r (x), so that p1 (x) = q (x) p2 (x) +

r (x) , with the order of r (x) less than the order of p2 (x) .

polyval (p, y)

Evaluate the polynomial p at y. The argument, y, can be a number or an array

or a polynomial object. If x is a polynomial object, then polyval performs

polynomial composition: p (y (x)) , otherwise polyval computes the value of

the polynomial at each y. Uses Horner’s rule for evaluation, but this can still

lead to numerical instabilities for wildly fluctuating coefficients.

polyfit (x,y,N)

Compute a best-fit polynomial in x of order N , to the data, y, in the sense of

minimizing averaged-squared error between the measurement and the model.

Useful for quick line-fitting.

5.4 Set Operations

The set operations were kindly contributed by Robert Cimrman. These set op-

erations are based on sorting functions and all expect 1-d sequences with unique

elements with the exception of unique1d and intersect1d nu which will flatten N-d

nested-sequences to 1-d arrays and can handle non-unique elements.

unique1d (arr, retindx=False)

Return the unique elements of arr as a 1-d array. If retindx is True, then also

return the indices, ind, such that arr.flat[ind] is the set of unique values.

intersect1d (a1, a2)

Return the (sorted) intersection of a1 and a2 which is an array containing the

elements of a1 that are also in a2.

intersect1d nu (a1, a2)

Return the (sorted) intersection of a1 and a2 but allow a1 and a2 to be N-d

arrays with non-unique elements. Equivalent to intersect1d(unique1d(a1),

unique1d(a2)).

union1d (a1, a2)
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Return the (sorted) union of a1 and a2 which is an array containing elements that

are in either a1 or a2.

setdiff1d (a1, a2)

Return the set-difference of a1 and a2 which is an array containing the elements

of a1 that are not in a2.

setxor1d (a1, a2)

Return the (sorted) set containing the exclusive-or of the arrays a1 and a2. The

exclusive-or contains elements that are in a1 or in a2 as long as the element

is not in both a1 and a2.

setmember1d (tocheck, set)

Return a Boolean 1-d array of the length of tocheck which is True whenever that

element is contained in set and false when it is not. Equivalent to array([x in

set for x in tocheck]).

5.5 Array construction using index tricks

The functions and classes in this category make it simpler to construct arrays.

ix (*args)

This indexing cross function is useful for forming indexing arrays necessary to

select out the cross-product of N 1-dimensional arrays. Note that the default

indexing does not do a cross-product (which might be unexpected for someone

coming from other programming environments). The default indexing is more

general purpose. Using the ix constructor can produce the indexing arrays

necessary to select a cross-product.

mgrid [index expression]

This is an instance of a class. It can be used to construct a filled “mesh-grid”

using slicing syntax.

ogrid [index expression]

This is similar to mgrid except it returns an open grid, so as to save space and

time. The broadcasting rules will ensure that any universal function operating

on the grid will act as if the ogrid had been the result of mgrid.
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r [index expression]

This is a simple way to build up arrays quickly. There are two use cases. 1) If

the index expression contains comma separated arrays, then stack them along

their first axis. 2) If the index expression contains slice notation or scalars

then create a 1-d array with a range indicated by the slice notation. In other-

words the slice syntax start:stop:step is equivalent to arange(start, stop, step)

inside of the brackets. However, if step is an imaginary number (i.e. 100j)

then its integer portion is interpreted as a number-of-points desired and the

start and stop are inclusive. In other words start:stop:stepj is interpreted as

linspace(start, stop, step, endpoint=1) inside of the brackets. After expansion

of slice notation, all comma separated sequences are concatenated together.

Optional character strings placed as the first element of the index expression can

be used to change the output. The strings ’r’ or ’c’ result in matrix output.

If the result is 1-d and ’r’ is specified a 1×N (row) matrix is produced. If the

result is 1-d and ’c’ is specified, then a N × 1 (column) matrix is produced.

If the result is 2-d then both provide the same matrix result.

>>> print r [-1:1:9j,[0] * 10,5,6]

[-1. -0.75 -0.5 -0.25 0. 0.25 0.5 0.75 1. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 5. 6. ]

>>> print r [’r’,1,2,5,6]

[[1 2 5 6]]

>>> print r [’c’,1,2,5,6]

[[1]

[2]

[5]

[6]]

A string integer specifies which axis to stack multiple comma separated arrays

along.
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>>> a=arange(6).reshape(2,3)

>>> r [a,a]

array([[0, 1, 2],

[3, 4, 5],

[0, 1, 2],

[3, 4, 5]])

>>> r [’-1’,a,a]

array([[0, 1, 2, 0, 1, 2],

[3, 4, 5, 3, 4, 5]])

A string of two comma-separated integers allows indication of the minimum num-

ber of dimensions to force each entry into as the second integer (the axis to

concatenate along is still the first integer).

>>> r [’0,2’,[1,2,3],[4,5,6]]

array([[1, 2, 3],

[4, 5, 6]])

>>> r [’1,2’,[1,2,3],[4,5,6]]

array([[1, 2, 3, 4, 5, 6]])

A string with three comma-separated integers allows specification of the axis to

concatenate along, the minimum number of dimensions to force the entries to,

and which axis should contain the start of the arrays which are less than the

specified number of dimensions. In other words the third integer allows you

to specify where the the 1’s should be placed in the shape of the arrays that

have their shapes upgraded. By default, they are placed in the front of the

shape tuple. The third argument allows you to specify where the start of the

array should be instead. Thus, a third argument of ’0’ would place the 1’s at

the end of the array shape. Negative integers specify where in the new shape

tuple the last dimension of upgraded arrays should be placed, so the default

is ’-1’.
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>>> r [’0,2,0’, [1,2,3], [4,5,6]]

array([[1],

[2],

[3],

[4],

[5],

[6]])

>>> r [’1,2,0’, [1,2,3], [4,5,6]]

array([[1, 4],

[2, 5],

[3, 6]])

c [index expression]

This is short-hand for r [’-1,2,0’, index expression] useful because of its common

occurence. In particular, arrays will be stacked along their last axis after being

upgraded to at least 2-d with 1’s post-pended to the shape (column vectors

made out of 1-d arrays).

5.6 Other indexing devices

index exp [index expression]

Return a tuple of Python objects that implements the index expression and can

be modified and placed in any other index expression.

>>> index exp[2:5,...,4,::-1]

(slice(2, 5, None), Ellipsis, 4, slice(None, None, -1))

s [index expression]

Translate index expressions into the equivalent Python objects. This is similar to

index expression except a tuple is not always returned. For example:

>>> s [1:10]

slice(1, 10, None)

>>> s [1:10,-3:4:0.5]

(slice(1, 10, None), slice(-3, 4, 0.5))
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This provides a standard way to construct index expressions to pass to functions

and methods because Python does not allow slice expressions anywhere except

for inside brackets.

ndindex (*seq)

A sequence of N integers are passed in as separate arguments. These integers are

used as the upper boundaries of an N -dimensional counter that starts at 0.

The object returned is an iterator that implements the counter.

>>> for index in ndindex(3,3,2):

... print index,

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 2, 0) (0, 2, 1) (1, 0, 0) (1 ,

unravel index (indx, dims)

Convert a flat index, indx, into an index tuple for an array of the given shape.

Keep in mind that it may be more convenient to use indx with a.flat, then to

unravel the index.

5.7 Two-dimensional functions

These functions all deal with or return two dimensional arrays.

eye (N , M=None, k=0, dtype=float)

Return an N × M array of the given type with ones down the kth diagonal. If

M is None, it defaults to N . Alternatively, if M is a valid data type, then it

becomes the data-type used.

vander (x, N=None)

The Vandermonde matrix of vector, x. The ith column of the return matrix is

the mth
i power of x where mi = N − i − 1. If N is None, it defaults to the

length of x.

>>> vander([1,2,3,4,5],3)

array([[ 1, 1, 1],

[ 4, 2, 1],

[ 9, 3, 1],

[16, 4, 1],

[25, 5, 1]])
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diag (v, k=0)

Return the kth diagonal if v is a 2-d array, or returns an array with v as the kth

diagonal if v is a 1-d array.

>>> diag(arange(12).reshape(4,3),k=1)

array([1, 5])

>>> diag([1,4,5,7],k=-1)

array([[0, 0, 0, 0, 0],

[1, 0, 0, 0, 0],

[0, 4, 0, 0, 0],

[0, 0, 5, 0, 0],

[0, 0, 0, 7, 0]])

diagflat (v, k=0)

Return a 2-d array (of the same class as v) by placing a flattened version of v

along the kth diagonal. This differs from diag in that it only creates 2-d arrays

and will work with any object that can be converted to an array (returning

that object if it also defines an array wrap method).

fliplr (m)

Return the array, m, with rows preserved and columns reversed in the left-right

direction. For m.ndim > 2, this works on the first two dimensions (equivalent

to m[:,::-1])

flipud (m)

Return the array, m, with columns preserved and rows reversed in the up-down

direction. For m.ndim > 1, this works on the first dimension (equivalent to

m[::-1])

rot90 (m, k=1)

Rotate the first two dimensions of an array, m, by k*90 degrees in the counter-

clockwise direction. Must have m.ndim >=2.

tri (N , M=N , k=0, dtype=aint)

Construct an N × M array where all the diagonals starting from the lower left

corner up to the kth diagonal are all ones.
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triu (m, k=0)

Return a upper-triangular 2-d array from m with all the elements below the kth

diagonal set to 0.

tril (m, k=0)

Return a lower-triangular 2-d array from m with all the elements above the kth

diagonal set to 0.

mat (data, dtype=None)

Construct a matrix from data. Alias for numpy.asmatrix. The calling syntax is

the same as that function. Note that data can be a string in which case the

routine uses spaces and semi-colons to construct the matrix:

>>> mat(’1 3 4; 5 6 9’)

matrix([[1, 3, 4],

[5, 6, 9]])

bmat (obj, ldict=None, gdict=None)

Build a matrix from sub-blocks. This is similar to mat, except the items in the

nested-sequence, or string, should be appropriately shaped 2-d arrays. If obj is

a string, then ldict and gdict can be used to alter where the names represented

in the string are found (default is current local and global namespace).

>>> A=mat(’1 2; 3 4’); B=mat(’5 6; 7 8’)

>>> bmat(’A, B; B, A’)

matrix([[1, 2, 5, 6],

[3, 4, 7, 8],

[5, 6, 1, 2],

[7, 8, 3, 4]])

5.8 More data type functions

issubclass (arg1, arg2)
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Returns True if arg1 is a sub-class of arg2, otherwise returns False. Similar to

the built-in issubclass except it does not raise an error if arg1 or arg2 are not

types.

issubdtype (arg1, arg2)

Returns True if the type-object of the data-type represented by arg1 is a sub class

of the type-object of the data-type represented by arg2.

iscomplexobj (obj)

Return a single True or False value depending on whether or not obj would be

interpreted as an array with complex-valued data type.

isrealobj (obj)

Return a single True or False value depending on whether or not obj would be

interpreted as an array with real-valued data type.

isscalar (obj)

True if obj is a scalar (an instance of an array data type, or a standard Python

scalar type). There is also a sequence of called ScalarType defined in NumPy,

so that this can also be tested as type(obj) in numpy.ScalarType.

nan to num (arr)

Returns an array with non-finite numbers changed to finite numbers. The map-

ping converts nan to 0, inf to the maximum value for the data type and

-inf to the minimum value for the data type.

real if close (arr, tol=100)

Return a real arr if arr is complex with imaginary parts less than some tolerance.

If tol > 1, then it represents a multiplicative factor on the value of epsilon for

the data type of arr.

cast [dtype or alias] (obj)

Cast obj to an array of the given type. This is equivalent to array(obj,

copy=0).astype(dtype or alias). When one type is cast to another in this

fashion, a very low-level operation takes place. Typically, you get what your

C-compiler produces for the cast, but notice that in the case of casting to a

bool type, the value becomes either a 0 or a 1.
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>>> cast[bool]([1,2,0,4,0]).astype(int)

array([1, 1, 0, 1, 0])

asfarray (a, dtype=float)

Return an array of inexact data type (floating or complexfloating).

mintypecode (typechars, typeset=’GDFgdf’, default=’d’)

Return a minimum data type character from typeset that handles all given type-

chars. The returned type character must correspond to the data type of the

smallest size such that an array of the returned type can handle the data from

an array of type t for each t in typechars. If the typechars does not intersect

with the typeset, then default is returned. If an element of typechars is not a

string, then t=asarray(t).dtypechar is applied.

finfo (dtype)

This class allows exploration of the details of how a floating point number is

represented in the computer. It can be instantiated by an inexact data type

object (or an alias for one). Complex-valued data types are acceptable and

are equivalent to their real-valued counterparts. The attributes of the class

are

nmant The number of bits in the floating point mantissa, or fraction.

nexp The number of bits in the floating point exponent

machep Exponent of the smallest (most negative) power of 2 that when

added to 1.0 gives something different than 1.0.

eps Floating point precision: 2**machep.

precision Number of decimal digits of precision: int(-log10(eps))

resolution 10**(-precision)

negep Exponent of the smallest power of 2 that, subtracted from 1.0, gives

something different than 1.0.

epsneg Floating point precision: 2**negep.

minexp Smallest (most negative) power of 2 producing “normal” numbers

(no leading zeros in the mantissa).

tiny The smallest (in magnitude) usable floating point number equal to

2**minexp.
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maxexp Smallest (positive) power of 2 that causes overflow.

max The largest usable floating value: (1-epsneg)* (2**maxep)

min The most negative usable floating value: -max

The most useful attributes are probably eps, max, min, and tiny.

5.9 Functions that behave like ufuncs

These functions are Python functions built on top of universal functions (ufuncs)

and also take optional output arguments. They broadcast like ufuncs but do not

have ufunc attributes.

fix (x, y=None)

Round x to the nearest integer towards zero.

isneginf (x, y=None)

True if x = −∞. Should be the same as x==NumPy.NINF .

isposinf (x, y=None)

True if x = +∞. Should be the same as x==NumPy.PINF .

log2 (x, y=None)

Compute the logarithm to the base 2 of x. An optional output array may be

provided.

5.10 Miscellaneous Functions

Some miscellaneous functions are available in NumPy which are included largely

for compatibility with MLab of the old Numeric package. One notable difference,

however, is that due to a separate implementation of the modified Bessel function,

the kaiser window is available without needing a separate library.

sinc (x)

Compute the sinc function for x which can be a scalar or array. The sinc is defined

as y = sinc (x) = sin(πx)
πx with the caveat that the limiting value (1.0) of the

ratio is taken for x = 0.
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i0 (x)

Modified Bessel function of the first kind of order 0. Needed to compute the kaiser

window. The modified Bessel function is defined as

I0 (x) =
1

π

∫ π

0

ex cos θdθ =

∞∑

k=0

x2k

4k (k!)2
.

blackman (M)

Construct an M -point Blackman smoothing window which is sequence of length

M with values given for n = 0 . . .M − 1 by

w [n] = 0.42 − 0.5 cos

(

2π
n

M − 1

)

+ 0.08 cos

(

4π
n

M − 1

)

.

bartlett (M)

Construct an M -point Bartlett (triangular) smoothing window as

w [n] =

{

2 n
M−1 0 ≤ n ≤ M−1

2 ,

2 − 2 n
M−1

M−1
2 < n ≤ M − 1.

hanning (M)

Construct an M -point Hanning smoothing window defined as

w [n] =
1

2
− 1

2
cos

(

2π
n

M − 1

)

.

hamming (M)

Construct an M -point Hamming smoothing window defined for n = 0 . . .M − 1

as

w [n] = 0.54 − 0.46 cos

(

2π
n

M − 1

)

.

All of the windowing functions are smoothing windows that attempt to balance

the inherent trade off between side-lobe height (ringing) and main-lobe width

(resolution) in the frequency domain. A rectangular window has the smallest

main-lobe width but the largest side-lobe height. A windowing (tapering)

function tries to can help trade off main-lobe width By sacrificing a little in

resolution using a windowing function These windows can be used to smooth
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Smoothing window in time-domain
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Figure 5.1: Blackman, Bartlett, Hanning, and Hamming windows in the time and
frequency domain showing the trade-off between main-lobe width and side-lobe
height (Figures made with matplotlib).

data using the convolve function. Figure 5.1 shows the windowing functions

described so far and their time- and frequency-domain behavior.

The trade-off between main-lobe and side-lobe has been studied extensively. So-

lutions that maximize energy in the main-lobe compared to energy in the

side-lobes can be found by finding an eigenvector which can be expensive

to compute for large window sizes. A good approximation to these prolate-

spheroidal windows is the Kaiser window.

kaiser (M , β)

Construct an M -point Kaiser smoothing window. The β parameter controls the

width of the window (and the frequency-domain side-lobe height and main-

lobe width). The window is defined as

w [n] =
1

I0 (β)
I0

(

β

√

1 − (2n − M − 1)
2

(M − 1)
2

)

.

There is an empirical relationship between β and the side-lobe height which

can be used in FIR filter design. To achieve a side-lobe height of −αdB, the

β parameter is

β =







0.1002 (α − 8.7) α > 50,

0.5842 (α − 21)0.4 + 0.07886 (α − 21) 21 ≤ α ≤ 50,

0 α < 21.
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The length M of the window determines the transition width. To obtain a

transition width of ∆ωrad/s the window-length must be at least:

M =
α − 8

2.285∆ω
+ 1.

5.11 Utility functions

set numeric ops (<op1>=func1, <op2>=func2, ...)

This function can be used to alter the operations used for internal array calcu-

lations and array special methods. Replaceable operations (and possible en-

tries for <opN>) are add, subtract, multiply, divide, remainder, power, sqrt,

negative, absolute, invert, left shift, right shift, bitwise and, bitwise or, less,

less equal, equal, not equal, greater, greater equal, floor divide, true divide,

logical or, logical and, floor, ceil, maximum, and minimum. The example code

below changes, then restores, the old Numeric behavior of remainder (which

was changed because it was not consistent with Python).

>>> a = array([-3.,-2,-1,0,1,2,3])

>>> print a % -2.1

[-0.9 -2. -1. 0. -1.1 -0.1 -1.2]

>>> oldops = set numeric ops(remainder=fmod)

>>> print a % -2.1

[-0.9 -2. -1. 0. 1. 2. 0.9]

>>> newops = set numeric ops( ** oldops)

>>> print a % -2.1

[-0.9 -2. -1. 0. -1.1 -0.1 -1.2]

>>> print 3 % -2.1 # comparison

-1.2

get include ()

Return the directory that contains the numpy include files. The numpy.distutils

automatically includes this directory in building extensions.

get numarray include (type=None)

Return the directory that contains the numarray compatible C-API include files.

If type is not None, then return a list containing both the numarray compatible
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C-API include files and the numpy include files. The latter form is only needed

when building an extension without the use of numpy.distutils.

deprecate (func, oldname, newname)

Return a deprecated function named ’oldname’ that has been replaced by ’new-

name’. This new deprecated function issues a warning before calling the old

function. The name and docs of the function are also updated to be oldname

instead of the name that func has. Example usage. If you want to deprecate

the function named ’old’ in favor of a new function named ’new’ which has

the same calling conention then this could be done with the assignment

old = deprecate(new, ’old’, ’new’)
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Chapter 6

Scalar objects

One important new feature of NumPy is the addition of a new scalar object for each

of the 21 different data types that an array can have. Do not confuse these scalar

objects with the data-type objects. There is one data-type object. It contains a

.type attribute which points to the Python type that each element of the array

will be returned as1. The built-in data-types point have .type attributes that point

to these scalar objects. Five (or six) of these new scalar objects are essentially

equivalent to fundamental Python types and therefore inherit from them as well

as from the generic array scalar type. The bool data type is very similar to the

Python BooleanType but does not inherit from it because Python’s BooleanType

does not allow itself to be inherited from, and on the C-level the size of the actual

bool data is not the same as a Python Boolean scalar. Table 6.1 shows which array

scalars inherit from basic Python types.

The array scalars have the same attributes and methods as arrays and live in

a hierarchy of scalar types so they can be easily classified based on their type ob-

jects. However, because array scalars are immutable, and attributes change intrinsic

properties of the object, the array scalar attributes are not settable.

Array scalars can be detected using the hierarchy of data types. For exam-

ple, isinstance(val, generic) will return True if val is an array scalar ob-

ject. Alternatively, what kind of array scalar is present can be determined using

other members of the data type hierarchy. Thus, for example isinstance(val,

complexfloating) will return True if val is a complex valued type, while

isinstance(val, flexible) will return true if val is one of the flexible item-

1with the exception of object data-types which return the underlying object and not a “scalar”
type.
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Table 6.1: Array scalar types that inherit from basic Python types. The intc array
data type might also inherit from the IntType if it has the same number of bits as
the int array data type on your platform.

array data type Python type

int IntType
float FloatType

complex ComplexType
str StringType

unicode UnicodeType

size array types (string, unicode, void).

WARNING

The bool type is not a subclass of the int type (the bool type is

not even a number type). This is different than Python’s default

implementation of bool as a sub-class of int.

6.1 Attributes of array scalars

The array scalar objects have an array priority of

NPY SCALAR PRIORITY (-1,000,000.0). They also do not (yet) have a

ctypes attribute. Otherwise, they share the same attributes as arrays:

flags

Returns True for CONTIGUOUS, OWNDATA, FORTRAN, and ALIGNED. Al-

ways returns False for WRITEABLE, and UPDATEIFCOPY.

shape

Returns ().

strides

Returns ().

ndim

Returns 0.
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data

A read-only buffer object of size self.itemsize,

size

Return 1.

itemsize

The number of bytes this scalar requires.

base

Returns None.

dtype

Returns data type descriptor corresponding to this array scalar.

real

The real part of the scalar.

imag

The imaginary part of the scalar (or 0 if this is real).

flat

Return a 1-d iterator object (of size 1).

T

Return a reference to self.

array interface

The Python-side to the array interface.

array struct

The C-side to the array interface

array priority

-100.0 (very low-priority).

array wrap (obj)

Returns an array scalar from an array
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6.2 Methods of array scalars

Array scalars have exactly the same methods as arrays. The default behavior of

these methods is to internally convert the scalar to an equivalent 0-dimensional array

and to call the corresponding array method. The exceptions to these rules are given

below. In addition, math operations on array scalars are defined so that the same

hardware flags are set and used to interpret the results as for ufunc. Therefore the

error state used for ufuncs also carries over to the math on array scalars.

new (obj)

The default behavior is to return a new array or array scalar by calling array(obj)

with the corresponding data type. There are two situations when this default

behavior is delayed until another approach is tried. First, when the array

scalar type inherits from a Python type, then the Python types new method

is called first and the default method is called only if that approach fails. The

second situation is for the void data type where a single integer-like argument

will cause a void scalar of that size to be created and initialized to 0.

Notice that because array(obj) is called for new, if obj is a nested sequence, then

the return object could actually be an ndarray . Thus, arrays of the correct

type can also be created by calling the array data type name directly:

>>> uint32([[5,6,7,8],[1,2,3,4]])

array([[5, 6, 7, 8],

[1, 2, 3, 4]], dtype=uint32)

array (<None>)

Returns a 0-dimensional array of the given data type, or of type(self) if argument

is None.

array wrap (array)

Returns a scalar array object from the first-element of the array.

squeeze ()

Returns self.

byteswap (<False>)
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Trying to set the first (inplace) argument to True raises a ValueError. Otherwise,

this returns a new array scalar with the data byteswapped.

reduce ()

This is called to pickle an array scalar. It returns a tuple of

(numpy.core.multiarray.scalar, self.dtypestr, obj or self.tostring()) which can

be used to reconstruct the scalar on unpickling. Notice that no state is writ-

ten, because the entire scalar can be constructed from just the string. Also,

if this is an object array scalar, then the Python object being referenced is

written.

setstate ()

Does nothing but return None.

setflags ()

Does nothing, as flags cannot be set for scalars.

6.3 Defining New Types

There are two ways to effectively define a new type of array. One way is to simply

subclass the ndarray and overwrite the methods of interest. This will work to a

degree, but internally certain behaviors are fixed by the data type of the array. To

fully customize the data type of an array you need to define a new data-type for the

array, and register it with NumPy. This new type can only be defined in C. How

to define a new data type in C will be discussed in the next part of the book.
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Chapter 7

Data-type (dtype) Objects

It is important not to confuse the “array-scalars” with the “data-type objects.” It is

true that an array-scalar can be interpreted as a data-type object and so can be used

to refer to the data-type of an array. However, the data-type object is a separate

Python object. Every ndarray has an associated data-type object that completely

defines the data in the array (including any named fields). For every built-in data-

type object there is an associated type object whose instances are the array-scalars.

Because of the association between each data-type object and a type-object of

the corresponding array scalar, the array-scalar type-objects can also be thought

of as data-types. However, for the type objects of flexible array-scalars (string,

unicode , and void), the type-objects alone are not enough to specify the full data-

type because the length is not given. The data-type constructor, numpy.dtype,

converts any object that can be considered as a data-type into a data-type object

which is the actual object an ndarray looks to in order to interpret each element of

its data region. Whenever a data-type is required in a NumPy function or method,

supplying a dtype object is always fastest. If the object supplied is not a dtype

object, then it will be converted to one using dtype(obj). Therefore, understanding

data-type objects is the key to understanding how data types are really represented

and understood in NumPy.

7.1 Attributes

type The type object used to instantiate a scalar of this data-type.

kind A character code (one of ’biufcSUV’) identifying the general kind of data.
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char A unique character code for each of the 21 different built-in types.

num A unique number for each of the 21 different built-in types roughly ordered

from least-to-most precision.

str The array-protocol typestring of this data-type object.

name A bit-width name for this data-type (un-sized flexible data-type objects are

missing the width).

byteorder A character indicating the byte-order of this data-type object (’=’ :

native, ’<’ : little-endian, ’>’ : big-endian, ’|’ : not applicable). All built-in

data-type objects have byteorder either ’=’ or ’|’.

itemsize The element size of this data-type object. For 18 of the 21 types this

number is fixed by the data-type. For the flexible data-types, this number

can be anything.

alignment The required alignment (in bytes) of this data-type according to the

compiler. More information is available in the C-API section.

fields A dictionary showing any named fields that have been defined for this data-

type (or None if there are no named fields). Fields can be assigned to any built-

in data-type (e.g. using the tuple input to the dtype constructor). However,

fields are most useful for (subtypes of) void data-types which can be any size.

Fields are a convenient way to keep track of fixed-size sub-parts of the total

fixed-size array-element, or record. A field is defined in terms of another dtype

object and an offset (in bytes) into the current record.

The fields dictionary is indexed by keys that are the names of the fields. Each

entry in the dictionary is a tuple fully describing the field: (dtype, offset[,

title]). If present, the optional title can actually be any object (if it is string

or unicode then it will also be a key in the fields dictionary, otherwise it’s

meta-data). Notice also, that the first two elements of the tuple can be passed

directly as arguments to the getfield and setfield attributes of an ndarray. If

field names are not specified in a constructor, they default to ’f0’, ’f2’, ...,

’f<n-1>’.

names An ordered list of field names. This can be used to walk through all of

the named fields in offset order. Notice that the defined fields do not have to

“cover” the record, but the itemsize of the container data-type object must
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always be at least as large as the itemsizes of the data-type objects in the

defined fields. This attribute is None if there are no fields.

subdtype Numarray introduced the concept of a fixed-length record having fields

that were themselves arrays of another data-type. This is supported at a fun-

damental level in NumPy using this attribute which maintains the simplicity

of defining a field by another data-type object. It either returns None or a

tuple (base dtype, shape) where shape is a tuple showing the size of the C-

contiguous array and the base dtype object indicates the data-type in each

element of the subarray. If a field whose dtype object has this attribute is

retrieved, then the extra dimensions implied by the shape are tacked on to

the end of the retrieved array.

descr An array-interface-compliant full description of the data-type. The format

is that required by the ’descr’ key in the array interface .

isbuiltin A 1 if self is one of the built-in dtype objects; a 2 if self is a user-defined

dtype object; a 0, otherwise.

isnative True if this data-type object has a byteorder that is native to the platform;

otherwise False.

hasobject True if self contains reference-counted objects in any of it’s fields or sub

data-types. Recall that what is actually in the ndarray memory representing

the Python object is the memory address of that object (a pointer). Special

handling may be required and this attribute is useful for distinguishing data-

types that may contain arbitrary Python objects and data-types that won’t.

flags Bit-flags for the data-type describing how the data-type will be in-

terpreted. Bit-masks are in numpy.core.multiarray as the constants

ITEM HASOBJECT, LIST PICKLE, ITEM IS POINTER, NEEDS INIT,

NEEDS PYAPI, USE GETITEM, USE SETITEM. A full explanation of

these flags is in the second part of this book. These flags are largely use-

ful for user-defined data-types.

7.2 Construction

dtype (obj, align=0, copy=0)
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Return a new data-type object from obj. The keyword argument, align, can only

be nonzero if obj is a dictionary, or a comma-separated string. If it is non-zero

in those cases it is used to add padding as needed to the fields to match what

the compiler that compiled NumPy would do to a similar C-struct. The copy

argument guarantees a new copy of the data-type object, otherwise, the result

may just be a reference to a built-in data-type object.

Objects that can be converted to a data-type object are described in the following

list. Because every object in this list can be converted to a data-type object

it can also be used whenever a dtype is requested by a function or method

in NumPy.

dtype Returns itself.

None Returns the default data-type descriptor object: float.

type-object Many Python type objects can be converted to data-type ob-

jects.

1. Array-scalar types: The type-objects of the 21 built-in array scalars

all convert to an associated data-type object. This is true for sub-

classes as well. Not all data-type information can be supplied with

a type-object. Flexible data-types with default itemsizes of 0, for

example, require an itemsize to be useful.

Examples: int32, float64, uint16, complex128

2. Generic types: The generic hierarchical type objects convert to

corresponding dtype objects according to the associations: (nu-

meric, inexact, floating) –> float; complexfloating –> cfloat; (in-

teger, signedinteger) –> int ; unsignedinteger –> uint; character –>

string; (generic, flexible) –> void.

3. Builtin types: Several python types are equivalent to a corresponding

array scalar when used to generate a dtype object: int –> int ; bool

–> bool ; float –> float ; complex –> cfloat; str –> string; unicode

–> unicode ; buffer –> void; (all others) –> object .

Examples: object, str, float, int

4. Any type object with the dtype attribute: The attribute will be

accessed and used directly. The attribute must return something

that is convertible into a dtype object.

string Several kinds of strings can be converted. Recognized strings can be

pre-pended with ’>’, or ’<’, to specify the byteorder.
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1. One-character strings: Each built-in data-type has a character code

(the updated Numeric typecodes), that uniquely identifies it.

Examples: ’b’, ’H’, ’f’, ’d’, ’F’, ’D’, Float64, Int32, UInt16

2. Array-protocol type strings: The first character specifies the kind of

data and the remaining characters specify how many bytes of data.

The supported kinds are ’b’ –> Boolean, ’i’ –> (signed) integer, ’u’

–> unsigned integer, ’f’ –> floating-point, ’c’ –> complex-floating

point, ’S’, ’a’ –> string, ’U’ –> unicode, ’V’ –> anything (void).

Examples: ’i4’, ’f8’, ’c16’, ’b1’, ’S10’, ’a25’

3. Comma-separated field formats: numarray introduced a short-hand

notation for specifying the format of a record as a comma-separated

string of basic formats. A basic format in this context is an optional

shape specifier followed by an array-protocol type string. Parenthesis

are required on the shape if it is greater than 1-d. NumPy allows

a modification on the format in that any string that can uniquely

identify the type can be used to specify the data-type in a field.

This data-type defines fields named ’f0’, ’f2’, ..., ’f<N-1>’ where N

(>1) is the number of comma-separated basic formats in the string.

If the optional shape specifier is provided, then the data-type for

the corresponding field contains a subdtype attribute providing the

shape.

Examples: “i4, (2,3)f8, f4”; “a3, 3u8, (3,4)a10”

4. Any string in NumPy.sctypeDict.keys():

Examples: ’uint32’, ’Int16’, ’Uint64’, ’Float64’, ’Complex64’

tuple Three kinds of tuples each of length 2 can be converted into a data-type

object:

1. (flexible dtype, itemsize): The first argument must be an object that

is converted to a flexible data-type object (one whose element size is

0), the second argument is an integer providing the desired itemsize.

Examples: (void, 10); (str, 35), (’U’, 10)

2. (fixed dtype, shape): The first argument is any object that can be

converted into a fixed-size data-type object. The second argument

is the desired shape of this type. If the shape parameter is 1, then

the data-type object is equivalent to fixed dtype.

Examples: (int32, (2,5)); (’S10’, 1)==’S10’; (’i4, (2,3)f8, f4’, (2,3))
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3. (base dtype, new dtype): Both arguments must be convertible to

data-type objects in this case. The base dtype is the data-type

object that the new data-type builds on. This is how you could

assign named fields to any built-in data-type object.

Examples: (int32, {’real’:(int16,0), ’imag’:(int16,2)}); (int32, (int8,

4));

(’i4’, [(’r’,’u1’),(’g’,’u1’),(’b’,’u1’),(’a’,’u1’)])

list (array description interface): This style is more fully described at this site

http://numpy.scipy.org/array_interface.html . It consists

of a list of fields where each field is described by a tuple of length 2 or

3. The first element of the tuple is the field name (if this is ” then a

standard field name, ’f#’, is assigned). The field name may also be a

2-tuple of strings where the first string is either a “title” (which may

be any string or unicode string) or meta-data for the field which can

be any object, and the second string is the “name” which must be a

valid Python identifier. The second element of the tuple can be anything

that can be interpreted as a data-type. The optional third element of

the tuple contains the shape if this field represents an array of the data-

type in the second element. This style does not accept align=1 as it is

assumed that all of the memory is accounted for by the array interface

description. See the web-page for more examples. Note that a 3-tuple

with a third argument equal to 1 is equivalent to a 2-tuple.

Examples: [(’big’,’>i4’), (’little’,’<i4’)]; [(’R’,’u1’), (’G’,’u1’), (’B’,’u1’),

(’A’,’u1’)]

dictionary There are two dictionary styles. The first is a standard dictionary

format while the second accepted format allows the fields attribute of

dtype objects to be interpreted as a data-type.

1. names and formats: This style has two required and two optional

keys. The ’names’ and ’formats’ keys are required. Their respective

values are equal-length lists with the field names and the field for-

mats. The field names must be strings and the field formats can be

any object accepted by dtypedescr constructor. The optional keys

in the dictionary are ’offsets’ and ’titles’ and their values must each

be lists of the same length as the ’names’ and ’formats’ lists. The

’offsets’ value is a list of integer offsets for each field, while the ’titles’

value is a list of titles for each field (None can be used if no title is
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desired for that field). The titles can be any string or unicode object

and will add another entry to the fields dictionary keyed by the title

and referencing the same field tuple which will contain the title as

an additional tuple member.

Examples: {’names’: [’r’,’g’,’b’,’a’], ’formats’: [uint8, uint8, uint8,

uint8]}; {’names’:[’r’,’b’], ’formats’: [’u1’, ’u1’], ’offsets’: [0, 2],

’titles’: [’Red pixel’, ’Blue pixel’]}
2. data-type object fields: This style is patterned after the format of

the fields dictionary in a data-type object. It contains string or

unicode keys that refer to (data-type, offset) or (data-type, offset,

title) tuples.

Examples: {’col1’: (’S10’, 0), ’col2’: (float32, 10), ’col3’: (int, 14)}

7.3 Methods

newbyteorder (<’swap’>)

Construct a new copy of self with its byteorder changed according to the optional

argument. All changes are also propagated to the data-type objects of all fields

and sub-arrays. If a byteorder of ’|’ (meaning ignore) is encountered it is left

unchanged. The default behavior is to swap the byteorder. Other possible

arguments are ’big’ (’>’), ’little’ (’<’), and ’native’ (’=’) which recursively

forces the byteorder of self (and it’s field data-type objects and any sub-arrays)

to the corresponding byteorder.

reduce ()

setstate (state)

Data-type objects can be pickled because of these two methods. The reduce ()

method returns a 3-tuple consisting of (callable object, args, state), where the

callable object is numpy.core.multiarray.dtype and args is (typestring, 0, 1)

unless the data-type inherits from void (or is user-defined) in which case args

is (typeobj, 0, 1). The state is an 8-tuple with (version, endian, self.subdtype,

self.names, self.fields, self.itemsize, self.alignment, self.flags). The self.itemsize

and self.alignment entries are both -1 if the data-type object is built-in and

not flexible (because they are fixed on creation). The setstate method takes

the saved state and updates the date-type object.
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Chapter 8

Standard Classes

The ndarray in NumPy is a “new-style” Python built-in-type. Therefore, it can be

inherited from (in Python or in C) if desired. Therefore, it can form a foundation

for many useful classes. Often whether to sub-class the array object or to simply use

the core array component as an internal part of a new class is a difficult decision,

and can be simply a matter of choice. NumPy has several tools for simplifying how

your new object interacts with other array objects, and so the choice may not be

significant in the end. One way to simplify the question is by asking yourself if the

object you are interested can be replaced as a single array or does it really require

two or more arrays at it’s core. For example, in the standard NumPy distribution,

the matrix and records classes inherit from the ndarray, while masked arrays use

two ndarrays as objects of its internal structure.

Note that asarray(a) always returns the base-class ndarray. If you are confident

that your use of the array object can handle any subclass of an ndarray, then asan-

yarray(a) can be used to allow subclasses to propagate more cleanly through your

subroutine. In principal a subclass could redefine any aspect of the array and there-

fore, under strict guidelines, asanyarray(a) would rarely be useful. However, most

subclasses of the arrayobject will not redefine certain aspects of the array object such

as the buffer interface, or the attributes of the array. One of important example,

however, of why your subroutine may not be able to handle an arbitrary subclass

of an array is that matrices redefine the ’*’ operator to be matrix-multiplication,

rather than element-by-element multiplication.
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8.1 Special attributes and methods recognized by

NumPy

array finalize (obj)

This method is called whenever the system internally allocates a new array from

obj, where obj is a subclass (subtype) of the (big)ndarray. It can be used

to change attributes of self after construction (so as to ensure a 2-d matrix

for example), or to update meta-information from the “parent.” Subclasses

inherit a default implementation of this method that does nothing.

array wrap (array)

This method should return an instance of the class from the ndarray object passed

in. For example, this is called after every ufunc for the object with the highest

array priority . The ufunc-computed array object is passed in and whatever

is returned is passed to the user. Subclasses inherit a default implementation

of this method.

array (dtype <None>)

This method is called to obtain an ndarray object when needed. You should

always guarantee this returns an actual ndarray object. Subclasses inherit a

default implementation of this method.

array priority

The value of this attribute is used to determine what type of object to return in

situations where there is more than one possibility for the Python type of the

returned object. Subclasses inherit a default value of 1.0 for this attribute.

8.2 Matrix Objects

Matrix objects inherit from the ndarray and therefore, they have the same attributes

and methods of ndarrays. There are six important differences of matrix objects,

however that may lead to unexpected results when you use matrices but expect

them to act like arrays:

1. Matrix objects can be created using a string notation to allow Matlab-style

syntax where spaces separate columns and semicolons (’;’) separate rows.
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2. Matrix objects are always two-dimensional. This has far-reaching implica-

tions, in that m.ravel() is still two-dimensional (with a 1 in the first dimension)

and item selection returns two-dimensional objects so that sequence behavior

is fundamentally different than arrays.

3. Matrix objects over-ride multiplication to be matrix-multiplication. Make

sure you understand this for functions that you may want to receive

matrices. Especially in light of the fact that asanyarray(m) returns

a matrix when m is a matrix.

4. Matrix objects over-ride power to be matrix raised to a power. The same

warning about using power inside a function that uses asanyarray(...) to get

an array object holds for this fact.

5. The default array priority of matrix objects is 10.0, and therefore mixed

operations with ndarrays always produce matrices.

6. Matrices have special attributes which make calculations easier. These are

(a) .T — return the transpose of self

(b) .H — return the conjugate transpose of self

(c) .I — return the inverse of self

(d) .A — return a view of the data of self as a 2d array (no copy is done).

WARNING

Matrix objects over-ride multiplication, ’*’, and power, ’**’, to

be matrix-multiplication and matrix power, respectively. If your

subroutine can accept sub-classes and you do not convert to base-

class arrays, then you must use the ufuncs multiply and power to

be sure that you are performing the correct operation for all inputs.

The matrix class is a Python subclass of the ndarray and can be used as a

reference for how to construct your own subclass of the ndarray. Matrices can be

created from other matrices, strings, and anything else that can be converted to an

ndarray . The name “mat” is an alias for “matrix” in NumPy.

Example 1: Matrix creation from a string
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>>> a=mat(’1 2 3; 4 5 3’)

>>> print (a * a.T).I

[[ 0.2924 -0.1345]

[-0.1345 0.0819]]

Example 2: Matrix creation from nested sequence

>>> mat([[1,5,10],[1.0,3,4j]])

matrix([[ 1.+0.j, 5.+0.j, 10.+0.j],

[ 1.+0.j, 3.+0.j, 0.+4.j]])

Example 3: Matrix creation from an array

>>> mat(random.rand(3,3)).T

matrix([[ 0.7699, 0.7922, 0.3294],

[ 0.2792, 0.0101, 0.9219],

[ 0.3398, 0.7571, 0.8197]])

matrix (data, dtype=None, copy=True)

The sequence to convert to a matrix is passed in as data. If dtype is None, then

the data-type is determined from the data. If copy is True, then a copy of

the data is made, otherwise, the same data buffer is used. If no buffer can

be found for data, then a copy is also made. Note: The matrix object is

actually a class and so using this syntax calls matrix. new (matrix, data,

dtype, copy) which is what happens whenever you “call” any class object as

a function.

mat

Just another name for matrix.

asmatrix (data, dtype=None)

Returns the data without copying. Equivalent to matrix(data, dtype,

copy=False).

bmat (obj, ldict=None, gdict=None)
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Build a matrix object from a string, nested sequence or an array. This command

lets you build up matrices from other other objects. The ldict and gdict

parameters are local and module (global) dictionaries that are only used when

obj is a string. If they are not provided, then the local and module dictionaries

present when bmat is called are used.

>>> A = mat(’2 2; 2 2’); B=mat(’1 1; 1 1’);

>>> print bmat(’A B; B A’)

[[2 2 1 1]

[2 2 1 1]

[1 1 2 2]

[1 1 2 2]]

8.3 Memory-mapped-file arrays

Memory-mapped files are useful for reading and/or modifying small segments of a

large file with regular layout, without reading the entire file into memory. A simple

subclass of the ndarray uses a memory-mapped file for the data buffer of the array.

For small files, the over-head of reading the entire file into memory is typically

not significant, however for large files using memory mapping can save considerable

resources.

NOTE

Memory-mapped arrays use the the Python memory-map object

which (prior to Python 2.5) does not allow files to be larger than a

certain size depending on the platform. This size is always < 2GB

even on 64-bit systems.

The class is called memmap and is available in the NumPy namespace. The

new method of the class has been re-written to have the following syntax:

new (cls, filename, dtype=uint8, mode=’r+’, offset=0, shape=None, order=0)

filename The file name to be used as the array data buffer

dtype A data-type object used to interpret the file contents (including byte-

order).
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mode The mode to open the file in. Valid modes are ’readonly’ or ’r’, ’copy-

onwrite’ or ’c’, ’readwrite’ or ’r+’, and ’write’ or ’w+’. This mode de-

termines the WRITEABLE flag of the returned array.

offset An offset into the file to start the array data.

shape The desired shape of the array. If this is None, then the returned array

will be 1-d with the number of elements determined by the file size and

data type.

order Either ’C’ or ’Fortran’ to indicate the order that an N-D array should

be interpreted. This only has an effect if the shape is greater than 2-D.

Memory-mapped-file arrays have one additional method (besides those they inherit

from the ndarray): self.sync() which must be called manually by the user to ensure

that any changes to the array actually get written to disk.

Example:

>>> a = memmap(’newfile.dat’, dtype=float, mode=’w+’, sha pe=1000)

>>> a[10] = 10.0

>>> a[30] = 30.0

>>> del a

>>> b = fromfile(’newfile.dat’, dtype=float)

>>> print b[10], b[30]

10.0 30.0

>>> a = memmap(’newfile.dat’, dtype=float)

>>> print a[10], a[30]

10.0 30.0

8.4 Character arrays (numpy.char)

These are enhanced arrays of either string type or unicode type. These arrays

inherit from the ndarray, but specially-define the operations +, *, and % on a

(broadcasting) element-by-element basis. These operations are not available on

the standard ndarray of character type. In addition, the chararray has all of the

standard string (and unicode) methods, executing them on an element-by-element

basis. Perhaps the easiest way to create a chararray is to use self.view(chararray)

where self is an ndarray of string or unicode data-type. However, a chararray can

also be created using the numpy.chararray. new method.
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new (shape, itemsize, unicode=False, buffer=None, offset=0, strides=None,

order=None)

Create a new character array of string or unicode type and itemsize characters.

Create the array using buffer (with offset and strides) if it is not None. If

buffer is None, then construct a new array with strides in Fortran order if

len(shape) >=2 and order is ’Fortran’ (otherwise the strides will be in ’C’

order).

char.array (obj, itemsize=None, copy=True, unicode=False, order=None)

Create a chararray from the nested sequence obj. If obj is an ndarray of data-

type unicode or string, then its data is wrapped by the chararray object and

converted to the desired type (string or unicode).

Another difference with the standard ndarray of string data-type is that the charar-

ray inherits the feature introduced by Numarray that white-space at the end of any

element in the array will be ignored on item retrieval and comparison operations.

8.5 Record Arrays (numpy.rec)

NumPy provides a powerful data-type object that allows any ndarray to hold (ar-

bitrarily nested) record-like items with named-field access to the sub-types. This

is possible without any special record-array sub-class. Consider the example where

each item in the array is a simple record of name, age, and weight. You could specify

a data-type for an array of such records using the following data-type object:
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>>> desc = dtype( {’names’: [’name’, ’age’, ’weight’], ’formats’: [’S30’,

>>> a = array([(’Bill’,31,260.0),(’Fred’, 15, 145.0)],dt ype=desc)

>>> print a[0]

(’Bill’, 31, 260.0)

>>> print a[’name’]

[’Bill’ ’Fred’]

>>> print a[’age’]

[31 15]

>>> print a[’weight’]

[ 260. 145.]

>>> print a[0][’name’], a[0][’age’], a[0][’weight’]

Bill 31 260.0

>>> print len(a[0])

3

This example shows how a general array can be assigned named fields and how

these fields can be accessed. In this case the a[0] object is an array-scalar of type

void. The void array-scalars are unique in that they contain references to (rather

than copies of) the underlying data whenever fields are defined. Therefore, the

record data can be modified in place:

>>> a[0][’name’] = ’George’; print a

[(’George’, 31, 260.0) (’Fred’, 15, 145.0)]

The recarray subclass and its accompanying record item add the ability to access

named fields through attribute lookup. A quick way to get a record array is to use

the view method of the ndarray.

>>> r = a.view(recarray)

>>> print r.name

[’George’ ’Fred’]

The numpy.core.records module (aliased to nump.rec when numpy is imported)

contains additional convenience functions for constructing record arrays. All of

the following constructors have two different mechanisms for specifying the data-

type. Either the dtype= argument can be specified or the argument formats=

can be specified along with an optional set of four additional keyword arguments

(names=, titles=, aligned= and byteorder=). In some cases neither dtype= nor
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formats= is required as the data-type can be inferred from the object passed in as

the first argument.

The five argument method for specifying a data-type constructs a data-type

object internally. The comma-separated formats string is used to specify the fields.

The names (and optional titles) of the fields can be specified by a comma-separated

string of names (or titles). The aligned flag determines whether the fields are packed

(False) or padded (True) according to the platform compiler rules. The byteorder

argument allows specification of the byte-order for all of the fields at once (they

can also be specified individually in the formats string). The default byte-order is

native to the platform.

array (obj, dtype=None, shape=None, offset=0, strides=None, formats=None,

names=None, titles=None, aligned=False, byteorder=None, copy=True)

A general-purpose record array constructor that is a front-end to the other con-

structors If obj is None, then call the recarray constructor. If obj is a string,

then call the fromstring constructor. If obj is a list or a tuple then if the

first object is an ndarray, then call fromarrays, otherwise call fromrecords.

If obj is a recarray, then make a copy of the data in recarray (if copy is True)

and use the new formats, names, and titles. If obj is a file then call fromfile.

Finally, if obj is an ndarray, then return obj.view(recarray) and make a copy

of the data if copy is True. Otherwise, call the array interface attribute

and try to convert using the information returned from that object. Either

dtype or the formats argument must be given if obj is None, a string, or a

file, and if obj is None so the recarray constructor will be called, then shape

must be given as well.

fromarrays (array list, dtype=None, shape=None, formats=None, names=None,

titles=None, aligned=False, byteorder=None)

Create a record array from a (flat) list of ndarrays. The data from the arrays

will be copied into the fields. If formats is None and dtype is None, then the

formats will be determined from the arrays. The names and titles arguments

can be a list, tuple or a (comma-separated) string specifying the names and/or

titles to use for the fields. If aligned is True, then the structure will be padded

according to the rules of the compiler that NumPy was compiled with.
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>>> x1 = array([21,32,14])

>>> x2 = array([’my’,’first’,’name’])

>>> x3 = array([3.1, 4.5, 6.2])

>>> r = rec.fromarrays([x1,x2,x3], names=’id, word, numbe r’)

>>> print r[1]

(32, ’first’, 4.5)

>>> r.number

array([ 3.1, 4.5, 6.2])

>>> r.word

chararray([’my’, ’first’, ’name’],

dtype=’|S5’)

fromrecords (rec list, dtype=None, shape=None, formats=None, names=None,

titles=None, aligned=False, byteorder=None)

Construct a record array from a (nested) sequence of tuples that define the records.

If formats are not given, they are deduced from the records, but this is slower.

The field names and field titles can be specified. If aligned is non-zero, then

the record array is padded so that fields are aligned as the platform compiler

would do if the fields represented a C-struct.

>>> recs = [(’Bill’, 31, 260.0), (’Fred’, 15, 145.0)]

>>> r = rec.fromrecords(recs, formats=’S30,i2,f4’, names =’name, age, weight’)

>>> print r.name

[’Bill’ ’Fred’]

>>> print r.age

[31 15]

>>> print r.weight

[ 260. 145.]

fromstring (datastring, dtype=None, shape=None, offset=0, formats=None,

names=None, titles=None, aligned=0, byteorder=None):

Construct a record array using the provided datastring (at the given offset) as

the memory. The record array will be read-only. The byteorder argument

may be used to specify the byteorder of all of the fields at the same time. A

True aligned argument causes padding fields to be added as needed so that
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the fields are aligned on boundaries determined by the compiler. The shape

of the returned array can also be specified.

fromfile (fd, dtype=None, shape=None, offset=0, formats=None, names=None,

titles=None, aligned=False, byteorder=None)

Construct a record array from the (binary) data in the given file object, fd. This

object may be an open file or a string to indicate a file to read from. If offset

is non-zero, then data is read from the file at offset bytes from the current

position.

The following classes are also available in the numpy.core (and therefore the numpy)

namespace

record A subclass of the void array scalar type that allows field access using at-

tributes.

recarray A subclass of the ndarray that allows field access using attributes

new (subtype, shape, formats, names=None, titles=None, buf=None,

offset=0, strides=None, byteorder=None, aligned=0)

Construct an array of the given subtype and shape with data-type (record,

dtype) where dtype is constructed from formats, names, and titles. If

buf is None, then create new memory. Otherwise, use the memory of buf

exposed through the buffer protocol.

format parser A class useful for creating a data-type descriptor from formats,

names, titles, and aligned arguments. This is used by several of the record

array constructors for consistency in behavior.

init (self, formats, names, titles, aligned=False, byteorder=None)

Construct a data-type object from formats, names, titles, aligned, and by-

teorder arguments. Upon completion the constructed data-type object

is in self. descr.

8.6 Masked Arrays (numpy.ma)

These are adapted from the masked arrays provided with Numeric. Masked Arrays

do not inherit from the ndarray, they simply use two ndarray objects in their internal

representation. Fortunately, as I have not used masked arrays in my work, Paul
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Dubois (the original author of MA for Numeric) adapted and modified the code

for use by NumPy. Alexander Belopolsky (Sasha) added additional functions and

improvements

Masked arrays are created using the masked array creation function.

ma.array (data, dtype=None, copy=True, order=’C’, mask=ma.nomask,

fill value=None)

data Something that can be converted to an array. If data is already a masked

array, then if mask is ma.nomask, the mask used be data.mask and the

data used data.data.

dtype The data-type of the underlying array

copy If copy is False, then every effort will be made to not copy the data.

order Specify whether the array is in ’C’, ’Fortran’, or ’Any’ order

mask Masked values are excluded from calculations. If this is ma.nomask,

then there are no masked values. Otherwise, this should be an object

that is convertible to an array of Booleans with the same shape as data.

fill value This value is used to fill in masked values when necessary. The

fill value is not used for computation for functions within the ma module.

Masked arrays have the same methods and attributes as arrays with the addition

of the mask attribute as well as the “hidden” attributes . data and . mask.

8.7 Standard container class

For backward compatibility and as a standard “container” class, the

UserArray from Numeric has been brought over to NumPy and named

numpy.lib.user array.container The container class is a Python class whose

self.array attribute is an ndarray. Multiple inheritance is probably easier with

numpy.lib.user array.container than with the ndarray itself and so it is included

by default. It is not documented here beyond mentioning its existence because you

are encouraged to use the ndarray class directly if you can.

8.8 Array Iterators

Iterators are a powerful concept for array processing. Essentially, iterators imple-

ment a generalized for-loop. If myiter is an iterator object, then the Python code
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for val in myiter:

...

some code involving val

...

calls val=myiter.next() repeatedly until StopIteration is raised by the iterator.

There are several ways to iterate over an array that may be useful: default it-

eration, flat iteration, and N -dimensional enumeration.

8.8.1 Default iteration

The default iterator of an ndarray object is the default Python iterator of a sequence

type. Thus, when the array object itself is used as an iterator. The default behavior

is equivalent to:

for i in arr.shape[0]:

val = arr[i]

This default iterator selects a sub-array of dimension N − 1 from the array. This

can be a useful construct for defining recursive algorithms. To loop over the entire

array requires N for-loops.

>>> a = arange(24).reshape(3,2,4)+10

>>> for val in a:

... print ’item:’, val

item: [[10 11 12 13]

[14 15 16 17]]

item: [[18 19 20 21]

[22 23 24 25]]

item: [[26 27 28 29]

[30 31 32 33]]

8.8.2 Flat iteration

As mentioned previously, the flat attribute of ndarray objects returns an iterator

that will cycle over the entire array in C-style contiguous order.
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>>> for i, val in enumerate(a.flat):

... if i%5 == 0: print i, val

0 10

5 15

10 20

15 25

20 30

Here, I’ve used the built-in enumerate iterator to return the iterator index as

well as the value.

8.8.3 N-dimensional enumeration

Sometimes it may be useful to get the N-dimensional index while iterating. The

ndenumerate iterator can achieve this.

>>> for i, val in ndenumerate(a):

... if sum(i)%5 == 0: print i, val

(0, 0, 0) 10

(1, 1, 3) 25

(2, 0, 3) 29

(2, 1, 2) 32

8.8.4 Iterator for broadcasting

The general concept of broadcasting is also available from Python using the broad-

cast iterator. This object takes N objects as inputs and returns an iterator that

returns tuples providing each of the input sequence elements in the broadcasted

result.

>>> for val in broadcast([[1,0],[2,3]],[0,1]):

... print val

(1, 0)

(0, 1)

(2, 0)

(3, 1)

The methods and attributes of the broadcast object are:
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nd the number of dimensions in the broadcasted result.

shape the shape of the broadcasted result.

size the total size of the broadcasted result.

index the current (flat) index into the broadcasted array

iters a tuple of (broadcasted) NumPy.flatiter objects, one for each array.

reset ()

Reset the multiter object to the beginning.

next ()

Get the next tuple of objects from the (broadcasted) arrays
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Chapter 9

Universal Functions

Computers make it easier to do a lot of things, but most of the things

they make it easier to do don’t need to be done.

—Andy Rooney

People think computers will keep them from making mistakes.

They’re wrong. With computers you make mistakes faster.

—Adam Osborne

9.1 Description

Universal functions are wrappers that provide a common interface to mathematical

functions that operate on scalars, and can be made to operate on arrays in an

element-by-element fashion. All universal func tions (ufuncs ) wrap some core

function that takes ni (scalar) inputs and produces no (scalar) outputs. Typically,

this core function is implemented in compiled code but a Python function can also

be wrapped into a universal function using the basic method frompyfunc in the

umath module.

frompyfunc (func, nin, nout)

This function returns a new universal function wrapping a Python function

func with nin inputs and nout outputs. The resulting universal function
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works using Object arrays for both input and output. The vectorize class

makes use of frompyfunc internally. You can view the source code using

numpy.source(numpy.vectorize).

9.1.1 Broadcasting

Each universal function takes array inputs and produces array outputs by perform-

ing the core function element-wise on the inputs. The standard broadcasting rules

are applied so that inputs without exactly the same shapes can still be usefully

operated on. Broadcasting can be understood by four rules:

1. All input arrays with ndim smaller than the input array of largest ndim have

1’s pre-pended to their shapes.

2. The size in each dimension of the output shape is the maximum of all the

input shapes in that dimension.

3. An input can be used in the calculation if it’s shape in a particular dimension

either matches the output shape or has value exactly 1.

4. If an input has a dimension size of 1 in its shape, the first data entry in that

dimension will be used for all calculations along that dimension. In other

words, the stepping machinery of the ufunc will simply not step along that

dimension when otherwise needed (the stride will be 0 for that dimension).

While perhaps a bit difficult to explain, broadcasting can be quite useful and be-

comes second nature rather quickly. Broadcasting is used throughout NumPy to

decide how to handle non equally-shaped arrays.

9.1.2 Output type determination

The output of the ufunc (and its methods) does not have to be an ndarray. All

output arrays will be passed to the array wrap method of any input (besides

ndarrays, and scalars) that defines it and has the highest array priority of any

other input to the universal function. The default array priority of the ndar-

ray is 0.0, and the default array priority of a subtype is 1.0. Matrices have

array priority equal to 10.0.

The ufuncs can also all take output arguments. The output will be cast if

necessary to the provided output array. If a class with an array method is used

for the output, results will be written to the object returned by array . Then, if
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the class also has an array wrap method, the returned ndarray result will be

passed to that method just before passing control back to the caller.

9.1.3 Use of internal buffers

Internally, buffers are used for misaligned data, swapped data, and data that has to

be converted from one data type to another. The size of the internal buffers is set-

table on a per-thread basis. There can be up to 2 (ni + no) buffers of the specified

size created to handle the data from all the inputs and outputs of a ufunc. The de-

fault size of the buffer is 10,000 elements. Whenever buffer-based calculation would

be needed, but all input arrays are smaller than the buffer size, those misbehaved

or incorrect typed arrays will be copied before the calculation proceeds. Adjusting

the size of the buffer may therefore alter the speed at which ufunc calculations of

various sorts are completed. A simple interface for setting this variable is accessible

using the function

setbufsize (size)

Set the buffer size to the given number of elements in the current thread. Return

the old buffer size (so that it can be reset later if desired).

9.1.4 Error handling

Universal functions can trip special floating point status registers in your hardware

(such as divide-by-zero). If available on your platform, these registers will be reg-

ularly checked during calculation. The user can determine what should be done if

errors are encountered. Error handling is controlled on a per-thread basis. Four

errors can be individually configured: divide-by-zero, overflow, underflow, and in-

valid. The errors can each be set to ignore, warn, raise, or call. The easiest way to

configure the error mask is using the function

seterr (all=None, divide=None, over=None, under=None, invalid=None)

This will set the current thread so that errors can be handled if desired. If

one of the errors is set to ’call’, then a function must be provided using the

seterrcall() routine. If any of the arguments are None, then that error mask

will be unchanged. The return value of this function is a dictionary with the

old error conditions. Thus, you can restore the old condition after you are

finished with your function by calling seterr(**old). If all is set, then all errors

will be set to the specified value.
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seterrcall (callable)

This sets the function to call when an error is triggered for an error condition

configured with the “call” handler. This function should take two arguments:

a string showing the type of error that triggered the call, and an integer

showing the state of the floating point status registers. Any return value of

the call function will be ignored, but errors can be raised by the function.

Only one error function handler can be specified for all the errors. The status

argument shows which errors were raised. The return value of this routine is

the old callable. The argument passed in to this function must be any callable

object with the right signature or None.

NOTE

FPE DIVIDEBYZERO, FPE OVERFLOW,

FPE UNDERFLOW, and FPE INVALID, are all defined con-

stants in NumPy. The status flag returned for a ’call’ error

handling type shows which errors were raised by adding these

constants together.

9.1.5 Optional keyword arguments

All ufuncs take optional keyword arguments. These represent rather advanced usage

and will likely not be used by most users.

sig= either a data-type, a tuple of data-types, or a special signature string indi-

cating the input and output types of a ufunc. This argument allows you to

specify a specific signature for a the 1-d loop to use in the underlying calcu-

lation. If the loop specified does not exist for the ufunc, then a TypeError

is raised. Normally a suitable loop is found automatically by comparing the

input types with what is available and searching for a loop with data-types

to which all inputs can be cast safely. This key-word argument lets you by-

pass that search and choose a loop you want. A list of available signatures is

available in the types attribute of the ufunc object.

extobj= a list of length 1, 2, or 3 specifying the ufunc buffer-size, the error mode

integer, and the error call-back function. Normally, these values are looked-

up in a thread-specific dictionary. Passing them here bypasses that look-up

and uses the low-level specification provided for the error-mode. This may
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be useful as an optimization for calculations requiring lots of ufuncs on small

arrays in a loop.

9.2 Attributes

There are some informational attributes that universal functions possess. None of

the attributes can be set.

doc

A docstring for each ufunc. The first part of the docstring is dynamically gener-

ated from the number of outputs, the name, and the number of inputs. The

second part of the doc string is provided at creation time and stored with the

ufunc.

name

The name of this ufunc.

nin

The number of inputs

nout

The number of outputs

nargs

The total number of inputs + outputs

ntypes

The total number of different types for which this ufunc is defined.

types

A list of length ntypes containing strings showing the types for which this ufunc

is defined. Other types may still be used as inputs (and as output arrays),

they will just need casting. For inputs, standard casting rules will be used

to determine which of the supplied internal functions that will be used (and

therefore the default type of the output). Results will always be force-cast to

any array provided to hold the output.
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Table 9.1: Universal function (ufunc) attributes.

Name Description

doc Dynamic docstring.
name Name of ufunc
nin Number of input arguments
nout Number of output arguments
nargs Total number of arguments
ntypes Number of defined inner loops.
types List showing types for which inner loop is defined.

identity Identity for this ufunc.

identity

A 1, 0, or None to show the identity for this universal function. This identity is

used for reduction on zero-sized arrays (arrays with a shape that includes a

0).

9.3 Casting Rules

At the core of every ufunc is a one-dimensional strided loop that implements the

actual function for a specific type combination. When a ufunc is created, it is given

a static list of inner loops and a corresponding list of type signatures over which the

ufunc operates. The ufunc machinery uses this list to determine which inner loop

to use for a particular case. You can inspect the .types attribute for a particular

ufunc to see which type combinations have a defined inner loop and which output

type they produce (the character codes are used in that output for brevity).

Casting must be done on one or more of the inputs whenever the ufunc does not

have a core loop implementation for the input types provided. If an implementation

for the input types cannot be found, then the algorithm searches for an implemen-

tation with a type signature to which all of the inputs can be cast “safely.” The

first one it finds in its internal list of loops is selected and performed with types

cast. Recall that internal copies during ufuncs (even for casting) are limited to the

size of an internal buffer which is user settable.
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NOTE

Universal functions in NumPy are flexible enough to have mixed

type signatures. Thus, for example, a universal function could be

defined that works with floating point and integer values. See ldexp

for an example.

By the above description, the casting rules are essentially implemented by the

question of when a data type can be cast “safely” to another data type. The

answer to this question can be determined in Python with a function call: can cast

(fromtype, totype). Figure shows the results of this call for my 32-bit system on

the 21 internally supported types. You can generate this table for your system with

code shown in that Figure.

You should note that, while included in the table for completeness, the ’S’, ’U’,

and ’V’ types cannot be operated on by ufuncs. Also, note that on a 64-bit system

the integer types may have different sizes resulting in a slightly altered table.

Mixed scalar-array operations use a different set of casting rules that ensure that

a scalar cannot upcast an array unless the scalar is of a fundamentally different kind

of data (i.e. under a different hierachy in the data type hierarchy) then the array.

This rule enables you to use scalar constants in your code (which as Python types

are interpreted accordingly in ufuncs) without worrying about whether the precision

of the scalar constant will cause upcasting on your large (small precision) array.

9.4 Methods

All ufuncs have 4 methods. However, these methods only make sense on ufuncs that

take two input arguments and return one output argument. Attempting to call these

methods on other ufuncs will cause a ValueError . The reduce-like methods all

take an axis keyword and a dtype keyword, and the arrays must all have dimension

>= 1. The axis keyword specifies which axis of the array the reduction will take

place over and may be negative, but must be an integer. The dtype keyword allows

you to manage a very common problem that arises when naively using <op>.reduce.

Sometimes you may have an array of a certain data type and wish to add up all

of its elements, but the result does not fit into the data type of the array. This

commonly happens if you have an array of single-byte integers. The dtype keyword

allows you to alter the data type that the reduction takes place over (and therefore

the type of the output). Thus, you can ensure that the output is a data type with
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>>> def print table(ntypes):
... print ’X’,
... for char in ntypes: print char,
... print
... for row in ntypes:
... print row,
... for col in ntypes:
... print int(can cast(row, col)),
... print
>>> print table(typecodes[’All’])
X ? b h i l q p B H I L Q P f d g F D G S U V O
? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
h 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
i 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
l 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
q 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
p 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
B 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1
L 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1
Q 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1
P 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1
f 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Figure 9.1: Code segment showing the can cast safely table for a 32-bit system.
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large-enough precision to handle your output. The responsibility of altering the

reduce type is mostly up to you. There is one exception: if no dtype is given for a

reduction on the “add” or “multiply” operations, then if the input type is an integer

(or boolean) data-type and smaller than the size of the int data type, it will be

internally upcast to the int (or uint) data type.

WARNING

A reduce-like operation on an array with a data type that has range

“too small” to handle the result will silently wrap. You should use

dtype to increase the data type over which reduction takes place.

9.4.1 Reduce

<op>.reduce (array=, axis=0, dtype=None)

For each one-dimensional sequence along the axis dimension of the array, return

a single number resulting from recursively applying the operation to succesive

elements along that dimension. If the input array has N dimensions, then

the returned array has N −1 dimensions. This produces the equivalent of the

following Python code :

>>> indx = [index exp[:]] * array.ndim

>>> indx[axis] = 0; N=array.shape[axis]

>>> result = array[indx].astype(dtype)

>>> for i in range(1,N):

... indx[axis] = i

... <op>(result, array[indx], result)

Studying the above code can also help you gain an appreciation for how to do

generic indexing in Python using index exp . For example, if <op> is add,

then <op>.reduce produces a summation along the given axis. If <op> is

prod, then a repeated multiply is performed.

9.4.2 Accumulate

<op>.accumulate (array=, axis=0, dtype=None)

This method is similar to reduce, except it returns an array of the same shape

as the input, and keeps intermediate calculations. The operation is still per-

formed along the access. This method underlies the operations of the cumsum
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and cumprod methods of arrays. The following Python code implements an

equivalent of the accumulate method.

>>> i1 = [index exp[:]] * array.ndim

>>> i2 = [index exp[:]] * array.ndim

>>> i1[axis] = 0; N=array.shape[axis]

>>> result = array.astype(dtype)

>>> for i in range(1,N):

... i1[axis] = i

... i2[axis] = i-1

... <op>(result[i1], array[i1], result[i2])

9.4.3 Reduceat

<op>.reduceat (array=, indices=, axis=0, dtype=None)

This method is a generalization of both reduce and accumulate. It offers the

ability to reduce along an axis but only between certain indices. The indices

input must be a one dimensional (index) sequence. Then, if Ik is the kth ele-

ment of indices, the reduceat method computes <op>.reduce(array[Ik:Ik+1]).

This formula assumes Ik+1 > Ik, and also that Ik+1 is the length of the

input array when Ik is the last element. There is no requirement that the

indices be monotonic. If Ik+1 ≤ Ik, then reduceat simply returns array[Ik]

for that particular element of indices. In these formulas, we have assumed

that array is one dimensional (or axis is 0). If the array is N -dimensional and

axis>0, then the index expression needs axis ’:’ (full slice objects) inserted

(i.e. array[:, . . . , :
︸ ︷︷ ︸

axis

, Ik : Ik+1]). The effect is to slice along the axis dimension.

Equivalent Python code is

>>> i1 = [index exp[:]] * array.ndim

>>> i2 = [index exp[:]] * array.ndim

>>> outshape = list(array.shape)

>>> N = array.shape[axis]

>>> outshape[axis] = len(indices)

>>> result = zeros(outshape, dtype or array.dtype)

>>> for k,Ik in enumerate(indices):

... i1[axis] = k

... try:
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... Ikp1 = indices[k+1]

... except IndexError:

... Ikp1 = N

... if (Ikp1 > Ik):

... i2[axis] = index exp[Ik:Ikp1]

... result[i1] = <op>.reduce(array[i2],axis=axis,dtype =dtype)

... else:

... result[i1] = array[Ik].astype(dtype)

The returned array has as many dimensions as the input array, and is the same

shape except for the axis dimension which has shape equal to the length of

indices (the number of reduce operations that were performed). If you ever

have a need to compute multiple reductions over portions of an array, then (if

you can get your mind around what it is doing) reduceat may be just what

you were looking for.

Example: Suppose a is a two-dimensional array of shape 10 × 20. Then,

res=add.reduce (a, [0,3,1]) returns a 3 × 20 array with res[0,:] =

add.reduce(a[:,0:3]), res[1,:] = a[:,3], and res[2,:] = add.reduce(a[:,1:]).

9.4.4 Outer

<op>.outer (a, b)

This method computes an outer operation on <op>. It computes <op>(a2, b2)

where a2 is ’a’ with b.ndim 1’s post-pended to it’s shape and b2 is ’b’ with

a.ndim 1’s pre-pended to its shape (broadcasting takes care of this automati-

cally in the code below). The return shape has a.ndim + b.ndim dimensions.

Equivalent Python code is

>>> a.shape += (1,) * b.ndim

>>> <op>(a,b)

>>> a = a.squeeze()

Among many other uses, arithmetic tables can be conveniently built using outer:

>>> multiply.outer([1,7,9,12],arange(5,12))

array([[ 5, 6, 7, 8, 9, 10, 11],

[ 35, 42, 49, 56, 63, 70, 77],

[ 45, 54, 63, 72, 81, 90, 99],

[ 60, 72, 84, 96, 108, 120, 132]])
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9.5 Available ufuncs

There are currently more than 60 universal functions defined on one or more types,

covering a wide variety of operations. Some of these ufuncs are called automatically

on arrays when the relevant infix notation is used (i.e. add(a,b) is called internally

when a + b is written and a or b is an ndarray). Nonetheless, you may still want

to use the ufunc call in order to use the optional output argument(s) to place the

output(s) in an object (or in objects) of your choice.

Recall that each ufunc operates element-by-element. Therefore, each ufunc will

be described as if acting on a set of scalar inputs to return a set of scalar outputs.

NOTE

The ufunc still returns its output(s) even if you use the optional

output argument(s).

9.5.1 Math operations

add (x1, x2 [, y])

y = x1 + x2. Called to implement x1+x2 for arrays

subtract (x1, x2 [, y])

y = x1 − x2. Called to implement x1-x2 for arrays

multiply (x1, x2 [, y])

y = x1 · x2. Called to implement x1 * x2 for arrays.

divide (x1, x2 [, y])

y = x1/x2 Integer division results in truncation. Floating-point does not. Called

to implement x1/x2 for arrays (when future .division is not active).

true divide (x1, x2 [, y])

This version of division always returns an inexact number so that integer division

returns floating point. Called with future .division is active to implement

x1/x2 for arrays.

floor divide (x1, x2 [, y])
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This version of division always results in truncation of an fractional part remain-

ing. Called to implement x1//x2 for arrays.

negative (x [, y])

y = −x. Called to implement -x for arrays.

power (x1, x2 [, y])

y = xx2
1 . There is no three-term power ufunc defined. This two-term power

function is called to implement pow(x1,x2,<any>) or x1 ** x2 for arrays.

Note that the third term in pow is ignored for array arguments.

remainder (x1, x2 [, y])

Returns x − y*floor(x/y). Result has the sign of y. Called to implement x1%x2.

mod (x1, x2 [, y])

Same as remainder (x1, x2 [, y]).

fmod (x1, x2 [, y])

x1 = kx2 + y where k is the largest integer satisfying this equation. Computes

C-like x1%x2 element-wise. This was the behavior of x1%x2 in old Numeric.

absolute (x [, y])

y = |x| . Called to implement abs(x) for arrays.

rint (x, [, y])

Round x to the nearest integer. Rounds half-way cases to the nearest even integer.

sign (x [, y])

Sets y according to

sign (x) =







1 x :> 0,

0 x = 0,

−1 x < 0.

conj (x [, y])

conjugate (x [, y])

y = x; in other words, the complex conjugate of x.
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exp (x [, y])

y = ex.

log (x [, y])

y = log (x). In other words, y is the number so that ey = x.

expm1 (x, [, y])

y = ex − 1. Calculated so that it is accurate for small |x| .

log1p (x, [, y])

y = log (1 + x) but accurate for small |x| . Returns the number y such that ey−1 =

x

log10 (x [, y])

y = log 10 (x). In other words, y is the number so that 10y = x.

sqrt (x [, y])

y =
√

x.

square (x [,y])

y = x ∗ x

reciprocal (x [, y])

y = 1/x

ones like (x, [, y])

y = 1 If an output argument is not given the returned data-type is the same as

the input data type.

i TIP

The optional output arguments can be used to help you save mem-

ory for large calculations. If your arrays are large, complicated

expressions can take longer than absolutely necessary due to the

creation and (later) destruction of temporary calculation spaces.

For example, the expression ’G=a*b+c’ is equivalent to t1=A*B;

G=T1+C; del t1; It will be more quickly executed as G=A*B;

add(G,C,G) which is the same as G=A*B; G+=C.
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9.5.2 Trigonometric functions

All trigonometric functions use radians when an angle is called for. The ratio of

degrees to radians is 180◦/π.

sin (x [, y])

cos (x [, y])

tan (x [, y])

The standard trignometric functions. y = sin (x) , y = cos (x) , and y = tan (x) .

arcsin (x [, y])

arccos (x [, y])

arctan (x [, y])

The inverse trigonometric functions: y = sin−1 (x) , y = cos−1 (x), y = tan−1 (x) .

These return the value of y (in radians) such that sin (y) = x with y ∈
[
−π

2 , π
2

]
;

cos (y) = x with y ∈ [0, π]; and tan (y) = x with y ∈
[
−π

2 , π
2

]
, respectively.

arctan2 (x1, x2 [, y])

Returns tan−1
(

x1

x2

)

but takes into account the sign on x1 and x2 to place the

angle in the correct quadrant. The angle y is returned in the full range −π <

y ≤ π. The angle is chosen so that sin (y) = x1√
x2
1+x2

2

, and cos (y) = x2√
x2
1+x2

2

.

Particular values are showin in the following table:

x1 x2 y = arctan2 (x1, x2)

0 1 0

1 0 π
2

0 -1 π

-1 0 −π
2

hypot (x1, x2 [, y])

Returns y =
√

x2
1 + x2

2. Given a complex number in cartesian form, arctan2 and

hypot can be used to compute phase and magnitude, quickly.

sinh (x [, y])

Computes y = sinh (x) which is defined as 1
2 (ex − e−x) .
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cosh (x [, y])

Computes y = cosh (x) which is defined as 1
2 (ex + e−x) .

tanh (x [, y])

Computes y = tanh (x) which is defined as (ex − e−x) / (ex + e−x) .

arcsinh (x [, y])

arccosh (x [, y])

arctanh (x [, y])

These compute the inverse hyperpolic functions. y = arcfunc (x) is the (principal)

value of y such that func (y) = x.

9.5.3 Bit-twiddling functions

These function all need integer arguments and they maniuplate the bit-pattern of

those arguments.

bitwise and (x1, x2 [, y])

Each bit in y is the result of a bit-wise ’and’ operation on the corresponding bits

in x1 and x2. Called to implement x1&x2 for arrays.

bitwise or (x1, x2 [, y])

Each bit in y is the result of a bit-wise ’or’ operation on the corresponding bits

in x1 and x2. Called to implement x1|x2 for arrays.

bitwise xor (x1, x2 [, y])

Each bit in y is the result of a bit-wise ’xor’ operation on the corresponding bits

in x1 and x2. An xor operation sets the output to 1 if one and only one of the

input bits is 1. Called to implement x1ˆx2 for arrays. Using the bitwise xor

operation and the optional output argument you can swap the values of two

integer arrays of equivalent types without using temporary arrays.
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>>> a=arange(10)

>>> b=arange(10,20)

>>> bitwise xor(a,b,a); bitwise xor(a,b,b);

>>> bitwise xor(a,b,a)

array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])

>>> print a; print b

[10 11 12 13 14 15 16 17 18 19]

[0 1 2 3 4 5 6 7 8 9]

invert (x, [, y])

Each bit in y is the opposite of the corresponding bit in x. Called to implement

˜x for arrays.

left shift (x1, x2 [, y])

Shifts the bits of x1 to the left by x2. Called to implement x1<<x2 for arrays.

Provided there is no overflow, the result is equal to y = x12
x2 .

right shift (x1, x2 [, y])

Shifts the bits of x1 to the right by x2. Called to implement x1>>x2 for arrays.

Absent overflow, the result is equal to y = x12
−x2 .

9.5.4 Comparison functions

All of these functions (except maximum, minimum, and sign) return Boolean arrays.

greater (x1, x2 [, y])

greater equal (x1, x2 [, y])

less (x1, x2 [, y])

less equal (x1, x2 [, y])

not equal (x1, x2 [, y])

equal (x1, x2 [, y])

These functions are called to implement x1>x2 , x1>=x2 , x1<x2 , x1<=x2 ,

x1!=x2 (or x1<>x2 ), and x1==x2 , respectively, for arrays.
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The fact that these functions return Boolean arrays make them very useful in

combination with advanced array indexing. Thus, for example, arr[arr>10] =

10 clips large values to 10. Used in conjunction with bitwise operators quite

complicated expressions are possible. For example, arr[˜((arr<10)&(arr>5))]

= 0 clips all values outside of the range (5, 10) to 0.

WARNING

Do not use the Python keywords and and or to combine logical

array expressions. These keywords will test the truth value of the

entire array (not element-by-element as you might expect). Use

the bitwise operators: & and | instead.

logical and (x1, x2 [, y])

The output is the truth value of x1 and x2. Numbers equal to 0 are considered

False. Nonzero numbers are True.

logical or (x1, x2 [, y])

The output, y, is the truth value of x1 or x2 .

logical xor (x1, x2 [, y])

The output, y, is the truth value of x1 xor x2, which is the same as (x1 and not

x2) or (not x1 and x2).

logical not (x [, y])

The output, y is the truth value of not x.

WARNING

The Bitwise operators (& and |) are the proper way to combine

element-by-element array comparisons. Be sure to understand the

operator precedence: (a>2) & (a<5) is the proper syntax because

a>2 & a<5 will result in an error due to the fact that 2 & a is

evaluated first.

maximum (x1, x2 [, y])

The output, y, is the larger of x1 and x2.
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>>> maximum([1,0,5,10],[3,2,4,5])

array([ 3, 2, 5, 10])

>>> max([1,0,5,10],[3,2,4,5])

[3, 2, 4, 5]

i TIP

The Python function max() will find the maximum over a one-

dimensional array, but it will do so using a slower sequence inter-

face. The reduce method of the maximum ufunc is much faster.

Also, the max() method will not give answers you might expect

for arrays with greater than one dimension. The reduce method

of minimum also allows you to compute a total minimum over an

array.

minimum (x1, x2 [, y])

The output, y, is the smaller of x1 and x2.

>>> minimum([1,0,5,10],[3,2,4,5])

array([1, 0, 4, 5])

>>> min([1,0,5,10],[3,2,4,5])

[1, 0, 5, 10]

WARNING

the behavior of maximum(a,b) is than that of max(a,b). As a

ufunc, maximum(a,b) performs an element-by-element comparison

of a and b and chooses each element of the result according to

which element in the two arrays is larger. In contrast, max(a,b)

treats the objects a and b as a whole, looks at the (total) truth

value of a>b and uses it to return either a or b (as a whole). A

similar difference exists between minimum(a,b) and min(a,b).

9.5.5 Floating functions

Recall that all of these functions work element-by-element over an array, returning

an array output. The description details only a single operation.
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isreal (x)

True if x has an imaginary part that is 0.

iscomplex (x)

True if x has an imaginary part that is non-zero.

isfinite (x)

True if x is a finite floating point number (not a NaN or an Inf).

isinf (x)

True if x is ±∞.

isnan (x)

True if x is Not-a-Number. This represents invalid results. When a NaN is cre-

ated, the invalid flag is set. If you set the error mode of invalid to ’warn’,

’raise’, or ’call’, then the appropriate action will be performed on NaN cre-

ation.

signbit (x)

True where the sign bit of the floating point number is set. This should correspond

to x > 0 when x is a finite number. When, x is NaN or infinite, then this

tests the actual signbit.

modf (x [, y1, y2])

Breaks up the floating point value x into its fractional, y1, and integral, y2, parts.

Thus, x = y1 + y2 with floor(y2)==y2 .

ldexp (x, n [, y])

Fast multiply of a floating point number by an integral power of 2: y = 2nx.

frexp (x [, y, n])

Breaks up the floating point value x into a normalized fraction, y and an exponent,

n which corresponds to how the value is represented in the computer. The

results are such that x = y2n. Effectively, the inverse of ldexp.

fmod (x1, x2 [, y])
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Computes the remainder of dividing x1 by x2. The result, y, is x1 −nx2 where n

is the quotient (rounded towards zero to an integer) of x1/x2.

floor (x [,y ])

Return y = ⌊x⌋ where y is the nearest integer smaller-than or equal to x. Thus,

⌊x⌋ ≤ x < ⌊x⌋ + 1.

ceil (x [,y ])

Return y = ⌈x⌉ where y is the nearest integer greater-than or equal to x. Thus,

x ≤ ⌈x⌉ < x + 1.
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Chapter 10

Basic Modules

The NumPy distribution contains some basic functionality equivalent to what was

available in the Numeric packages previously. This section documents the new

interfaces. These are sub-packages of the NumPy namespace. The linalg and fft

capabilities are useful but limited. You should install the full SciPy package to

access more functionality. The numpy.dual module contains functions that are

defined in both SciPy and NumPy. If SciPy defines func, then numpy.dual.func

will point to the SciPy version, otherwise it will point to the NumPy version. It

must be imported specifically to be used. Table 10.1 shows the functions defined in

numpy.dual that are in both NumPy and SciPy.

10.1 Linear Algebra (linalg)

These functions are in the numpy.linalg sub-package.

inv (A)

Table 10.1: Functions in numpy.dual (both in NumPy and SciPy)

Family Functions

Fourier Transforms fft, ifft, fft2, ifft2, fftn, ifftn

Linear Algebra
norm, det, inv, pinv, solve, eig, eigh, eigvals,

eigvalsh, lstsq, cholesky, svd

Special Functions i0
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Return the (matrix) inverse of the 2-d array A. The result, X, is such that

dot(A,X) is equal to eye(*A.shape) (to within machine precision).

solve (A,b)

Find the solution to the linear equation Ax = b, where A is a 2-d array and b is

a 1-d or 2-d array.

tensorsolve (A, b, axes=None)

Find the solution, xkl, to the multi-index linear equation

∑

kl

Aijklxkl = bij .

The axes argument specifies which dimensions of A are summed over. If it

is None, then the last A.ndim - b.ndim dimensions are summed over. The

result, therefore, has dimension x.ndim = A.ndim-b.ndim.

tensorinv (A, ind=2)

Find the tensor inverse of A, defined to be the tensor such that tensordot (Ainv,

A) is an identity operator.

cholesky (A)

Return, L, the Cholesky decomposition of A. Cholesky decomposition is applica-

ble to a Hermitian, positive definite matrices. When A = AH and xHAx ≥ 0

for all x, then decompositions of A can be found so that A = LLH , where L

is lower-triangular.

eigvals (A)

Return all solutions (λ) to the equation Ax = λx.

eig (A)

Return all solutions (λ,x) to the equation Ax = λx. The first element of the

return tuple contains all the eigenvalues. The second element of the return

tuple contains the eigenvectors in the columns (x[:,i] is the ith eigenvector).

eigvalsh (U)

eigh (U)
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These functions are identical to eigvals and eig except they only work with Her-

mitian matrices where UH = U (only the lower-triangular part of the array

is used).

svd (A)

Compute the singular value decomposition of the 2-d array A. Every m×n matrix

can be decomposed into a pair of unitary matrices, U = UH (m × m) and

V = VH (n×n) and an m×n “diagonal” matrix Σ, such that A = UΣVH .

The only non-zero portion of Σ is the upper r×r block where r = min (m, n).

The svd function returns three arrays as a tuple: (U, σ, VH). The singular

values are returned in the 1-d array σ. If needed, the array Σ can be found

(if really needed) using the command diag(σ) which creates the r×r diagonal

block and then inserting this into a zeros matrix:

>>> A = random.rand(3,5)

>>> from numpy.dual import svd; U,s,Vh = svd(A)

>>> r=min( * A.shape); Sig = zeros like(A);

>>> Sig[:r,:r] = diag(s); print Sig

[[ 2.1634 0. 0. 0. 0. ]

[ 0. 0.7076 0. 0. 0. ]

[ 0. 0. 0.2098 0. 0. ]]

pinv (A, rcond=10−10)

Return the generalized, pseudo inverse, of A. For invertible matrices, this is the

same as the inverse.

det (A)

Return the determinant of the array. The determinant of an array is the product

of its singular values.

lstsq (A, b, rcond=10−10)

Return (x, resids, rank, s) where x minimizes resids=‖Ax − b‖2. The output

rank is the rank of A and s is the singular values of a in descending order.

Singular values less than s[0]*rcond are treated as 0. If the rank of A is less

than the number of columns of A or greater than the number of rows, resids

will be returned as an empty array.
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10.2 Discrete Fourier Transforms (fft)

All of the algorithms here are most efficient if the length of the data is a power of

2 (or decomposable into low prime factors).

fft (x, n=None, axis=-1)

Return, X, the N-point Discrete Fourier Transform (DFT) of x along the given

axis using a fast algorithm. If N is larger than x.shape[axis], then x will be

zero-padded. If N is smaller than x.shape[axis], then the first N items will be

used. The result is computed for k = 0 . . . n − 1 from the formula:

X [k] =
n−1∑

m=0

x[m] exp

(

−j
2πkm

n

)

.

i TIP

The fft returns values for k = 0 . . .N − 1. Because X [N − k] =

X [−k] in the FFT formula, larger values of k correspond also to

negative frequencies.

ifft (X, n=None, axis=-1)

Return the inverse of the fft so that (ifft(fft(a)) == a within numerical precision.

The order of frequencies must be the same as returned by fft. The result is

computed (using a fast algorithm) for m = 0 . . . n − 1 from the formula:

x [m] =
n−1∑

k=0

X [k] exp

(

j
2πkm

n

)

.

Sometimes having the “negative” frequencies at the end of the output returned

by fft can be a little confusing. There are two ways to deal with this confusion. In

my opinion, the most useful way is to get a collection of DFT sample frequencies and

use them to keep track of where each frequency is. The function fftfreq provides

these sample frequencies. Making an x-y plot, where the sample frequencies are

along the “x”-axis and the result of the DFT is along the “y”-axis provides a useful

visualization with the zero-frequency at the center of the plot. The advantage of

this approach is that your data is still in proper order for using the ifft function.

Some people, however, prefer to simply swap one-half of the output with the other.

This is exactly what the function fftshift does. Of course, now the data is not

in the proper order for the ifft function, but to each his own.
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The reason that the “negative” frequencies are in the upper part of the return

signal was given in the description of the DFT. The reason is that the output of

the DFT is just one period of a periodic function (with period n). The traditional

output of the FFT algorithm is to provide the portion of the function from from

k = 0 to k = n − 1.

fftshift (x, axes=None)

Shift zero-frequency component to the center of the spectrum. This function

swaps half-spaces for all axes listed (defaults to all of them).

ifftshift (x, axes=None)

Reverse the effect of the fftshift operation. Thus, it takes zero-centered data and

shifts it into the correct order for the ifft operation.

fftfreq (n, d=1.0)

Provide the DFT sample frequencies. The returned float array contains the fre-

quency bins in the order returned from the fft function. If given, d represents

the sample-spacing. The units on the frequency bins are cycles / unit. For

example, the following example computes the output frequencies (in Hz) of

the fft of 256 samples of a voice signal sampled at 20000Hz.

>>> from numpy.fft import fftfreq; f=fftfreq(256,d=1./20 e3)

>>> print f[0], f[1], f[2], f[128]

0.0 78.125 156.25 -10000.0

fft2 (x, s=None, axes=(-2,-1))

Return the two-dimensional fft of the array x for each 2-d array formed by axes.

The 2-d fft is computed as

X [k0, k1] =

s[0]−1
∑

m0=0

s[1]−1
∑

m1=0

x [m0, m1] exp

(

−j
2πk0m0

s[0]

)

exp

[

−j
2πk1m1

s [1]

]

and can be realized by repeated application of the 1-d fft (first over the axes[0]

and then over axes[1]). In other-words fft2(x,s,axes) is equivalent to fft(fft(x,

s[0], axes[0]), s[1], axes[1]). The 2-d fft is returned for k0 = 0 . . . s[0] − 1 and

k1 = 0 . . . s[1] − 1. Symmetry (X [s[0] − k0, s[1] − k1] = X [−k0,−k1]) ensures

that higher values of ki correspond to negative frequencies.
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ifft2 (X, s=None, axes=(-2,-1))

Return the inverse of the two-dimension fft. Thus, ifft2(fft2(x)) == x to within

numerical precision. Note that the “negative frequencies” must be

fftn (x, s=None, axes=None)

Return the N -dimensional fft of x. If s is not given, then if axes is given, then

N=len(axes), otherwise N=x.ndim. If s is given, then N=len(s). Results

are computed using a similar formula as for the 1- and 2-d FFT with N

summations.

ifftn (X, s=None, axes=None)

Return the N -dimensional inverse fft of X . Note that ifftn(fftn(x)) == x to within

machine precision.

The Discrete Fourier transform returns complex-valued data (even for real-valued

input). If the data was originally real-valued, then much of the output of the full

DFT is redundant. Notice that if x [m] is real, then

X [n − k] =
n−1∑

m=0

x[m] exp

(

−j
2π (n − k)m

n

)

=

[
n−1∑

m=0

x [m] exp

(

−j
2πkm

n

)]∗

= X∗ [k] ,

where a∗ denotes the complex-conjugate of a. So, the upper half of the fft output

(the negative frequencies) is determined exactly by the lower half of the output when

the input is purely real. This kind of symmetry is called Hermitian symmetry.

The real-valued Fourier transforms described next take advantage of Hermitian

symmetry to compute only the unique outputs more quickly.

The symmetry in higher dimensions is always about the origin. If N is the

number of dimensions, then:

X [n1 − k1, n2 − k2, . . . nN − kN ] = X∗ [k1, k2, . . . , kN ] .

Thus, the data-savings remains constant at about 1/2 for higher dimensions as well.

rfft (x, n=None, axis=-1)
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Compute the first n//2+1 points of the n-point discrete Fourier transform of

the real valued data along the given axis. The returned array will be just

the first half of the fft , corresponding to positive frequencies: rfft(x) ==

fft(x)[:n//2+1]

irfft (X, n=None, axis=-1)

Compute the inverse n-point discrete Fourier transform along the given axis using

the first n//2+1 points. To within numerical precision, irfft(rfft(x))==x.

rfft2 (x, s=None, axes=(-2, -1))

Compute only the first half-plane of the two-dimensional discrete Fourier trans-

form corresponding to unique values. s[0] and s[1]-point DFTs will be com-

puted along axes[0] and axes[1] dimensions, respectively. Requires a real array.

If s is None it defaults to the shape of x. The real fft will be computed along

the last axis specified in axes while a full fft will be computed in the other

dimension.

irfft2 (X, s=None, axes=(-2, -1))

Compute the inverse of the 2-d DFT using only the first quadrant. Returns a real

array such that to within numerical precision irfft2(rfft2(x))==x.

rfftn (x, s=None, axes=None)

Compute only the unique part of the N -dimensional DFT from a real-valued array.

If s is None it defaults to the shape of x. If axes is not given it defaults to

all the axes (-n,. . ., -1). The length of axes provides the dimensionality of the

DFT. The unique part of the real N -dimensional DFT is obtained by slicing

the full fft along the last axis specified and taking n//2+1 slices. rfftn(x) ==

fft(x)[sliceobj] where sliceobj[axes[-1]] = slice(None,s[-1]//2+1,None).

irfftn (X, s=None, axes=None)

Compute the inverse DFT from the unique portions of the N-dimensional DFT

provided by rfftn .

Occasionally, the situation may arise where you have complex-valued data with

Hermitian symmetry (or real-valued symmetric data). This ensures that the Fourier

transform will be real. The two functions below can calculate it without wasting

extra space for the zero-valued imaginary entries of the Discrete Fourier transform,

or the entire signal.
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hfft (x, n=None, axis=-1)

Calculate the n-point real-valued Fourier transform from (the first half of

Hermitian-symmetric data, x.

ihfft (X, n=None, axis=-1)

Return (the first half-of) Hermitian-symmetric data from the real-valued Fourier

transform, X.

10.3 Random Numbers (random)

The random number capabilities surpass those that were available in Numeric. The

random number facilities were generously contributed by Robert Kern, who has

been a dedicated and patient help to many mailing list questioners. Robert built

the random package using Pyrex to build on top of his own code as well as that

of randomkit by Jean-Sebastien Roy as well as code by Ivan Frohne. The fun-

damental random number generator is the Mersenne Twister based on code writ-

ten by Makoto Matsumoto and Takuji Nishimura (and modified for Python by

Raymond Hettinger). Random numbers from discrete and continuous distribu-

tions are available, as well as some useful random-number-related utilities. Many

of the random number generators are based on algorithms published by Luc De-

vroye in “Non-Uniform Random Variate Generation” available electronically at

http://cgm.cs.mcgill.ca/˜luc/rnbookindex.html

Each of the discrete and continuous random number generators take a size key-

word. If this is None (default), then the size is determined from the additional

inputs (using ufunc-like broadcasting). If no additional inputs are needed, or if

these additional inputs are scalars, then a single number is generated from the se-

lected distribution. If size is an integer, then a 1-d array of that size is generated

filled with random numbers from the selected distribution. Finally, if size is a tuple,

then an array of that shape is returned filled with random numbers.

Many distributions take additional inputs as parameters. These additional in-

puts must be broadcastable to each other (and to the size parameter if it is not

None). The broadcasting behavior of the additional inputs is ufunc-like.

10.3.1 Discrete Distributions

Discrete random numbers take on only a countable number of values (typically

integers). Each distribution has associated with it a probability mass function
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(pmf), pm (k; ·) , that is defined as the probability that the returned random number

is k. The arguments after k represent possible parameters to the distribution. Thus,

let X (·) represent the random number generator for a particular distribution. Then,

pm (k; ·) = Probability{X (·) = k} .

It will be useful to define the discrete indicator function, IS (k) , where S is a set

of integers (often represented by an interval). IS (k) = 1 if k ∈ S, otherwise IS (k) =

0. This convenient notation isolates the relevance of a particular functional form to

a certain range. Also, the formulas below make use of the following definition:

(

n

k

)

=
n!

k! (n − k)!

where k! = k · (k − 1) · · · · · 2 · 1.

binomial (n, p, size=None)

This random number models the number of successes in n independent trials of a

random experiment where the probability of success in each experiment is p.

pm (k) =

(

n

k

)

pk (1 − p)
n−k

I[0,n] (k) .

geometric (p, size=None)

This random number models the number of (independent) attempts required to

obtain a success where the probability of success on each attempt is p.

pm (k; p) = (1 − p)k−1 p I[1,∞) (k) .

hypergeometric (ngood, nbad, nsample, size=None)

Imagine a probability theorists favorite urn filled with ng“good” objects and nb

“bad” objects. In other words there are two types of objects in a jar. The

hypergeometric random number models how many “good” objects will be

present when N items are taken out of the urn without replacement.

p (k; ng, nb, N) =

(

ng

k

)(

nb

N − k

)

(

ng + nb

N

) I[N−nb,min(n,N)] (k) .
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logseries (p, size=None)

A random number whose pmf with terms proportional to the Taylor series expan-

sion of log (1 − p). It has been used in biological studies to model the species

abundance distribution.

pm (k; p) = − pk

k log (1 − p)
I[1,∞) (k) .

multinomial (n, pvals, size=None)

This generator produces random vectors of length N where N = len (pvals). The

shape of the returned array is always the shape indicated by size + (N,).

The multinomial distribution is a generalization of the binomial distribution.

This time, n trials of an experiment are independently repeated but each trial

results in N possible integers k1, k2, . . . , kN with
∑N

i=1 ki = n.

pm (k1, k2, . . . , kN ; ·) = Probability{X (·) = [k1, k2, · · · , kN ]}

=
n!

k1!k2! · · · kN !
pk1
1 pk2

2 · · · pkN

N

where pvals = [p1, p2, . . . , pN ]. It must be true that
∑N

i=1 pi = 1. Therefore,

as long as
∑N−1

i=1 pi ≤ 1, the last entry in pvals is computed as 1 −
∑N−1

i=1 pi.

negative binomial (n, p, size=None)

Models the number of extra independent trials (beyond n) required to accumulate

a total of n successes where the probability of success on each trial is p.

Equivalently, this random number models the number of failures encountered

while accumulating n successes during independent trials of the experiment

that succeeds with probability, p.

pm (k; n, p) =

(

k + n − 1

n − 1

)

pn (1 − p)
k

I[0,∞) (k) .

poisson (lam=1.0, size=None)

This random number counts the number of successes in n independent experi-

ments (where the probability of success in each experiment is p) in the limit

as n → ∞ and p → 0 gets very small such that λ = np ≥ 0 is a constant.

It can be used, for example, to model how many typographical errors are on

each page of a book.
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p (k; λ) = e−λ λk

k!
I[0,∞) (k) .

zipf (a, size=None)

The probability mass function of this random number (also called the zeta distri-

bution) is

pm (k; a) =
1

ζ (a) ka
I[1,∞) (k) ,

where

ζ (a) =

∞∑

n=1

1

na

is the Riemann zeta function. Zipf distributions have been shown to char-

acterize use of words in a natural language (like English), the popularity of

library books, and even the use of the web. The Zipf distribution describes

collections that have a few items whose probability of selection is very high,

a medium number of items whose probability of selection is medium, and a

huge number of items whose probability of selection is very low.

10.3.2 Continuous Distributions

Continuous random numbers can take on an uncountable number of values. There-

fore, the value returned by a continuous distribution is denoted x. Because there

is an uncountable number of possibilities for the random number1, a continuous

distribution is modeled by a probability density function, f (x; ·) . To obtain the

probability that the random number generated by X (·) is in a certain interval, we

integrate this density function:

∫ b

−∞

f (x) dx = Probability{X (·) ≤ b} .

To obtain a probability, we have to integrate f (x) which is why it is called a

density function. Most continuous distributions are defined by their probability

density functions (pdf). Some have basic origins, a few are derived from other

distributions, and some are used mainly for modelling unknown distributions.

Some of the parameters of the distributions are labeled as location (loc) and

scale parameters. These parameters are not shown in the equation for the pdf.

1A computer actually always generates a random number from a discrete distribution because
there are only a finite set of numbers that can be represented by a computer. However, for
continuous random number generators, the resulting random numbers usually approximate the
continuous distribution well enough to ignore the subtlety.
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because they affect the distribution in a known way. This is due to the fact that if

X is a number drawn from a distribution with pdf fX (x) , then Y = Sx + L is a

number drawn from a distribution with pdf

fY (y) =
1

S
fX

(
y − L

S

)

.

Thus, from the standard from provided, the pdf of the actual random numbers

generated by fixing the location and scale parameters can be quickly found.

In this section, the indicator function IA (x) will be used where A is a set defined

over all the real numbers. For clarity,

IA (x) =

{

1 x ∈ A,

0 x 6∈ A.

Also, the following functions are used in the definitions:

Γ (x) =

∫ ∞

0

tx−1e−tdt = (x − 1) Γ (x − 1) ,

B (a, b) =
Γ (a) Γ (b)

Γ (a + b)
.

beta (a, b, size=None)

f (x; a, b) =
1

B (a, b)
xa−1 (1 − x)

b−1
I(0,1) (x) .

chisquare (ν, size=None)

If Z1, . . . , Zν are random numbers from standard normal distributions, then W =
∑ν

k=1 Z2
k is a random number from the chi-square

(
χ2
)

distribution with ν

degrees of freedom.

f (x; ν) =
1

2Γ
(

ν
2

)

(x

2

)ν/2−1

e−x/2I[0,∞) (x) .

exponential (scale=1.0, size=None)

f (x) = e−xI[0,∞) (x) .

f (ν1, ν2, size=None)

The distribution of X1/ν1

X2/ν2
where Xi is chi-squared with νi degrees of freedom.
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f (x; ν1, ν2) =
ν

ν2/2
2 ν

ν1/2
1 xν1/2−1

(ν2 + ν1x)
(ν1+ν2)/2

B
(

ν1

2 , ν2

2

)I[0,∞) (x) .

gamma (a, scale=1.0, size=None)

f (x; a) =
1

Γ (a)
xa−1e−xI[0,∞) (x) .

gumbel (loc=0.0, scale=1.0, size=None)

A right-skewed extreme value distribution.

f (x) = exp
[
−x − e−x

]
.

laplace (loc=0.0, scale=1.0, size=None)

f (x) =
1

2
e−|x|.

lognormal (µ=0.0, σ=1.0, size=None)

f (x; µ, σ) =
1

σx
√

2π
exp

[

−1

2

(
log x − µ

σ

)2
]

I[0,∞) (x) ,

The parameters, µ and σ are not the mean and variance of this distribution, but

the parameters of the underlying normal distribution. Random numbers from this

distribution are generated as eσZ+µ where Z is a standard normal random number.

logistic (loc=0.0, scale=1.0, size=None)

f (x) =
e−x

[1 + e−x]
2 I[0,∞) (x)

multivariate normal (µ, C, size=None)

Returns a vector of random numbers which are jointly drawn from a multivariate

normal distribution. The last-dimension of the output array contains the

sample vector, which is of length N = len (mean) . The covariance matrix

must be N × N . If µ ≡ mean and C = cov, then the joint-pdf representing

the returned random vector(s) is

f (x) =
1

√

(2π)
N |C|

exp

[

−1

2
(x − µ)

T
C−1 (x − µ)

]

.

noncentral chisquare (ν, λ, size=None)
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This is the distribution of
∑ν

i=1 (Zi + δi)
2

where Zi are independent standard

normal random numbers and δi are constants. It is a a generalized Rayleigh-

Rice distribution:

f (x; ν, λ) = e−(λ+x)/2 1

2

(x

λ

)(ν−2)/4

I(ν−2)/2

(√
λx
)

I(0,∞) (x) ,

where Iν (z) (a real-number in the subscript, not an interval) is the modified

Bessel Function of the first kind.

noncentral f (ν1, ν2, λ, size=None)

The pdf of this distribution is

f (x; ν1, ν2, λ) = exp

[
λ

2
+

λv1x

2 (ν1x + ν2)

]

ν
ν1/2
1 ν

ν2/2
2 xν1/2−1

× (ν2 + ν1x)−(ν1+ν2)/2

×
Γ
(

ν1

2

)
Γ
(
1 + ν2

2

)
L

n1/2−1
n2/2

(

− λν1x
2(ν1x+ν2)

)

B
(

ν1

2 , ν2

2

)
Γ
(

ν1+ν2

2

) .

normal (loc=0.0, scale=1.0, size=None)

The normal, or Gaussian, distribution is the limiting distribution of independent

samples from any sufficiently well-behaved distributions (this is the content

of the celebrated central limit theorem). The normal distribution is also the

distribution of maximum entropy when the mean and variance alone are fixed.

These two facts account for its name as well as the wide variety of situations

that can be usefully modelled using the normal distribution. Because it is so

widely used, the full pdf with the location (µ) and scale (σ) parameters is

provided:

f (x) =
1

σ
√

2π
exp

[

− (x − µ)
2

2σ2

]

.

pareto (a, size=None)

f (x; a) =
a

xa+1
I[1,∞) (x) .

power (a, size=None)

A special case of the beta distribution with b = 1.

f (x; a) = axa−1I[0,1] (x) .
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rand (d1,d2, . . .,dn)

A convenient interface to obtain an array of shape (d1, d2, . . . , dn) of uniform

random numbers in the interval [0, 1) . Notice the different convention for

passing in the shape (as separate arguments instead of a tuple). The standard

convention is used in the function numpy.random.random(shape) for which

this function is merely a convenient short-hand. If you have a tuple named

shape, then rand(*shape) will work correctly.

randint (low, high=None, size=None)

Equally probably random integers in the range low ≤ x < high. If high is None,

then the range is 0 ≤ x < low. Similar to random integers, but check the

difference on the bounds.

randn (d1,d2, . . .,dn)

A convenient interface to obtain an array of shape (d1, d2, . . . , dn) of standard

normal (µ = 0, σ = 1) random numbers. Notice the different convention for

passing in the shape (as separate arguments intead of a tuple). The standard

convention is used in the function numpy.random.standard normal(shape) for

which this function is merely a convenient short-hand. If you have a tuple

named shape, then randn(*shape) will work correctly.

random integers (low, high=None, size=None)

Equally probably random integers in the range low ≤ x ≤ high. If high is None,

then the range is 1 ≤ x ≤ low. Similar to randint, but check the difference on

the bounds.

rayleigh (scale=1.0, size=None)

Rayleigh-distributed random numbers can be obtained as X =
√

Z2
1 + Z2

2 where

Zi are independent standard normal random numbers. The scale parameter

is also the mode of the distribution (the value of X with highest probability).

f (x) = xe−x2/2I[0,∞) (x)

standard cauchy (size=None)

A Cauchy distribution is a heavy-tailed distribution with no variance. It’s distri-

bution is that of the ratio of two standard normal distributions Z1/Z2.

188



f (x) =
1

π (1 + x2)
.

standard exponential (size=None)

A standard exponetial random number with scale=1.0. The pdf was given under

the description of random.exponential .

standard gamma (a, size=None)

A standard gamma random number with scale=1.0. The pdf was given under the

description of random.gamma .

standard normal (size=None)

A zero-mean, unit-variance, normally distributed random number often denoted

Z.

f (x) =
1√
2π

e−x2/2.

standard t (ν, size=None)

Often called Student’s t distribution, this random number distribution arises in

the problem of estimating the mean of normally distributed samples when

the sample-size is small. The first parameter, ν, is the number of degrees of

freedom of the distribution.

f (x; ν)
Γ
(

ν+1
2

)

√
πνΓ

(
ν
2

) [
1 + x2

ν

] ν+1
2

.

triangular (left, mode, right, size=None)

Returns random numbers according to a triangularly-shaped density that starts

at left, peaks at mode, and ends at right.

uniform (low=0.0, high=1.0, size=None)

Returns random numbers that are equally probable over the range [low, high) .

vonmises (µ, κ, size=None)

A continuous distribution that is well suited for circular attributes such as angles,

time of day, day of the year, etc. The mean direction is µ and concentration

(or dispersion) parameter is κ. For small κ the distribution tends towards a
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uniform distribution over [−π, π] . For large κ, the distribution tends towards

a normal distribution with mean µ and variance 1/κ.

f (x) =
eκ cos(x−µ)

2πI0 (κ)
I[−π,π] (x) .

wald (µ, λ, size=None)

This distribution is also called the inverse Gaussian distribution (and the Wald

distribution considered as a special case when µ = λ). It can be generated

by noticing that if X is a wald random number then λ(X−µ)2

µ2X is the square

of a standard normal random number (i.e. it is chi-square with one degree of

freedom). The pdf is

f (x) =

√

λ

2πx3
e
−λ(x−µ)2

2µ2x .

weibull (a, size=None)

An extreme-value distribution:

f (x; c) = axa−1 exp (−xa) I(0,∞) (x) .

10.3.3 Miscellaneous utilities

bytes (length)

Return a string of random bytes of the provided length.

get state ()

Return an object that holds the state of the random number generator (allows

you to restart simulations where you left off).

set state (state)

Set the state of the random number generator. The argument should be the

returned object of a previous get state command.

shuffle (sequence)

Randomly permute the items of any sequence. If sequence is an array, then it

must be 1-d.

permutation (n)

Return a permutation of the integers from 0 to n-1.
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10.4 Matrix-specific functions (matlib)

This module contains functions that are geared specifically toward matrix objects.

In particular it includes the functions empty, ones, zeros, identity, eye, rand,

and randn each of which returns a matrix object by default instead of an ndarray

object.

10.5 Ctypes utiltity functions (ctypeslib)

This module contains utility functions that make it easier to work with the ctypes

module.

load library (name, path)

Load a shared library named “name” (use the full name including any prefix but

excluding the extension) located in the directory indicated by path and return

a ctypes library object whose attributes are the functions in the library. If

ctypes is not available, this function will raise an ImportError. If there is an

error loading the library, ctypes raises an OSError. The extension is appended

to the library name (on a platform-dependent basis) unless the name includes

the “.” character in which case name is assumed to be the “full-name” of the

library.

ndpointer (dtype=None, ndim=None, shape=None, flags=None)

Create a class object that can be used in the argtypes list of a ctypes function that

will do basic type, number-of-dimensions, shape, and flags checking on input

array objects. Setting an argtypes entry with the result of this function allows

passing arrays directly to ctypes-wrapped functions. The returned class object

will contain a from param method as required by ctypes. This from param

method takes the array object, does data-type, number-of-dimensions, shape,

and flags checking on the object and if all tests pass returns an object that

ctypes can use as the data area of the array. Checking is not performed for

any entries which are None in this class creation function.
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Chapter 11

Testing and Packaging

There are two additional sub-packages distributed with NumPy that simplify the

process of distributing and testing code based on NumPy. The numpy.distutils sub-

package extends the standard distutils package to handle Fortran code along with

providing support for the auto-generated code in NumPy. The numpy.testing sub-

package defines a few functions and classes for standardizing unit-tests in NumPy.

These facilities can be used in your own packages that build on top of NumPy.

11.1 Testing

In this sub-package are two classes and some useful utilities for writing unit-tests

NumpyTestCase a subclass of unittest.TestCase which adds a measure method

that can determine the elasped time to execute a code string and enhances

the call method

NumpyTest the test manager for NumPy which was extracted originally from

the SciPy code base. This test manager makes it easy to add unit-

tests to a package simply by creating a tests sub-directory with files

named test <module>.py. These test files should then define sub-classes of

NumpyTestCase (or unittest.TestCase) named “test*”. These classes should

then define functions named “test*” or “bench*” or “check*” that contain the

actual unit-tests. The first keyword argument should specify the level above

which this test should be run.

To run the tests excecute NumpyTest(<package>).test(level=1, verbosity=1)

which will run all tests above the given level using the given verbosity.
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Here <package> can be either a string or a previously imported mod-

ule. You can get the level and verbosity arguments from sys.argv us-

ing NumpyTest(<package>).run() with -v or –verbosity and -l or –level as

command-line arguments.

set local path (reldir=”, level=1)

prepend local directory (+ reldir) to sys.path. The caller is responsible for re-

moving this path using restore path().

set package path (level=1)

prepend package directory to sys.path. This should be called from a test file.py

that satisfies the tree structure: <somepath>/<somedir>/test file.py. The,

the first existing path name from the list <somepath>/build/lib.<platform>-

<version>, <somepath>/.. is pre-pended to sys.path. The caller is responsi-

ble for removing this path using restore path().

restore path ()

Remove the first entry from sys.path.

assert equal (actual, desired, err msg=”, verbose=1)

Raise an assertion error if the two items are not equal. Automatically calls as-

sert array equal if actual or desired is an ndarray.

assert almost equal (actual, desired, decimal=7, err msg=”, verbose=1)

Raise an assertion error if the two items are not equal within decimal places. Au-

tomatically calls assert array almost equal if actual or desired is an ndarray.

assert approx equal (actual, desired, significant=7, err msg=”, verbose=1)

Raise an assertion error if the two items are not equal to within the given signif-

icant digits. Does not work on arrays.

assert array equal (x, y, err msg=”)

Raise an error if the two arrays x and y are not equal at every element.

assert array less (x, y, err msg=”)

Raise an error if the two arrays x and y have different shapes or if x is not less

than y at every element.
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assert array almost equal (x, y, decimal=6, err msg=”)

Raise an error if x and y are not equal to decimal places at every element.

jiffies ()

Return a number of 1/100ths of a second that this process has been scheduled in

user mode. Implemented using time.time() unless on Linux where the special

/proc directory filesystem is used.

memusage ()

Return the virtual memory size in bytes of the running python. If the operation

is not supported on the platform, then return None. This works only on linux

for now.

rand (*args)

Return an array of random numbers with the given shape using only the standard

library random number generator.

runstring (astr, dict)

Run the given string in the dictionary provided. Functional form for (exec astr in

dict) that is useful for the failUnlessRaises method of unittest.TestCase class.

11.2 NumPy Distutils

NumPy provides enhanced distutils functionality to make it easier to build and

install sub-packages, auto-generate code, and extension modules that use Fortran-

compiled libraries. To use features of numpy distutils use the setup com-

mand from numpy.distutils.core. A useful Configuration class is also provided in

numpy.distutils.misc util that can make it easier to construct keyword arguments

to pass to the setup function (by passing the dictionary obtained from the todict()

method of the class). More information is available in the NumPy Distutils Users

Guide in <site-packages>/numpy/doc/DISTUTILS.txt.

11.2.1 misc util

Configuration (package name=None, parent name=None, top path=None,

package path=None, **attrs)
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Construct a configuration instance for the given package name. If parent name

is not None, then construct the package as a sub-package of the parent name

package. If top path and package path are None then they are assumed equal

to the path of the file this instance was created in. The setup.py files in

the numpy distribution are good examples of how to use the Configuration

instance.

self.todict ()

Return a dictionary compatible with the keyword arguments of dis-

tutils setup function. Thus, this method may be used as

setup(**config.todict()).

self.get distribution ()

Return the distutils distribution object for self.

self.get subpackage (subpackage name, subpackage path=None)

Return a Configuration instance for the sub-package given. If subpack-

age path is None then the path is assumed to be the local path plus the

subpackage name. If a setup.py file is not found in the subpackage path,

then a default configuration is used.

self.add subpackage (subpackage name, subpackage path=None)

Add a sub-package to the current Configuration instance. This is useful in

a setup.py script for adding sub-packages to a package. The sub-package

is contained in subpackage path / subpackage name and this directory

may contain a setup.py script or else a default setup (suitable for Python-

code-only subpackages) is assumed. If the subpackage path is None, then

it is assumed to be located in the local path / subpackage name.

self.add data files (*files)

Add files to the list of data files to be included with the package. The

form of each element of the files sequence is very flexible allowing many

combinations of where to get the files from the package and where they

should ultimately be installed on the system. The most basic usage is for

an element of the files argument sequence to be a simple filename. This

will cause that file from the local path to be installed to the installation

path of the self.name package (package path). The file argument can

also be a relative path in which case the entire relative path will be

installed into the package directory. Finally, the file can be an absolute
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path name in which case the file will be found at the absolute path name

but installed to the package path.

This basic behavior can be augmented by passing a 2-tuple in as the file

argument. The first element of the tuple should specify the relative path

(under the package install directory) where the remaining sequence of

files should be installed to (it has nothing to do with the file-names in the

source distribution). The second element of the tuple is the sequence of

files that should be installed. The files in this sequence can be filenames,

relative paths, or absolute paths. For absolute paths the file will be

installed in the top-level package installation directory (regardless of the

first argument). Filenames and relative path names will be installed

in the package install directory under the path name given as the first

element of the tuple. An example may clarify:

self.add data files(’foo.dat’,

(’fun’, [’gun.dat’, ’nun/pun.dat’, ’/tmp/sun.dat’]),

’bar/cat.dat’,

’/full/path/to/can.dat’)

will install these data files to:

<package install directory>/

foo.dat

fun/

gun.dat

nun/

pun.dat

sun.dat

bar/

car.dat

can.dat

where <package install directory> is the package (or sub-package)

directory such as ’/usr/lib/python2.4/site-packages/mypackage’

(’C:\\Python2.4\\Lib\\site-packages\\mypackage’) or

’/usr/lib/python2.4/site-packages/mypackage/mysubpackage’

(’C:\\Python2.4\\Lib\\site-packages\\mypackage\\mysubpackage’).

An additional feature is that the path to a data-file can actually be a function

that takes no arguments and returns the actual path(s) to the data-files. This

is useful when the data files are generated while building the package.
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self.add data dir (data path)

Recursively add files under data path to the list of data files to be installed

(and distributed). The data path can be either a relative path-name, or

an absolute path-name, or a 2-tuple where the first argument shows

where in the install directory the data directory should be installed

to. For example suppose the source directory contains fun/foo.dat and

fun/bar/car.dat

self.add data dir(’fun’)

self.add data dir((’sun’, ’fun’))

self.add data dir((’gun’, ’/full/path/to/fun’))

Will install data-files to the locations

<package install directory>/

fun/

foo.dat

bar/

car.dat

sun/

foo.dat

bar/

car.dat

gun/

foo.dat

car.dat

self.add include dirs (*paths)

Add the given sequence of paths to the beginning of the include dirs list.

This list will be visible to all extension modules of the current package.

self.add headers (*files)

Add the given sequence of files to the beginning of the head-

ers list. By default, headers will be installed under <python-

include>/<self.name.replace(’.’,’/’)>/ directory. If an item of files is

a tuple, then its first argument specifies the actual installation location

relative to the <python-include> path.

self.add extension (name, sources, **kw)
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Create and add an Extension instance to the ext modules list. The first

argument defines the name of the extension module that will be installed

under the self.name package. The second argument is a list of sources.

This method also takes the following optional keyword arguments that

are passed on to the Extension constructor: include dirs, define macros,

undef macros, library dirs, libraries, runtime library dirs, extra objects,

swig opts, depends, language, f2py options, module dirs, and extra info.

The self.paths(...) method is applied to all lists that may contain paths.

The extra info is a dictionary or a list of dictionaries whose content will

be appended to the keyword arguments. The depends list contains paths

to files or directories that the sources of the extension module depend

on. If any path in the depends list is newer than the extension module,

then the module will be rebuilt.

The list of sources may contain functions (called source generators) which

must take an extension instance and a build directory as inputs and

return a source file or list of source files or None. If None is returned

then no sources are generated. If the Extension instance has no sources

after processing all source generators, then no extension module is built.

self.add library (name, sources, **build info)

Add a library to the list of libraries. Allowed keyword arguments are de-

pends, macros, include dirs, extra compiler args, and f2py options. The

name is the name of the library to be built and sources is a list of sources

(or source generating functions) to add to the library.

self.add scripts (*files)

Add the sequence of files to the beginning of the scripts list. Scripts will be

installed under the <prefix>/bin/ directory.

self.paths (*paths)

Applies glob.glob(...) to each path in the sequence (if needed) and pre-pends

the local path if needed. Because this is called on all source lists, this

allows wildcard characters to be specified in lists of sources for extension

modules and libraries and scripts and allows path-names be relative to

the source directory.

self.get config cmd ()

Returns the numpy.distutils config command instance.
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self.get build temp dir ()

Return a path to a temporary directory where temporary files should be

placed.

self.have f77c ()

True if a Fortran 77 compiler is available (because a simple Fortran 77 code

was able to be compiled successfully).

self.have f90c ()

True if a Fortran 90 compiler is available (because a simple Fortran 90 code

was able to be compiled successfully)

self.get version ()

Return a version string of the current package or None if the version informa-

tion could not be detected. This method scans files named version .py,

<packagename> version.py, version.py, and svn version .py for string

variables version, version , and <packagename> version, until a ver-

sion number is found.

self.make svn version py ()

Appends a data function to the data files list that will generate

svn version .py file to the current package directory. This file will

be removed from the source directory when Python exits (so that it can

be re-generated next time the package is built). This is intended for

working with source directories that are in an SVN repository.

self.make config py ()

Generate a package config .py file containing system information used

during the building of the package. This file is installed to the package

installation directory.

self.get info (*names)

Return information (from system info.get info) for all of the names in the

argument list in a single dictionary.

get numpy include dirs ()

Return the include directory where the numpy/arrayobject.h and numpy/ufun-

cobject.h files are found. This should be added to the include dirs of any

extension module built using NumPy. If numpy.distutils is used to build the

extension, then this directory is added automatically.
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get numarray include dirs ()

Return the include directory where the numpy/libnumarray.h file is found. This

should be added to the include dirs of any extension module that relies on the

Numarray-compatible C-API.

dict append (d, **kwds)

Add the keyword arguments given as entries in the dictionary provided as the

first argument. If the entry is already present, then assume it is a list and

extend the list with the keyword value.

appendpath (prefix, path)

Platform-independent intelligence for appending path to prefix. It replaces ’/’ in

the prefix and the path with the correct path-separator on the platform ad

returns a full path name that will be valid for the platform.

allpath (name)

Convert a ’/’ separated pathname to one using the platform’s path separator.

dot join (*args)

Converts a sequence of string arguments to a string joined by ’.’ (removing any

empty strings).

generate config py (extension, build dir)

A suitable function that can be used in a source list. This constructs a python file

that contains system info information used during building the package. Gen-

erally easier to use a Configuration instance and the config.make config py()

method.

get cmd (cmdname, cache={})

Returns an instance of the distutils command object named cmdname if the

setup distribution instance has been initialized. Caches the result in

cache[cmdname] and gets it from there if present.

terminal has colors ()

Tries to determine if the stdout terminal can be written to using ANSI colors.

Returns 1 if it can be determined that ANSI colors are acceptable or 0 if not.
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red text (s)

green text (s)

yellow text (s)

blue text (s)

cyan text (s)

If terminal has colors() is true, then these commands return a string with the

necessary codes prepended to display the given string argument in the spec-

ified color on an ANSI terminal. If terminal has colors() is false, then these

functions simply return the input argument.

cyg2win32 (path)

Convert a cygwin path beginning with /cygdrive to a standard win32 path name.

all strings (lst)

Return True if all items in the input list are string objects otherwise return False.

has f sources (sources)

Return True if any of the source files listed in the input argument are Fortran

files because its name matches against the compiled regular expression for-

tran ext match.

has cxx sources (sources)

Return True if any of the source files listed in the input argument are C++

files because its name matches against the compiled regular expression

cxx ext match.

filter sources (sources)

From the provided list of sources, return four lists of filenames containing C,

C++, Fortran, and Fortran 90 module sources respectively. The com-

piled regular expressions used in this search (which are also available in the

misc util module) are cxx ext match, fortran ext match, f90 ext match, and

f90 module name match.

get dependencies (sources)
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Scan the files in the sources list for include statements.

is local src dir (directory)

Return True if the provided directory is the local current working directory.

get ext source files (ext)

Get sources and any include files in the same directory from an Extension instance.

get script files (scripts)

Returns the list scripts with all non-string arguments removed.

11.2.2 Other modules

system info.get info (name)

For the given string representing a particular resource, return a dictionary that

is compatible with the distutils.setup keyword arguments. If this is an

empty dictionary, then the requested resource is not available. Some of the

names that can be checked are ’lapack opt’, ’blas opt’, ’fft opt’, ’fftw’, ’fftw3’,

’fftw2’, ’djbfft’, ’numpy’, ’numarray’, ’boost python’, ’agg2’, ’wx’, ’gdk’, ’xft’,

’freetype2’.

system info.get standard file (filename)

Return a list of length 0 to 3 containing the full-path filenames for the filename

provided. The filename is searched for in three places in the following order

1) the system-wide location which is the directory that the system info file is

located in; 2) the directory specified by the environment variable HOME; and

3) the current local directory.

cpuinfo.cpu an instance of a cpuinfo class that defines methods for checking var-

ious aspects of the cpu. The info attribute is a list of length (# of CPUs).

Each entry is a dictionary providing technical information about that CPU.

log.set verbosity (level)

Set the distutils logging threshold and return the previously stored value. The

level is an integer that corresponds to distutils.log thresholds: -1 <–> ER-

ROR, 0 <–> WARN, 1 <–> INFO, and 2 <–> DEBUG.

exec command
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exec command (command, execute in=”, use shell=None, use tee=None,

with python=1, **env)

Return (status, output) of the executed command. The command input is

a string of executable and arguments. The output contains both stderr

and stdout messages. If execute in is given, then change to the pro-

vided directory prior to executing the command and afterwords restore

to the current directory. On NT, and DOS systems the returned status

is correct for external commands. However, wild cards will not work for

non-posix systems.

splitcmdline (line)

Inverse of ’ ’.join(sys.argv)

find executable (exe, path=None)

Return full path of an executable using information from the PATH envi-

ronment variable. Equivalent to the POSIX ’which’ command.

get pythonexe ()

Return the full path to the python executable with some fixes for nt and dos

to replace pythonw with python if it is encountered. A basic wrapper

around sys.executable.

11.3 Conversion of .src files

NumPy distutils supports automatic conversion of source files named <some-

file>.src. This facility can be used to maintain very similar code blocks requiring

only simple changes between blocks. During the build phase of setup, if a tem-

plate file named <somefile>.src is encountered, a new file named <somefile> is

constructed from the template and placed in the build directory to be used instead.

Two forms of template conversion are supported. The first form occurs for files

named named <file>.ext.src where ext is a recognized Fortran extension (f, f90,

f95, f77, for, ftn, pyf). The second form is used for all other cases.

11.3.1 Fortran files

This template converter will replicate all function and subroutine blocks in the

file with names that contain ’<...>’ according to the rules in ’<...>’. The number

of comma-separated words in ’<...>’ determines the number of times the block is

repeated. What these words are indicates what that repeat rule, ’<...>’, should
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be replaced with in each block. All of the repeat rules in a block must contain

the same number of comma-separated words indicating the number of times that

block should be repeated. If the word in the repeat rule needs a comma, leftarrow,

or rightarrow, then prepend it with a backslash ’\’. If a word in the repeat rule

matches ’\\<index>’ then it will be replaced with the <index>-th word in the same

repeat specification. There are two forms for the repeat rule: named and short.

11.3.1.1 Named repeat rule

A named repeat rule is useful when the same set of repeats must be used several

times in a block. It is specified using <rule1=item1, item2, item3,..., itemN>, where

N is the number of times the block should be repeated. On each repeat of the block,

the entire expression, ’<...>’ will be replaced first with item1, and then with item2,

and so forth until N repeats are accomplished. Once a named repeat specification

has been introduced, the same repeat rule may be used in the current block by

referring only to the name (i.e. <rule1>.

11.3.1.2 Short repeat rule

A short repeat rule looks like <item1, item2, item3, ..., itemN>. The rule specifies

that the entire expression, ’<...>’ should be replaced first with item1, and then

with item2, and so forth until N repeats are accomplished.

11.3.1.3 Pre-defined names

The following predefined named repeat rules are available:

• <prefix=s,d,c,z>

• < c=s,d,c,z>

• < t=real, double precision, complex, double complex>

• <ftype=real, double precision, complex, double complex>

• <ctype=float, double, complex float, complex double>

• <ftypereal=float, double precision, \\0, \\1>

• <ctypereal=float, double, \\0, \\1>
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11.3.2 Other files

Non-Fortran files use a separate syntax for defining template blocks that should

be repeated using a variable expansion similar to the named repeat rules of the

Fortran-specific repeats. The template rules for these files are:

1. “/**begin repeat” on a line by itself marks the beginning of a segment that

should be repeated.

2. Named variable expansions are defined using #name=item1, item2, item3,

..., itemN# and placed on successive lines. These variables are replaced in

each repeat block with corresponding word. All named variables in the same

repeat block must define the same number of words.

3. In specifying the repeat rule for a named variable, item*N is short-hand for

item, item, ..., item repeated N times. In addition, parenthesis in combi-

nation with *N can be used for grouping several items that should be re-

peated. Thus, #name=(item1, item2)*4# is equivalent to #name=item1,

item2, item1, item2, item1, item2, item1, item2#

4. “*/” on a line by itself marks the end of the the variable expansion naming.

The next line is the first line that will be repeated using the named rules.

5. Inside the block to be repeated, the variables that should be expanded are

specified as @name@.

6. “/**end repeat**/” on a line by itself marks the previous line as the last line

of the block to be repeated.
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Part II

C-API
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Chapter 12

New Python Types and

C-Structures

NumPy provides a C-API to enable users to extend the system and get access to the

array object for use in other routines. The best way to truly understand the C-API

is to read the source code. If you are unfamiliar with (C) source code, however, this

can be a daunting experience at first. Be assured that the task becomes easier with

practice, and you may be surprised at how simple the C-code can be to understand.

Even if you don’t think you can write C-code from scratch, it is much easier to

understand and modify already-written source code then create it de novo.

Python extensions are especially straightforward to understand because they all

have a very similar structure. Admittedly, NumPy is not a trivial extension to

Python, and may take a little more snooping to grasp. This is especially true be-

cause of the code-generation techniques, which simplify maintenance of very similar

code, but can make the code a little less readable to beginners. Still, with a little

persistence, the code can be opened to your understanding. It is my hope, that

this guide to the C-API can assist in the process of becoming familiar with the

compiled-level work that can be done with NumPy in order to squeeze that last bit

of necessary speed out of your code.

Several new types are defined in the C-code. Most of these are accessible

from Python, but a few are not exposed due to their limited use. Every new

Python type has an associated PyObject * with an internal structure that includes

a pointer to a “method table” that defines how the new object behaves in Python.

When you receive a Python object into C code, you always get a pointer to a
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PyObject structure. Because a PyObject structure is very generic and defines

only PyObject HEAD, by itself it is not very interesting. However, different objects

contain more details after the PyObject HEAD(but you have to cast to the correct

type to access them — or use accessor functions or macros).

12.1 New Python Types Defined

Python types are the functional equivalent in C of classes in Python. By construct-

ing a new Python type you make available a new object for Python. The ndarray

object is an example of a new type defined in C. New types are defined in C by two

basic steps:

1. creating a C-structure (usually named Py<Name>Object) that is binary-

compatible with the PyObject structure itself but holds the additional in-

formation needed for that particular object;

2. populating the PyTypeObject table (pointed to by the ob type member

of the PyObject structure) with pointers to functions that implement the

desired behavior for the type.

Instead of special method names which define behavior for Python classes, there

are “function tables” which point to functions that implement the desired results.

Since Python 2.2, the PyTypeObject itself has become dynamic which allows C

types that can be “sub-typed” from other C-types in C, and sub-classed in Python.

The children types inherit the attributes and methods from their parent(s).

There are two major new types: the ndarray (PyArray Type )

and the ufunc (PyUFunc Type ). Additional types play a supportive

role: the PyArrayIter Type , the PyArrayMultiIter Type , and the

PyArrayDescr Type . The PyArrayIter Type is the type for a flat iterator

for an ndarray (the object that is returned when getting the flat attribute).

The PyArrayMultiIter Type is the type of the object returned when calling

broadcast (). It handles iteration and broadcasting over a collection of nested

sequences. Also, the PyArrayDescr Type is the data-type-descriptor type whose

instances describe the data. Finally, there are 21 new scalar-array types which are

new Python scalars corresponding to each of the fundamental data types available

for arrays. An additional 10 other types are place holders that allow the array

scalars to fit into a hierarchy of actual Python types.
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12.1.1 PyArray Type

The Python type of the ndarray is PyArray Type . In C, every ndarray is a pointer

to a PyArrayObject structure. The ob type member of this structure contains a

pointer to the PyArray Type typeobject.

The PyArrayObject C-structure contains all of the required information for

an array. All instances of an ndarray (and its subclasses) will have this structure.

For future compatibility, these structure members should normally be accessed using

the provided macros. If you need a shorter name, then you can make use of NPYAO

which is defined to be equivalent to PyArrayObject .

typedef struct PyArrayObject {
PyObject HEAD

char *data;

int nd;

npy intp *dimensions;

npy intp *strides;

PyObject *base;

PyArray Descr *descr;

int flags;

PyObject *weakreflist;

} PyArrayObject;

PyObject HEAD This is needed by all Python objects. It consists of (at least)

a reference count member (ob refcnt ) and a pointer to the typeobject

(ob type ). (Other elements may also be present if Python was compiled

with special options see Include/object.h in the Python source tree for more

information). The ob type member points to a Python type object.

data A pointer to the first element of the array. This pointer can (and normally

should) be recast to the data type of the array.

nd An integer providing the number of dimensions for this array. When nd is 0,

the array is sometimes called a rank-0 array. Such arrays have undefined

dimensions and strides and cannot be accessed. NPYMAXDIMSis the largest

number of dimensions for any array.

dimensions An array of integers providing the shape in each dimension as long as

nd≥1. The integer is always large enough to hold a pointer on the platform,

so the dimension size is only limited by memory.
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strides An array of integers providing for each dimension the number of bytes that

must be skipped to get to the next element in that dimension.

base This member is used to hold a pointer to another Python object that is related

to this array. There are two use cases: 1) If this array does not own its own

memory, then base points to the Python object that owns it (perhaps another

array object), 2) If this array has the NPYUPDATEIFCOPYflag set, then this

array is a working copy of a “misbehaved” array. As soon as this array is

deleted, the array pointed to by base will be updated with the contents of this

array.

descr A pointer to a data-type descriptor object (see below). The data-type de-

scriptor object is an instance of a new built-in type which allows a generic

description of memory. There is a descriptor structure for each data type

supported. This descriptor structure contains useful information about the

type as well as a pointer to a table of function pointers to implement specific

functionality.

flags Flags indicating how the memory pointed to by data is to be interpreted.

Possible flags are NPYC CONTIGUOUS, NPYF CONTIGUOUS, NPYOWNDATA,

NPYALIGNED, NPYWRITEABLE, and NPYUPDATEIFCOPY.

weakreflist This member allows array objects to have weak references (using the

weakref module).

12.1.2 PyArrayDescr Type

The PyArrayDescr Type is the built-in type of the data-type-descriptor objects

used to describe how the bytes comprising the array are to be interpreted. There

are 21 statically-defined PyArray Descr objects for the built-in data-types. While

these participate in reference counting, their reference count should never reach

zero. There is also a dynamic table of user-defined PyArray Descr objects that

is also maintained. Once a data-type-descriptor object is “registered” it should

never be deallocated either. The function PyArray DescrFromType (...) can be

used to retrieve a PyArray Descr object from an enumerated type-number (either

built-in or user-defined). The format of the structure that lies at the heart of the

PyArrayDescr Type is.

typedef struct {
PyObject HEAD
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PyTypeObject *typeobj;

char kind;

char type;

char byteorder;

char hasobject;

int type num;

int elsize;

int alignment;

PyArray ArrayDescr * subarray;

PyObject * fields;

PyArray ArrFuncs * f;

} PyArray Descr;

typeobj Pointer to a typeobject that is the corresponding Python type for the

elements of this array. For the builtin types, this points to the correspond-

ing array scalar. For user-defined types, this should point to a user-defined

typeobject. This typeobject can either inherit from array scalars or not.

If it does not inherit from array scalars, then the NPYUSEGETITEM and

NPYUSESETITEM flags should be set in the hasobject flag.

kind A character code indicating the kind of array (using the array interface type-

string notation). A ’b’ represents Boolean, a ’i’ represents signed integer,

a ’u’ represents unsigned integer, ’f’ represents floating point, ’c’ represents

complex floating point, ’S’ represents 8-bit character string, ’U’ represents

32-bit/character unicode string, and ’V’ repesents arbitrary.

type A traditional character code indicating the data type.

byteorder A character indicating the byte-order: ’>’ (big-endian), ’<’ (little-

endian), ’=’ (native), ’|’ (irrelevant, ignore). All builtin data-types have by-

teorder ’=’.

hasobject A data-type bit-flag that determines if the data-type exhibits object-

array like behavior. Each bit in this member is a flag which are named as:

NPY ITEM REFCOUNT (NPY ITEM HASOBJECT) Indicates

that items of this data-type must be reference counted (using Py INCREF

and Py DECREF).

NPY ITEM LISTPICKLE Indicates arrays of this data-type must be

converted to a list before pickling.
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NPY ITEM IS POINTER Indicates the item is a pointer to some other

data-type

NPY NEEDS INIT Indicates memory for this data-type must be initial-

ized (set to 0) on creation.

NPY NEEDS PYAPI Indicates this data-type requires the Python C-API

during access (so don’t give up the GIL if array access is going to be

needed).

NPY USE GETITEM On array access use the f->getitem function

pointer instead of the standard conversion to an array scalar. Must

use if you don’t define an array scalar to go along with the data-type.

NPY USE SETITEM When creating a 0-d array from an array scalar use

f->setitem instead of the standard copy from an array scalar. Must

use if you don’t define an array scalar to go along with the data-type.

NPY FROM FIELDS The bits that are inherited for the parent data-

type if these bits are set in any field of the data-type. Cur-

rently (NPYNEEDSINIT | NPYLIST PICKLE | NPYITEM REFCOUNT

| NPYNEEDSPYAPI).

NPY OBJECT DTYPE FLAGS Bits set for the object data-type:

(NPYLIST PICKLE | NPYUSEGETITEM | NPYITEM IS POINTER |
NPYREFCOUNT| NPYNEEDSINIT | NPYNEEDSPYAPI).

PyDataType FLAGCHK (PyArray Descr * dtype, int flags) Return

true if all the given flags are set for the data-type object.

PyDataType REFCHK (PyArray Descr * dtype) Equivalent to

PyDataType FLAGCHK(dtype, NPYITEM REFCOUNT).

type num A number that uniquely identifies the data type. For new data-types,

this number is assigned when the data-type is registered.

elsize For data types that are always the same size (such as long), this holds the

size of the data type. For flexible data types where different arrays can have

a different elementsize, this should be 0.

alignment A number providing alignment information for this data type. Specif-

ically, it shows how far from the start of a 2-element structure (whose

first element is a char ), the compiler places an item of this type:

offsetof(struct {char c; type v; }, v)
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subarray If this is non-NULL, then this data-type descriptor is a C-style contigu-

ous array of another data-type descriptor. In other-words, each element that

this descriptor describes is actually an array of some other base descriptor.

This is most useful as the data-type descriptor for a field in another data-

type descriptor. The fields member should be NULL if this is non-NULL

(the fields member of the base descriptor can be non-NULL however). The

PyArray ArrayDescr structure is defined using

typedef struct {
PyArray Descr * base;

PyObject * shape;

} PyArray ArrayDescr;

The elements of this structure are:

base The data-type-descriptor object of the base-type.

shape The shape (always C-style contiguous) of the sub-array as a Python

tuple.

fields If this is non-NULL, then this data-type-descriptor has fields described by a

Python dictionary whose keys are names (and also titles if given) and whose

values are tuples that describe the fields. Recall that a data-type-descriptor

always describes a fixed-length set of bytes. A field is a named sub-region of

that total, fixed-length collection. A field is described by a tuple composed

of another data-type-descriptor and a byte offset. Optionally, the tuple may

contain a title which is normally a Python string. These tuples are placed in

this dictionary keyed by name (and also title if given).

f A pointer to a structure containing functions that the type needs to implement

internal features. These functions are not the same thing as the universal

functions (ufuncs) described later. Their signatures can vary arbitrarily. Not

all of these function pointers must be defined for a given type. The required

members are nonzero , copyswap , copyswapn , setitem , getitem , and

cast . These are assumed to be non-NULL and NULL entries will cause a

program crash. The other functions may be NULL which will just mean re-

duced functionality for that data-type. (Also, the nonzero function will be

filled in with a default function if it is NULL when you register a user-defined

data-type).
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typedef struct {
PyArray VectorUnaryFunc *cast[PyArray NTYPES];

PyArray GetItemFunc *getitem;

PyArray SetItemFunc *setitem;

PyArray CopySwapNFunc *copyswapn;

PyArray CopySwapFunc *copyswap;

PyArray CompareFunc *compare;

PyArray ArgFunc *argmax;

PyArray DotFunc *dotfunc;

PyArray ScanFunc *scanfunc;

PyArray FromStrFunc * fromstr;

PyArray NonzeroFunc *nonzero;

PyArray FillFunc * fill;

PyArray FillWithScalarFunc * fillwithscalar;

PyArray SortFunc * sort[PyArray NSORTS];

PyArray ArgSortFunc * argsort[PyArray NSORTS];

PyObject * castdict;

PyArray ScalarKindFunc * scalarkind;

int ** cancastscalarkindto;

int * cancastto;

int listpickle

} PyArray ArrFuncs;

The concept of a behaved segment is used in the description of the function

pointers. A behaved segment is one that is aligned and in native machine byte-

order for the data-type. The nonzero , copyswap , copyswapn , getitem ,

and setitem functions can (and must) deal with mis-behaved arrays. The

other functions require behaved memory segments.

cast (void ) (void * from, void * to, npy intp n, void * fromarr, void *

toarr)

An array of function pointers to cast from the current type to all of the other

builtin types. Each function casts a contiguous, aligned, and notswapped

buffer pointed at by from to a contiguous, aligned, and notswapped buffer

pointed at by to The number of items to cast is given by n, and the argu-

ments fromarr and toarr are interpreted as PyArrayObjects for flexible

arrays to get itemsize information.

getitem (PyObject * ) (void * data, void * arr)
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A pointer to a function that returns a standard Python object from a single

element of the array object arr pointed to by data. This function must

be able to deal with “misbehaved” (misaligned and/or swapped) arrays

correctly.

setitem (int ) (PyObject * item, void * data, void * arr)

A pointer to a function that sets the Python object item into the array,

arr, at the position pointed to by data. This function deals with “mis-

behaved” arrays. If successful, a zero is returned, otherwise, a negative

one is returned (and a Python error set).

copyswapn (void ) (void * dest, npy intp dstride, void * src, npy intp

sstride, npy intp n, int swap, void *arr)

copyswap (void ) (void * dest, void * src, int swap, void *arr)

These members are both pointers to functions to copy data from src to

dest and swap if indicated. The value of arr is only used for flexi-

ble (NPYSTRING, NPYUNICODE, and NPYVOID) arrays (and is ob-

tained from arr->descr->elsize ). The second function copies a

single value, while the first loops over n values with the provided strides.

These functions can deal with misbehaved src data. If src is NULL then

no copy is performed. If swap is 0, then no byteswapping occurs. It

is assumed that dest and src do not overlap. If they overlap, then use

memmove(...) first followed by copyswap(n) with NULL valued src .

compare (int ) (const void * d1, const void * d2, void * arr)

A pointer to a function that compares two elements of the array, arr ,

pointed to by d1 and d2 . This function requires behaved arrays. The

return value is 1 if *d1 > *d2 , 0 if *d1 == *d2 , and -1 if *d1 < *d2 .

The array object arr is used to retrieve itemsize and field information for

flexible arrays.

argmax (int ) (void * data, npy intp n, npy intp * max ind, void * arr)

A pointer to a function that retrieves the index of the largest of n elements in

arr beginning at the element pointed to by data . This function requires

that the memory segment be contiguous and behaved. The return value

is always 0. The index of the largest element is returned in max ind .

dotfunc (void ) (void * ip1, npy intp is1, void * ip2, npy intp is2,

void * op, npy intp n, void * arr)
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A pointer to a function that multiplies two n-length sequences together,

adds them, and places the result in element pointed to by op of arr .

The start of the two sequences are pointed to by ip1 and ip2 . To

get to the next element in each sequence requires a jump of is1 and

is2 bytes, respectively. This function requires behaved (though not

necessarily contiguous) memory.

scanfunc (int ) (FILE * fd, void * ip ,void * sep ,void * arr)

A pointer to a function that scans (scanf style) one element of the corre-

sponding type from the file descriptor fd into the array memory pointed

to by ip . The array is assumed to be behaved. If sep is not NULL,

then a separator string is also scanned from the file before returning.

The last argument arr is the array to be scanned into. A 0 is returned

if the scan is successful. A negative number indicates something went

wrong: -1 means the end of file was reached before the separator string

could be scanned, -4 means that the end of file was reached before the

element could be scanned, and -3 means that the element could not be

interpreted from the format string. Requires a behaved array.

fromstr (int ) (char * str, void * ip, char ** endptr, void * arr)

A pointer to a function that converts the string pointed to by str to one

element of the corresponding type and places it in the memory location

pointed to by ip . After the conversion is completed, * endptr points to

the rest of the string. The last argument arr is the array into which ip

points (needed for variable-size data-types). Returns 0 on success or -1

on failure. Requires a behaved array.

nonzero (Bool ) (void * data, void * arr)

A pointer to a function that returns TRUE if the item of arr pointed to

by data is nonzero. This function can deal with misbehaved arrays.

fill (void ) (void * data, npy intp length, void * arr)

A pointer to a function that fills a contiguous array of given length with

data. The first two elements of the array must already be filled-in. From

these two values, a delta will be computed and the values from item 3

to the end will be computed by repeatedly adding this computed delta.

The data buffer must be well-behaved.

fillwithscalar (void )(void * buffer, npy intp length, void * value,

void * arr)
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A pointer to a function that fills a contiguous buffer of the given length

with a single scalar value whose address is given. The final argument is

the array which is needed to get the itemsize for variable-length arrays.

sort (int ) (void * start, npy intp length, void * arr)

An array of function pointers to a particular sorting algorithms. A particular

sorting algorithm is obtained using a key (so far PyArray QUICKSORT,

PyArray HEAPSORT, and PyArray MERGESORTare defined). These

sorts are done in-place assuming contiguous and aligned data.

argsort (int ) (void * start, npy intp * result, npy intp length, void

*arr)

An array of function pointers to sorting algorithms for this data type. The

same sorting algorithms as for sort are available. The indices producing

the sort are returned in result (which must be initialized with indices 0

to length-1 inclusive).

castdict

Either NULLor a dictionary containing low-level casting functions for user-

defined data-types. Each function is wrapped in a PyCObject * and

keyed by the data-type number.

scalarkind (PyArray SCALARKIND) (PyArrayObject * arr)

A function to determine how scalars of this type should be interpreted. The

argument is NULL or a 0-dimensional array containing the data (if that

is needed to determine the kind of scalar). The return value must be of

type PyArray SCALARKIND.

cancastscalarkindto

Either NULL or an array of PyArray NSCALARKINDSpointers. These

pointers should each be either NULL or a pointer to an array of integers

(terminated by PyArray NOTYPE) indicating data-types that a scalar

of this data-type of the specified kind can be cast to safely (this usually

means without losing precision).

cancastto

Either NULL or an array of integers (terminated by PyArray NOTYPE)

indicated data-types that this data-type can be cast to safely (this usually

means without losing precision).

listpickle
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Unused.

The PyArray Type typeobject implements many of the features of Python ob-

jects including the tp as number, tp as sequence, tp as mapping, and tp as buffer

interfaces. The rich comparison (tp richcompare) is also used along with new-

style attribute lookup for methods (tp methods) and properties (tp getset). The

PyArray Type can also be sub-typed.

i TIP

The tp as number methods use a generic approach to call what-

ever function has been registered for handling the operation. The

function PyNumeric SetOps(..) can be used to register functions to

handle particular mathematical operations (for all arrays). When

the umath module is imported, it sets the numeric operations for

all arrays to the corresponding ufuncs.

The tp str and tp repr methods can also be altered using PyS-

tring SetStringFunction(...).

12.1.3 PyUFunc Type

The ufunc object is implemented by creation of the PyUFunc Type . It is a very

simple type that implements only basic getattribute behavior, printing behavior,

and has call behavior which allows these objects to act like functions. The basic

idea behind the ufunc is to hold a reference to fast 1-dimensional (vector) loops for

each data type that supports the operation. These one-dimensional loops all have

the same signature and are the key to creating a new ufunc. They are called by

the generic looping code as appropriate to implement the N-dimensional function.

There are also some generic 1-d loops defined for floating and complexfloating arrays

that allow you to define a ufunc using a single scalar function (e.g. atanh).

The core of the ufunc is the PyUFuncObject which contains all the information

needed to call the underlying C-code loops that perform the actual work. It has

the following structure.

typedef struct {
PyObject HEAD

int nin;

int nout;

int nargs;
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int identity;

PyUFuncGenericFunction *functions;

void **data;

int ntypes;

int check return;

char *name;

char *types;

char *doc;

void *ptr;

PyObject *obj;

PyObject *userloops;

} PyUFuncObject;

PyObject HEAD required for all Python objects.

nin The number of input arguments.

nout The number of output arguments.

nargs The total number of arguments (nin+nout). This must be less than

NPYMAXARGS.

identity Either PyUFunc One, PyUFunc Zero , or PyUFunc None to indicate

the identity for this operation. It is only used for a reduce-like call on an

empty array.

functions (void ) (char ** args, npy intp * dims, npy intp * steps, void * ex-

tradata )

An array of function pointers — one for each data type supported by the ufunc.

This is the vector loop that is called to implement the underlying function

dims [0] times. The first argument, args, is an array of nargs pointers to

behaved memory. Pointers to the data for the input arguments are first,

followed by the pointers to the data for the output arguments. How many

bytes must be skipped to get to the next element in the sequence is specified

by the corresponding entry in the steps array. The last argument allows the

loop to receive extra information. This is commonly used so that a single,

generic vector loop can be used for multiple functions. In this case, the actual

scalar function to call is passed in as extradata. The size of this function

pointer array is ntypes.
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data Extra data to be passed to the 1-d vector loops or NULL if no extra-data is

needed. This C-array must be the same size (i.e. ntypes) as the functions

array. NULL is used if extra data is not needed. Several C-API calls for

UFuncs are just 1-d vector loops that make use of this extra data to receive a

pointer to the actual function to call.

ntypes The number of supported data types for the ufunc. This number specifies

how many different 1-d loops (of the builtin data types) are available.

check return Obsolete and unused. However, it is set by the corresponding entry

in the main ufunc creation routine: PyUFunc FromFuncAndData (...).

name A string name for the ufunc. This is used dynamically to build the doc

attribute of ufuncs.

types An array of nargs×ntypes 8-bit type numbers which contains the type sig-

nature for the function for each of the supported (builtin) data types. For

each of the ntypes functions, the corresponding set of type numbers in this

array shows how the args argument should be interpreted in the 1-d vector

loop. These type numbers do not have to be the same type and mixed-type

ufuncs are supported.

doc Documentation for the ufunc. Should not contain the function signature as

this is generated dynamically when doc is retrieved.

ptr Any dynamically allocated memory. Currently, this is used for dynamic ufuncs

created from a python function to store room for the types, data, and name

members.

obj For ufuncs dynamically created from python functions, this member holds a

reference to the underlying Python function.

userloops A dictionary of user-defined 1-d vector loops (stored as CObject ptrs)

for user-defined types. A loop may be registered by the user for any user-

defined type. It is retrieved by type number. User defined type numbers are

always larger than NPYUSERDEF.

12.1.4 PyArrayIter Type

This is an iterator object that makes it easy to loop over an N-dimensional array. It

is the object returned from the flat attribute of an ndarray. It is also used extensively
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throughout the implementation internals to loop over an N-dimensional array. The

tp as mapping interface is implemented so that the iterator object can be indexed

(using 1-d indexing), and a few methods are implemented through the tp methods

table. This object implements the next method and can be used anywhere an

iterator can be used in Python.

The C-structure corresponding to an object of PyArrayIter Type is the

PyArrayIterObject . The PyArrayIterObject is used to keep track of a

pointer into an N-dimensional array. It contains associated information used to

quickly march through the array. The pointer can be adjusted in three basic

ways: 1) advance to the “next” position in the array in a C-style contiguous fash-

ion, 2) advance to an arbitrary N-dimensional coordinate in the array, and 3) ad-

vance to an arbitrary one-dimensional index into the array. The members of the

PyArrayIterObject structure are used in these calculations. Iterator objects

keep their own dimension and strides information about an array. This can be

adjusted as needed for “broadcasting,” or to loop over only specific dimensions.

typedef struct {
PyObject HEAD

int nd m1;

npy intp index;

npy intp size;

npy intp coordinates [NPY MAXDIMS];

npy intp dims m1[NPY MAXDIMS];

npy intp strides [NPY MAXDIMS];

npy intp backstrides [NPY MAXDIMS];

npy intp factors [NPY MAXDIMS];

PyArrayObject *ao;

char *dataptr;

Bool contiguous;

} PyArrayIterObject;

nd m1 N − 1 where N is the number of dimensions in the underlying array.

index The current 1-d index into the array.

size The total size of the underlying array.

coordinates An N -dimensional index into the array.

dims m1 The size of the array minus 1 in each dimension.
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strides The strides of the array. How many bytes needed to jump to the next

element in each dimension.

backstrides How many bytes needed to jump from the end of a dimension back

to its beginning. Note that backstrides [k]=strides [k]*dims m1 [k], but it is

stored here as an optimization.

factors This array is used in computing an N-d index from a 1-d index. It contains

needed products of the dimensions.

ao A pointer to the underlying ndarray this iterator was created to represent.

dataptr This member points to an element in the ndarray indicated by the index.

contiguous This flag is true if the underlying array is NPYC CONTIGUOUS. It is

used to simplify calculations when possible.

How to use an array iterator on a C-level is explained more fully in later

sections. Typically, you do not need to concern yourself with the inter-

nal structure of the iterator object, and merely interact with it through the

use of the macros PyArray ITER NEXT(it), PyArray ITER GOTO(it, dest), or

PyArray ITER GOTO1D(it, index). All of these macros require the argument it

to be a PyArrayIterObject * .

12.1.5 PyArrayMultiIter Type

This type provides an iterator that encapsulates the concept of broadcasting. It

allows N arrays to be broadcast together so that the loop progresses in C-style

contiguous fashion over the broadcasted array. The corresponding C-structure is

the PyArrayMultiIterObject whose memory layout must begin any object, obj,

passed in to the PyArray Broadcast (obj) function. Broadcasting is performed

by adjusting array iterators so that each iterator represents the broadcasted shape

and size, but has its strides adjusted so that the correct element from the array is

used at each iteration.

typedef struct {
PyObject HEAD

int numiter;

npy intp size;

npy intp index;

int nd;

222



npy intp dimensions [NPY MAXDIMS];

PyArrayIterObject *iters [NPY MAXDIMS];

} PyArrayMultiIterObject;

PyObject HEAD Needed at the start of every Python object (holds reference

count and type identification).

numiter The number of arrays that need to be broadcast to the same shape.

size The total broadcasted size.

index The current (1-d) index into the broadcasted result.

nd The number of dimensions in the broadcasted result.

dimensions The shape of the broadcasted result (only nd slots are used).

iters An array of iterator objects that holds the iterators for the arrays to be

broadcast together. On return, the iterators are adjusted for broadcasting.

12.1.6 PyArrayFlags Type

When the flags attribute is retrieved from Python, a special builtin object of this

type is constructed. This special type makes it easier to work with the different

flags by accessing them as attributes or by accessing them as if the object were a

dictionary with the flag names as entries.

12.1.7 ScalarArrayTypes

There is a Python type for each of the different built-in data types that can be

present in the array Most of these are simple wrappers around the corresponding

data type in C. The C-names for these types are Py<TYPE>ArrType Type

where <TYPE> can be

Bool, Byte, Short, Int, Long, LongLong, UByte, UShort,

UInt, ULong, ULongLong, Float, Double, LongDouble, CFloat,

CDouble, CLongDouble, String, Unicode, Void, and Object.

These type names are part of the C-API and can therefore be created in extension

C-code. There is also a PyIntpArrType Type and a PyUIntpArrType Type

that are simple substitutes for one of the integer types that can hold a pointer

on the platform. The structure of these scalar objects is not exposed to C-code.
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The function PyArray ScalarAsCtype (..) can be used to extract the C-type

value from the array scalar and the function PyArray Scalar (...) can be used to

construct an array scalar from a C-value.

12.2 Other C-Structures

A few new C-structures were found to be useful in the development of NumPy.

These C-structures are used in at least one C-API call and are therefore documented

here. The main reason these structures were defined is to make it easy to use the

Python ParseTuple C-API to convert from Python objects to a useful C-Object.

12.2.1 PyArray Dims

This structure is very useful when shape and/or strides information is supposed to

be interpreted. The structure is

typedef struct {
npy intp *ptr;

int len;

} PyArray Dims;

The members of this structure are

ptr A pointer to a list of (npy intp ) integers which usually represent array shape

or array strides.

len The length of the list of integers. It is assumed safe to access ptr [0] to ptr [len-1].

12.2.2 PyArray Chunk

This is equivalent to the buffer object structure in Python up to the ptr member.

On 32-bit platforms (i.e. if NPYSIZEOF INT ==NPYSIZEOF INTP ) or in Python

2.5, the len member also matches an equivalent member of the buffer object. It is

useful to represent a generic single-segment chunk of memory.

typedef struct {
PyObject HEAD

PyObject *base;

void *ptr;

npy intp len;
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int flags;

} PyArray Chunk;

The members are

PyObject HEAD Necessary for all Python objects. Included here so that the

PyArray Chunk structure matches that of the buffer object (at least to the

len member).

base The Python object this chunk of memory comes from. Needed so that memory

can be accounted for properly.

ptr A pointer to the start of the single-segment chunk of memory.

len The length of the segment in bytes.

flags Any data flags (e.g. NPYWRITEABLE) that should be used to interpret the

memory.

12.2.3 PyArrayInterface

The PyArrayInterface structure is defined so that NumPy and other exten-

sion modules can use the rapid array interface protocol. The array struct

method of an object that supports the rapid array interface protocol should return

a PyCObject that contains a pointer to a PyArrayInterface structure with the

relevant details of the array. After the new array is created, the attribute should

be DECREF’d which will free the PyArrayInterface structure. Remember to

INCREF the object (whose array struct attribute was retrieved) and point the

base member of the new PyArrayObject to this same object. In this way the

memory for the array will be managed correctly.

typedef struct {
int two;

int nd;

char typekind;

int itemsize;

int flags;

npy intp *shape;

npy intp *strides;

void *data;
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PyObject * descr;

} PyArrayInterface;

two the integer 2 as a sanity check.

nd the number of dimensions in the array.

typekind A character indicating what kind of array is present according to the

typestring convention with ’t’ -> bitfield, ’b’ -> Boolean, ’i’ -> signed integer,

’u’ -> unsigned integer, ’f’ -> floating point, ’c’ -> complex floating point,

’O’ -> object, ’S’ -> string, ’U’ -> unicode, ’V’ -> void.

itemsize the number of bytes each item in the array requires.

flags any of the bits NPYC CONTIGUOUS (1), NPYF CONTIGUOUS (2),

NPYALIGNED (0x100), NPYNOTSWAPPED(0x200), or NPYWRITEABLE

(0x400) to indicate something about the data. The NPYALIGNED,

NPYC CONTIGUOUS, and NPYF CONTIGUOUSflags can actually be deter-

mined from the other parameters. The flag NPYARRHASDESCR(0x800)

can also be set to indicate to objects consuming the version 3 array interface

that the descr member of the structure is present (it will be ignored by objects

consuming version 2 of the array interface).

shape An array containing the size of the array in each dimension.

strides An array containing the number of bytes to jump to get to the next element

in each dimension.

data A pointer to the first element of the array.

descr A Python object describing the data-type in more detail (currently an ar-

ray description list of tuples). This can be NULL if typekind and itemsize

provide enough information.

12.2.4 Internally used structures

Internally, the code uses some additional Python objects primarily for memory

management. These types are not accessible directly from Python, and are not

exposed to the C-API. They are included here only for completeness and assistance

in understanding the code.
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12.2.4.1 PyUFuncLoopObject

A loose wrapper for a C-structure that contains the information needed for loop-

ing. This is useful if you are trying to understand the ufunc looping code.

The PyUFuncLoopObject is the associated C-structure. It is defined in the

ufuncobject.h header.

12.2.4.2 PyUFuncReduceObject

A loose wrapper for the C-structure that contains the information needed for reduce-

like methods of ufuncs. This is useful if you are trying to understand the reduce,

accumulate, and reduce-at code. The PyUFuncReduceObject is the associated

C-structure. It is defined in the ufuncobject.h header.

12.2.4.3 PyUFunc Loop1d

A simple linked-list of C-structures containing the information needed to define a

1-d loop for a ufunc for every defined signature of a user-defined data-type.

12.2.4.4 PyArrayMapIter Type

Advanced indexing is handled with this Python type. It is simply a loose wrap-

per around the C-structure containing the variables needed for advanced array in-

dexing. The associated C-structure, PyArrayMapIterObject , is useful if you

are trying to understand the advanced-index mapping code. It is defined in the

arrayobject.h header. This type is not exposed to Python and could be re-

placed with a C-structure. As a Python type it takes advantage of reference-counted

memory management.
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Chapter 13

Complete API

13.1 Configuration defines

When NumPy is built, a configuration file is constructed and placed as config.h in

the NumPy include directory. This configuration file ensures that specific macros

are defined and defines other macros based on whether or not your system has

certain features. It is included by the arrayobject.h file.

13.1.1 Guaranteed to be defined

The SIZEOF <CTYPE> constants are defined so that sizeof information is avail-

able to the pre-processor.

CHAR BIT The number of bits of a char. The char is the unit of all sizeof

definitions

SIZEOF SHORT sizeof(short)

SIZEOF INT sizeof(int)

SIZEOF LONG sizeof(long)

SIZEOF LONG LONG sizeof(longlong) where longlong is defined appropriately

on the platform (A macro defines SIZEOF LONGLONG as well.)

SIZEOF PY LONG LONG

SIZEOF FLOAT sizeof(float)
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SIZEOF DOUBLE sizeof(double)

SIZEOF LONG DOUBLE sizeof(longdouble) (A macro defines

SIZEOF LONGDOUBLE as well.)

SIZEOF PY INTPTR T Size of a pointer on this platform (sizeof(void *)) (A

macro defines SIZEOF INTP as well.)

13.1.2 Possible defines

These defines will cause the compilation to ignore compatibility code that is placed

in NumPy and use the system code instead. If they are not defined, then the system

does not have that capability.

HAVE LONGDOUBLE FUNCS System has C99 long double math functions.

HAVE FLOAT FUNCS System has C99 float math functions.

HAVE INVERSE HYPERBOLIC System has inverse hyperbolic functions:

asinh, acosh, and atanh.

HAVE INVERSE HYPERBOLIC FLOAT System has C99 float extensions

to inverse hyperbolic functions: asinhf, acoshf, atanhf

HAVE INVERSE HYPERBOLIC LONGDOUBLE System has C99 long

double extensions to inverse hyperbolic functions: asinhl, acoshl, atanhl.

HAVE ISNAN System has an isnan function.

HAVE ISINF System has an isinf function.

HAVE LOG1P System has the log1p function: log (x + 1).

HAVE EXPM1 System has the expm1 function: exp (x) − 1.

HAVE RINT System has the rint function.

13.2 Array Data Types

The standard array can have 21 different data types (and has some support for

adding your own types). These data types all have an enumerated type, an enumer-

ated type-character, and a corresponding array scalar Python type object (placed

in a hierarchy). There are also standard C typedefs to make it easier to manipulate
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elements of the given data type. For the numeric types, there are also bit-width

equivalent C typedefs and named typenumbers that make it easier to select the

precision desired.

WARNING

The names for the types in c code follows c naming conventions

more closely. The Python names for these types follow Python

conventions. Thus, NPY FLOAT picks up a 32-bit float in C, but

“float ” in python corresponds to a 64-bit double. The bit-width

names can be used in both Python and C for clarity.

13.2.1 Enumerated Types

There is a list of enumerated types defined providing the basic 21 data types plus

some useful generic names. Whenever the code requires a type number, one of

these enumerated types is requested. The types are all called NPY <NAME>

where <NAME> can be

BOOL, BYTE, UBYTE, SHORT, USHORT, INT, UINT,

LONG, ULONG, LONGLONG, ULONGLONG, FLOAT,

DOUBLE, LONGDOUBLE, CFLOAT, CDOUBLE, CLONG-

DOUBLE, OBJECT, STRING, UNICODE, VOID

NTYPES, NOTYPE, USERDEF, DEFAULT TYPE

The various character codes indicating certain types are also part of an enumerated

list. References to type characters (should they be needed at all) should always use

these enumerations. The form of them is NPY <NAME>LTR where <NAME>

can be

BOOL, BYTE, UBYTE, SHORT, USHORT, INT, UINT,

LONG, ULONG, LONGLONG, ULONGLONG, FLOAT,

DOUBLE, LONGDOUBLE, CFLOAT, CDOUBLE, CLONG-

DOUBLE, OBJECT, STRING, VOID

INTP, UINTP

GENBOOL, SIGNED, UNSIGNED, FLOATING, COMPLEX

The latter group of <NAME>s corresponds to letters used in the array interface

typestring specification.
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13.2.2 Defines

13.2.2.1 Max and min values for integers

NPY MAX INT<bits>

NPY MAX UINT<bits>

NPY MIN INT<bits>

These are defined for <bits> = 8, 16, 32, 64, 128, and 256 and provide the max-

imum (minimum) value of the corresponding (unsigned) integer type. Note:

the actual integer type may not be available on all platforms (i.e. 128-bit and

256-bit integers are rare).

NPY MIN <type>

This is defined for <type> = BYTE, SHORT, INT, LONG, LONGLONG,

INTP

NPY MAX <type>

This is defined for all defined for <type> = BYTE, UBYTE, SHORT,

USHORT, INT, UINT, LONG, ULONG, LONGLONG, ULONG-

LONG, INTP, UINTP

13.2.2.2 Number of bits in data types

All NPY SIZEOF <CTYPE> constants have corresponding

NPY BITSOF <CTYPE> constants defined. The NPY BITSOF <CTYPE>

constants provide the number of bits in the data type. Specifically, the available

<CTYPE>s are

BOOL, CHAR, SHORT, INT, LONG, LONGLONG, FLOAT,

DOUBLE, LONGDOUBLE

13.2.2.3 Bit-width references to enumerated typenums

All of the numeric data types (integer, floating point, and complex) have constants

that are defined to be a specific enumerated type number. Exactly which enu-

merated type a bit-width type refers to is platform dependent. In particular, the

constants available are PyArray <NAME><BITS> where <NAME> is INT,

UINT, FLOAT, COMPLEX and <BITS> can be 8, 16, 32, 64, 80, 96, 128, 160,
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192, 256, and 512. Obviously not all bit-widths are available on all platforms for

all the kinds of numeric types. Commonly 8-, 16-, 32-, 64-bit integers; 32-, 64-bit

floats; and 64-, 128-bit complex types are available.

13.2.2.4 Integer that can hold a pointer

The constants PyArray INTP and PyArray UINTP refer to an enumerated

integer type that is large enough to hold a pointer on the platform. Index arrays

should always be converted to PyArray INTP, because the dimension of the array

is of type npy intp.

13.2.3 C-type names

There are standard variable types for each of the numeric data types and the bool

data type. Some of these are already available in the C-specification. You can

create variables in extension code with these types.

13.2.3.1 Boolean

npy bool unsigned char; The constants NPY FALSE and NPY TRUE are also

defined.

13.2.3.2 (Un)Signed Integer

Unsigned versions of the integers can be defined by pre-pending a ’u’ to the front

of the integer name.

npy (u)byte (unsigned) char

npy (u)short (unsigned) short

npy (u)int (unsigned) int

npy (u)long (unsigned) long int

npy (u)longlong (unsigned long long int)

npy (u)intp (unsigned) Py intptr t (an integer that is the size of a pointer on the

platform).
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13.2.3.3 (Complex) Floating point

npy (c)float float

npy (c)double double

npy (c)longdouble long double

complex types are structures with .real and .imag members (in that order).

13.2.3.4 Bit-width names

There are also typedefs for signed integers, unsigned integers, floating point, and

complex floating point types of specific bit-widths. The available type names are

npy int<bits>, npy uint<bits>, npy float<bits>, and

npy complex<bits>

where <bits> is the number of bits in the type and can be 8, 16, 32, 64, 128, and

256 for integer types; 16, 32, 64, 80, 96, 128, and 256 for floating-point types; and

32, 64, 128, 160, 192, and 512 for complex-valued types. Which bit-widths are

available is platform dependent. The bolded bit-widths are usually available on all

platforms.

13.2.4 Printf Formatting

For help in printing, the following strings are defined as the correct format specifier

in printf and related commands.

NPY LONGLONG FMT, NPY ULONGLONG FMT,

NPY INTP FMT, NPY UINTP FMT,

NPY LONGDOUBLE FMT

13.3 Array API

13.3.1 Array structure and data access

These macros all access the PyArrayObject structure members. The input

argument, obj, can be any PyObject * that is directly interpretable as a

PyArrayObject * (any instance of the PyArray Type and its sub-types).

PyArray DATA (void * ) (PyObject * obj)
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PyArray BYTES (char * ) (PyObject * obj)

These two macros are similar and obtain the pointer to the data-buffer for the

array. The first macro can (and should be) assigned to a particular pointer

where the second is for generic processing. If you have not guaranteed a

contiguous and/or aligned array then be sure you understand how to access

the data in the array to avoid memory and/or alignment problems.

PyArray DIMS (npy intp * ) (PyObject * arr)

PyArray STRIDES (npy intp * ) (PyObject * arr)

PyArray DIM (npy intp ) (PyObject * arr, int n)

Return the shape in the nth dimension.

PyArray STRIDE (npy intp ) (PyObject * arr, int n)

Return the stride in the nth dimension.

PyArray BASE (PyObject * ) (PyObject * arr)

PyArray DESCR (PyArray Descr * ) (PyObject * arr)

PyArray FLAGS (int ) (PyObject * arr)

PyArray ITEMSIZE (int ) (PyObject * arr)

Return the itemsize for the elements of this array.

PyArray TYPE (int ) (PyObject * arr)

Return the (builtin) typenumber for the elements of this array.

PyArray GETITEM (PyObject *) (PyObject * arr, void * itemptr)

Get a Python object from the ndarray, arr, at the location pointed to by itemptr.

Return NULL on failure.

PyArray SETITEM (int ) (PyObject * arr, void * itemptr, PyObject * obj)

Convert obj and place it in the ndarray, arr, at the place pointed to by itemptr.

Return -1 if an error occurs or 0 on success.

PyArray SIZE (npy intp ) (PyObject * arr)

Returns the total size (in number of elements) of the array.
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PyArray Size (npy intp ) (PyObject * obj)

Returns 0 if obj is not a sub-class of bigndarray. Otherwise, returns the total

number of elements in the array. Safer version of PyArray SIZE (obj ).

PyArray NBYTES (npy intp ) (PyObject * arr)

Returns the total number of bytes consumed by the array.

13.3.1.1 Data access

These functions and macros provide easy access to elements of the ndarray from C.

These work for all arrays. You may need to take care when accessing the data in

the array, however, if it is not in machine byte-order, misaligned, or not writeable.

In other words, be sure to respect the state of the flags unless you know what you

are doing, or have previously guaranteed an array that is writeable, aligned, and

in machine byte-order using PyArray FromAny. If you wish to handle all types

of arrays, the copyswap function for each type is useful for handling misbehaved

arrays. Some platforms (e.g. Solaris) do not like misaligned data and will crash if

you de-reference a misaligned pointer. Other platforms (e.g. x86 Linux) will just

work more slowly with misaligned data.

PyArray GetPtr (void * ) (PyArrayObject * aobj, npy intp * ind)

Return a pointer to the data of the ndarray, aobj, at the N-dimensional index

given by the c-array, ind, (which must be at least aobj ->nd in size). You may

want to typecast the returned pointer to the data type of the ndarray.

PyArray GETPTR1 (void * ) (PyObject * obj, <npy intp> i)

PyArray GETPTR2 (void * ) (PyObject * obj, <npy intp> i, <npy intp>

j)

PyArray GETPTR3 (void * ) (PyObject * obj, <npy intp> i, <npy intp>

j, <npy intp> k)

PyArray GETPTR4 (void * ) (PyObject * obj, <npy intp> i, <npy intp>

j, <npy intp> k, <npy intp> l)

Quick, inline access to the element at the given coordinates in the ndarray, obj,

which must have respectively 1, 2, 3, or 4 dimensions (this is not checked).

The corresponding i, j, k, and l coordinates can be any integer but will be
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interpreted as npy intp . You may want to typecast the returned pointer to

the data type of the ndarray.

13.3.2 Creating arrays

13.3.2.1 From scratch

PyArray NewFromDescr (PyObject * ) (PyTypeObject * subtype,

PyArray Descr * descr, int nd, npy intp * dims, npy intp * strides,

void * data, int flags, PyObject * obj)

This is the main array creation function. Most new arrays are created with this

flexible function. The returned object is an object of Python-type subtype,

which must be a subtype of PyArray Type . The array has nd dimensions,

described by dims. The data-type descriptor of the new array is descr. If

subtype is not &PyArray Type (e.g. a Python subclass of the ndarray), then

obj is the object to pass to the array finalize method of the subclass. If

data is NULL, then new memory will be allocated and flags can be non-zero

to indicate a Fortran-style contiguous array. If data is not NULL, then it is

assumed to point to the memory to be used for the array and the flags argu-

ment is used as the new flags for the array (except the state of NPYOWNDATA

and UPDATEIFCOPYflags of the new array will be reset). In addition, if data

is non-NULL, then strides can also be provided. If strides is NULL, then the

array strides are computed as C-style contiguous (default) or Fortran-style

contiguous (flags is nonzero for data=NULL or flags & NPYF CONTIGUOUS

is nonzero non-NULL data). Any provided dims and strides are copied into

newly allocated dimension and strides arrays for the new array object.

PyArray New (PyObject * ) (PyTypeObject * subtype, int nd, npy intp *

dims, int type num, npy intp * strides, void * data, int itemsize, int

flags, PyObject * obj)

This is similar to PyArray DescrNew (...) except you specify the data-type de-

scriptor with type num and itemsize, where type num corresponds to a builtin

(or user-defined) type. If the type always has the same number of bytes, then

itemsize is ignored. Otherwise, itemsize specifies the particular size of this

array.
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WARNING

If data is passed to PyArray NewFromDescr or PyArray New,

this memory must not be deallocated until the new array is deleted.

If this data came from another Python object, this can be accom-

plished using Py INCREFon that object and setting the base mem-

ber of the new array to point to that object. If strides are passed

in they must be consistent with the dimensions, the itemsize, and

the data of the array.

PyArray SimpleNew (PyObject * ) (int nd, npy intp * dims, int typenum)

Create a new unitialized array of type, typenum, whose size in each of nd dimen-

sions is given by the integer array, dims. This function cannot be used to

create a flexible-type array (no itemsize given).

PyArray SimpleNewFromData (PyObject * ) (int nd, npy intp * dims,

int typenum, void * data)

Create an array wrapper around data pointed to by the given pointer. The

array flags will have a default that the data area is well-behaved and C-style

contiguous. The shape of the array is given by the dims c-array of length nd.

The data-type of the array is indicated by typenum.

PyArray SimpleNewFromDescr (PyObject * ) (int nd, npy intp * dims,

PyArray Descr * descr)

Create a new array with the provided data-type descriptor, descr, of the shape

deteremined by nd and dims.

PyArray FILLWBYTE (PyObject * obj, int val)

Fill the array pointed to by obj—which must be a (subclass of) bigndarray—with

the contents of val (evaluated as a byte).

PyArray Zeros (PyObject * ) (int nd, npy intp * dims, PyArray Descr *
dtype, int fortran)

Construct a new nd -dimensional array with shape given by dims and data type

given by dtype. If fortran is non-zero, then a Fortran-order array is created,

otherwise a C-order array is created. Fill the memory with zeros (or the 0

object if dtype corresponds to PyArray OBJECT).
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PyArray ZEROS (PyObject * ) (int nd, npy intp * dims, int type num, int

fortran)

Macro form of PyArray Zeros which takes a type-number instead of a data-type

object.

PyArray Empty (PyObject * ) (int nd, npy intp * dims, PyArray Descr *

dtype, int fortran)

Construct a new nd -dimensional array with shape given by dims and data type

given by dtype. If fortran is non-zero, then a Fortran-order array is created,

otherwise a C-order array is created. The array is uninitialized unless the

data type corresponds to PyArray OBJECTin which case the array is filled

with Py None.

PyArray EMPTY (PyObject * ) (int nd, npy intp * dims, int typenum,

int fortran)

Macro form of PyArray Empty which takes a type-number, typenum, instead of

a data-type object.

PyArray Arange (PyObject * ) (double start, double stop, double step,

int typenum)

Construct a new 1-dimensional array of data-type, typenum, that ranges from

start to stop (exclusive) in increments of step. Equivalent to arange(start,

stop, step, dtype).

PyArray ArangeObj (PyObject * ) (PyObject * start, PyObject * stop,

PyObject * step, PyArray Descr * descr)

Construct a new 1-dimensional array of data-type determined by descr , that

ranges from start to stop (exclusive) in increments of step . Equivalent

to arange(start , stop , step , typenum ).

13.3.2.2 From other objects

PyArray FromAny (PyObject * ) (PyObject * op, PyArray Descr * dtype,

int min depth, int max depth, int requirements, PyObject * context)

This is the main function used to obtain an array from any nested sequence, or ob-

ject that exposes the array interface, op . The parameters allow specification
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of the required type, the minimum (min depth) and maximum (max depth)

number of dimensions acceptable, and other requirements for the array. The

dtype argument needs to be a PyArray Descr structure indicating the de-

sired data-type (including required byteorder). The dtype argument may be

NULL, indicating that any data-type (and byteorder) is acceptable. If you

want to use NULL for the dtype and ensure the array is notswapped then use

PyArray CheckFromAny . A value of 0 for either of the depth parameters

causes the parameter to be ignored. Any of the following array flags can be

added (e.g. using |) to get the requirements argument. If your code can handle

general (e.g. strided, byte-swapped, or unaligned arrays) then requirements

may be 0. Also, if op is not already an array (or does not expose the array

interface), then a new array will be created (and filled from op using the se-

quence protocol). The new array will have NPYDEFAULTas its flags member.

The context argument is passed to the array method of op and is only

used if the array is constructed that way.

NPY C CONTIGUOUS Make sure the returned array is C-style contigu-

ous

NPY F CONTIGUOUS Make sure the returned array is Fortran-style

contiguous.

NPY ALIGNED Make sure the returned array is aligned on proper bound-

aries for its data type. An aligned array has the data pointer and every

strides factor as a multiple of the alignment factor for the data-type-

descriptor.

NPY WRITEABLE Make sure the returned array can be written to.

NPY ENSURECOPY Make sure a copy is made of op. If this flag is not

present, data is not copied if it can be avoided.

NPY ENSUREARRAY Make sure the result is a base-class ndarray or

bigndarray. By default, if op is an instance of a subclass of the bigndar-

ray, an instance of that same subclass is returned. If this flag is set, an

ndarray object will be returned instead.

NPY FORCECAST Force a cast to the output type even if it cannot be

done safely. Without this flag, a data cast will occur only if it can be

done safely, otherwise an error is reaised.

NPY UPDATEIFCOPY If op is already an array, but does not satisfy the

requirements, then a copy is made (which will satisfy the requirements).
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If this flag is present and a copy (of an object that is already an array)

must be made, then the corresponding NPYUPDATEIFCOPYflag is set

in the returned copy and op is made to be read-only. When the returned

copy is deleted (presumably after your calculations are complete), its

contents will be copied back into op and the op array will be made

writeable again. If op is not writeable to begin with, then an error is

raised. If op is not already an array, then this flag has no effect.

NPY BEHAVED NPYALIGNED | NPYWRITEABLE

NPY CARRAY NPYC CONTIGUOUS| NPYBEHAVED

NPY CARRAY RO NPYC CONTIGUOUS| NPYALIGNED

NPY FARRAY NPYF CONTIGUOUS| NPYBEHAVED

NPY FARRAY RO NPYF CONTIGUOUS| NPYALIGNED

NPY DEFAULT NPYCARRAY

NPY IN ARRAY NPYCONTIGUOUS| NPYALIGNED

NPY IN FARRAY NPYF CONTIGUOUS| NPYALIGNED

NPY INOUT ARRAY NPYC CONTIGUOUS | NPYWRITEABLE |
NPYALIGNED

NPY INOUT FARRAY NPYF CONTIGUOUS | NPYWRITEABLE |
NPYALIGNED

NPY OUT ARRAY NPYC CONTIGUOUS | NPYWRITEABLE |
NPYALIGNED | NPYUPDATEIFCOPY

NPY OUT FARRAY NPYF CONTIGUOUS | NPYWRITEABLE |
NPYALIGNED | UPDATEIFCOPY

PyArray CheckFromAny (PyObject * ) (PyObject * op, PyArray Descr *
dtype, int min depth, int max depth, int requirements, PyObject * con-

text)

Nearly identical to PyArray FromAny (...) except requirements can con-

tain NPYNOTSWAPPED(over-riding the specification in dtype) and

NPYELEMENTSTRIDESwhich indicates that the array should be aligned in

the sense that the strides are multiples of the element size.

NPY NOTSWAPPED Make sure the returned array has a data-type descrip-

tor that is in machine byte-order, over-riding any specification in the dtype
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argument. Normally, the byte-order requirement is determined by the dtype

argument. If this flag is set and the dtype argument does not indicate a ma-

chine byte-order descriptor (or is NULL and the object is already an array

with a data-type descriptor that is not in machine byte-order), then a new

data-type descriptor is created and used with its byte-order field set to native.

NPY BEHAVED NS NPYALIGNED | NPYWRITEABLE| NPYNOTSWAPPED

NPY ELEMENTSTRIDES Make sure the returned array has strides that are

multiples of the element size.

PyArray FromArray (PyObject * ) (PyArrayObject * op, PyArray Descr *
newtype, int requirements)

Special case of PyArray FromAny for when op is already an array but it needs

to be of a specific newtype (including byte-order) or has certain requirements.

PyArray FromStructInterface (PyObject * ) (PyObject * op)

Returns an ndarray object from a Python object that exposes the

array struct method and follows the array interface protocol. If

the object does not contain this method then a borrowed reference to

Py NotImplemented is returned.

PyArray FromInterface (PyObject * ) (PyObject * op)

Returns an ndarray object from a Python object that exposes the

array shape and array typestr methods following the array inter-

face protocol. If the object does not contain one of these method then a

borrowed reference to Py NotImplemented is returned.

PyArray FromArrayAttr (PyObject * ) (PyObject * op, PyArray Descr *
dtype, PyObject * context)

Return an ndarray object from a Python object that exposes the array

method. The array method can take 0, 1, or 2 arguments ([dtype, con-

text]) where context is used to pass information about where the array

method is being called from (currently only used in ufuncs).

PyArray ContiguousFromAny (PyObject * ) (PyObject * op, int typenum,

int min depth, int max depth)
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This function returns a (C-style) contiguous and behaved function array from

any nested sequence or array interface exporting object, op, of (non-flexible)

type given by the enumerated typenum, of minimum depth min depth, and of

maximum depth max depth. Equivalent to a call to PyArray FromAny with

requirements set to NPYDEFAULTand the type num member of the type

argument set to typenum.

PyArray FromObject (PyObject *) (PyObject * op, int typenum, int

min depth, int max depth)

Return an aligned and in native-byteorder array from any nested sequence or

array-interface exporting object, op, of a type given by the enumerated type-

num. The minimum number of dimensions the array can have is given by

min depth while the maximum is max depth. This is equivalent to a call to

PyArray FromAny with requirements set to BEHAVED.

PyArray EnsureArray (PyObject * ) (PyObject * op)

This function steals a reference to op and makes sure that op is a

base-class ndarray. It special cases array scalars, but otherwise calls

PyArray FromAny(op , NULL, 0, 0, NPY ENSUREARRAY).

PyArray FromString (PyObject * ) (char * string, npy intp slen,

PyArray Descr * dtype, npy intp num, char * sep)

Construct a one-dimensional ndarray of a single type from a binary or (ASCII)

text string of length slen . The data-type of the array to-be-created is

given by dtype . If num is -1, then copy the entire string and return an

appropriately sized array, otherwise, num is the number of items to copy

from the string. If sep is NULL (or “”), then interpret the string as bytes

of binary data, otherwise convert the sub-strings separated by sep to items

of data-type dtype . Some data-types may not be readable in text mode and

an error will be raised if that occurs. All errors return NULL.

PyArray FromFile (PyObject * ) (FILE * fp, PyArray Descr * dtype,

npy intp num, char * sep)

Construct a one-dimensional ndarray of a single type from a binary or text file.

The open file pointer is fp , the data-type of the array to be created is given

by dtype . This must match the data in the file. If num is -1, then read until

the end of the file and return an appropriately sized array, otherwise, num is
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the number of items to read. If sep is NULL (or “”), then read from the file

in binary mode, otherwise read from the file in text mode with sep providing

the item separator. Some array types cannot be read in text mode in which

case an error is raised.

PyArray FromBuffer (PyObject * ) (PyObject * buf, PyArray Descr *
dtype, npy intp count, npy intp offset)

Construct a one-dimensional ndarray of a single type from an object, buf , that

exports the (single-segment) buffer protocol (or has an attribute buffer

that returns an object that exports the buffer protocol). A writeable buffer

will be tried first followed by a read-only buffer. The NPY WRITEABLE

flag of the returned array will reflect which one was successful. The data is

assumed to start at offset bytes from the start of the memory location for

the object. The type of the data in the buffer will be interpreted depending

on the data-type descriptor, dtype. If count is negative then it will be

determined from the size of the buffer and the requested itemsize, otherwise,

count represents how many elements should be converted from the buffer.

PyArray CopyInto (int ) (PyArrayObject * dest, PyArrayObject * src)

Copy from the source array, src , into the destination array, dest , performing a

data-type conversion if necessary. If an error occurs return -1 (otherwise 0).

The shape of src must be broadcastable to the shape of dest . The data

areas of dest and src must not overlap.

PyArray MoveInto (int ) (PyArrayObject * dest, PyArrayObject * src)

Move data from the source array, src , into the destination array, dest , perform-

ing a data-type conversion if necessary. If an error occurs return -1 (otherwise

0). The shape of src must be broadcastable to the shape of dest . The data

areas of dest and src may overlap.

PyArray GETCONTIGUOUS (PyArrayObject * ) (PyObject * op)

If op is already (C-style) contiguous and well-behaved then just return a reference,

otherwise return a (contiguous and well-behaved) copy of the array. The

parameter op must be a (sub-class of an) ndarray and no checking for that is

done.

PyArray FROM O (PyObject * ) (PyObject * obj)

243



Convert obj to an ndarray. The argument can be any nested sequence or object

that exports the array interface. This is a macro form of PyArray FromAny

using NULL, 0, 0, 0 for the other arguments. Your code must be able to handle

any data-type descriptor and any combination of data-flags to use this macro.

PyArray FROM OF (PyObject * ) (PyObject * obj, int requirements)

Similar to PyArray FROMO except it can take an argument of requirements

indicating properties the resulting array must have. Available require-

ments that can be enforced are NPYCONTIGUOUS, NPYF CONTIGUOUS,

NPYALIGNED, NPYWRITEABLE, NPYNOTSWAPPED, NPYENSURECOPY,

NPYUPDATEIFCOPY, NPYFORCECAST, and NPYENSUREARRAY. Standard

combinations of flags can also be used:

PyArray FROM OT (PyObject * ) (PyObject * obj, int typenum)

Similar to PyArray FROMOexcept it can take an argument of typenum specifying

the type-number the returned array.

PyArray FROM OTF (PyObject * ) (PyObject * obj, int typenum, int re-

quirements)

Combination of PyArray FROMOFand PyArray FROMOTallowing both a type-

num and a flags argument to be provided..

PyArray FROMANY (PyObject * ) (PyObject * obj, int typenum, int min,

int max, int requirements)

Similar to PyArray FromAny except the data-type is specified using a

typenumber. PyArray DescrFromType (typenum) is passed directly to

PyArray FromAny . This macro also adds NPYDEFAULTto requirements

if NPYENSURECOPYis passed in as requirements.

13.3.3 Dealing with types

13.3.3.1 General check of Python Type

PyArray Check (op)

Evaluates true if op is a Python object whose type is a sub-type of

PyArray Type .

PyArray CheckExact (op)

244



Evaluates true if op is a Python object with type PyArray Type .

PyArray HasArrayInterface (op, out)

If op implements any part of the array interface, then out will contain a new

reference to the newly created ndarray using the interface or out will contain

NULL if an error during conversion occurs. Otherwise, out will contain a

borrowed reference to Py NotImplemented and no error condition is set.

PyArray HasArrayInterfaceType (op, type, context, out)

If op implements any part of the array interface, then out will contain a new

reference to the newly created ndarray using the interface or out will contain

NULL if an error during conversion occurs. Otherwise, out will contain a

borrowed reference to Py NotImplemented and no error condition is set. This

version allows setting of the type and context in the part of the array interface

that looks for the array attribute.

PyArray IsZeroDim (op)

Evaluates true if op is an instance of (a subclass of) PyArray Type and has 0

dimensions.

PyArray IsScalar (op, cls)

Evaluates true if op is an instance of Py<cls>ArrType Type .

PyArray CheckScalar (op)

Evaluates true if op is either an array scalar (an instance of a sub-type of

PyGenericArr Type ), or an instance of (a sub-class of) PyArray Type

whose dimensionality is 0.

PyArray IsPythonScalar (op)

Evaluates true if op is a builtin Python “scalar” object (int, float, complex, str,

unicode, long, bool).

PyArray IsAnyScalar (op)

Evaluates true if op is either a Python scalar or an array scalar (an instance of a

sub-type of PyGenericArr Type ).
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13.3.3.2 Data-type checking

For the typenum macros, the argument is an integer representing an enumerated

array data type. For the array type checking macros the argument must be a

PyObject * that can be directly interpreted as a PyArrayObject * .

PyTypeNum ISUNSIGNED (num)

PyDataType ISUNSIGNED (descr)

PyArray ISUNSIGNED (obj)

Type represents an unsigned integer.

PyTypeNum ISSIGNED (num)

PyDataType ISSIGNED (descr)

PyArray ISSIGNED (obj)

Type represents a signed integer.

PyTypeNum ISINTEGER (num)

PyDataType ISINTEGER (descr)

PyArray ISINTEGER (obj)

Type represents any integer.

PyTypeNum ISFLOAT (num)

PyDataType ISFLOAT (descr)

PyArray ISFLOAT (obj)

Type represents any floating point number.

PyTypeNum ISCOMPLEX (num)

PyDataType ISCOMPLEX (descr)

PyArray ISCOMPLEX (obj)

Type represents any complex floating point number.

PyTypeNum ISNUMBER (num)
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PyDataType ISNUMBER (descr)

PyArray ISNUMBER (obj)

Type represents any integer, floating point, or complex floating point number.

PyTypeNum ISSTRING (num)

PyDataType ISSTRING (descr)

PyArray ISSTRING (obj)

Type represents a string data type.

PyTypeNum ISPYTHON (num)

PyDataType ISPYTHON (descr)

PyArray ISPYTHON (obj)

Type represents an enumerated type corresponding to one of the standard Python

scalar (bool, int, float, or complex).

PyTypeNum ISFLEXIBLE (num)

PyDataType ISFLEXIBLE (descr)

PyArray ISFLEXIBLE (obj)

Type represents one of the flexible array types (NPYSTRING, NPYUNICODE, or

NPYVOID).

PyTypeNum ISUSERDEF (num)

PyDataType ISUSERDEF (descr)

PyArray ISUSERDEF (obj)

Type represents a user-defined type.

PyTypeNum ISEXTENDED (num)

PyDataType ISEXTENDED (descr)

PyArray ISEXTENDED (obj)

Type is either flexible or user-defined.
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PyTypeNum ISOBJECT (num)

PyDataType ISOBJECT (descr)

PyArray ISOBJECT (obj)

Type represents object data type.

PyTypeNum ISBOOL (num)

PyDataType ISBOOL (descr)

PyArray ISBOOL (obj)

Type represents Boolean data type.

PyDataType HASFIELDS (descr)

PyArray HASFIELDS (obj)

Type has fields associated with it.

PyArray ISNOTSWAPPED (m)

Evaluates true if the data area of the ndarray m is in machine byte-order according

to the array’s data-type descriptor.

PyArray ISBYTESWAPPED (m)

Evaluates true if the data area of the ndarray m is not in machine byte-order

according to the array’s data-type descriptor.

PyArray EquivTypes (Bool ) (PyArray Descr * type1, PyArray Descr *

type2)

Return NPYTRUEif type1 and type2 actually represent equivalent types for this

platform (the fortran member of each type is ignored). For example, on

32-bit platforms, NPYLONGand NPYINT are equivalent. Otherwise return

NPYFALSE.

PyArray EquivArrTypes (Bool ) (PyArrayObject * a1, PyArrayObject *

a2)

Return NPYTRUEif a1 and a2 are arrays with equivalent types for this platform.

PyArray EquivTypenums (Bool ) (int typenum1, int typenum2)
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Special case of PyArray EquivTypes (...) that does not accept flexible data

types but may be easier to call.

PyArray EquivByteorders (int) (<byteorder> b1, <byteorder> b2)

True if byteorder characters (NPYLITTLE , NPYBIG, NPYNATIVE,

NPYIGNORE) are either equal or equivalent as to their specification of

a native byte order. Thus, on a little-endian machine NPYLITTLE and

NPYNATIVE are equivalent where they are not equivalent on a big-endian

machine.

13.3.3.3 Converting data types

PyArray Cast (PyObject * ) (PyArrayObject * arr, int typenum)

Mainly for backwards compatibility to the Numeric C-API and for simple casts

to non-flexible types. Return a new array object with the elements of arr cast

to the data-type typenum which must be one of the enumerated types and

not a flexible type.

PyArray CastToType (PyObject * ) (PyArrayObject * arr,

PyArray Descr * type)

Return a new array of the type specified, casting the elements of arr as appropri-

ate. The fortran member of the type structure will be respected in producing

the strides of the output array.

PyArray CastTo (int ) (PyArrayObject * out, PyArrayObject * in)

Cast the elements of the array in into the array out. The output array should

be writeable, have an integer-multiple of the number of elements in the input

array (more than one copy can be placed in out), and have a data type that

is one of the builtin types. Returns 0 on success and -1 if an error occurs.

PyArray GetCastFunc (PyArray VectorUnaryFunc * ) (PyArray Descr *
from, int totype)

Return the low-level casting function to cast from the given descriptor to the

builtin type number. If no casting function exists return NULL and set an

error. Using this function instead of direct access to from->f->cast will allow

support of any user-defined casting functions added to a descriptors casting

dictionary.
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PyArray CanCastSafely (int ) (int fromtype, int totype)

Returns non-zero if an array of data type fromtype can be cast to an array of data

type totype without losing information. An exception is that 64-bit integers

are allowed to be cast to 64-bit floating point values even though this can

lose precision on large integers so as not to proliferate the use of long doubles

without explict requests. Flexible array types are not checked according to

their lengths with this function.

PyArray CanCastTo (int ) (PyArray Descr * fromtype, PyArray Descr *
totype)

Returns non-zero if an array of data type fromtype (which can include

flexible types) can be cast safely to an array of data type totype

(which can include flexible types). This is basically a wrapper around

PyArray CanCastSafely with additional support for size checking if from-

type and totype are NPYSTRINGor NPYUNICODE.

PyArray ObjectType (int ) (PyObject * op, int mintype)

This function is useful for determining a common type that two or more arrays

can be converted to. It only works for non-flexible array types as no itemsize

information is passed. The mintype argument represents the minimum type

acceptable, and op represents the object that will be converted to an array.

The return value is the enumerated typenumber that represents the data-type

that op should have.

PyArray ArrayType (void ) (PyObject * op, PyArray Descr * mintype,

PyArray Descr * outtype)

This function works similarly to PyArray ObjectType (...) except it handles

flexible arrays. The mintype argument can have an itemsize member and the

outtype argument will have an itemsize member at least as big but perhaps

bigger depending on the object op.

PyArray ConvertToCommonType (PyArrayObject ** ) (PyObject * op,

int * n)

Convert a sequence of Python objects contained in op to an array of ndarrays each

having the same data type. The type is selected based on the typenumber

(larger type number is chosen over a smaller one) ignoring objects that are
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only scalars. The length of the sequence is returned in n, and an n-length

array of PyArrayObject pointers is the return value (or NULL if an error

occurs). The returned array must be freed by the caller of this routine (using

PyDataMem FREE) and all the array objects in it DECREF’d or a memory-leak

will occur. The example template-code below shows a typically usage.

mps = PyArray ConvertToCommonType(obj, &n);

if (mps==NULL) return NULL;

<code>

<before return>

for (i=0; i<n; i++) Py DECREF(mps[i]);

PyDataMem FREE(mps);

<return>

PyArray Zero (char * ) (PyArrayObject * arr)

A pointer to newly created memory of size arr ->itemsize that holds the repre-

sentation of 0 for that type. The returned pointer, ret, must be freed using

PyDataMem FREE(ret) when it is not needed anymore.

PyArray One (char * ) (PyArrayObject * arr)

A pointer to newly created memory of size arr ->itemsize that holds the repre-

sentation of 1 for that type. The returned pointer, ret, must be freed using

PyDataMem FREE(ret) when it is not needed anymore.

PyArray ValidType (int ) (int typenum)

Returns NPYTRUEif typenum represents a valid type-number (builtin or user-

defined or character code). Otherwise, this function returns NPYFALSE.

13.3.3.4 New data types

PyArray InitArrFuncs (void ) (PyArray ArrFuncs * f)

Initialize all function pointers and members to NULL.

PyArray RegisterDataType (int ) (PyArray Descr * dtype)

Register a data-type as a new user-defined data type for arrays. The type must

have most of its entries filled in. This is not always checked and errors can

produce segfaults. In particular, the typeobj member of the dtype structure
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must be filled with a Python type that has a fixed-size element-size that

corresponds to the elsize member of dtype. Also the f member must have

the required functions: nonzero, copyswap, copyswapn, getitem, setitem, and

cast (some of the cast functions may be NULL if no support is desired). To

avoid confusion, you should choose a unique character typecode but this is

not enforced and not relied on internally.

A user-defined type number is returned that uniquely identifies the

type. A pointer to the new structure can then be obtained from

PyArray DescrFromType using the returned type number. A -1 is returned

if an error occurs. If this dtype has already been registered (checked only by

the address of the pointer), then return the previously-assigned type-number.

PyArray RegisterCastFunc (int ) (PyArray Descr * descr, int totype,

PyArray VectorUnaryFunc * castfunc)

Register a low-level casting function, castfunc, to convert from the data-type,

descr, to the given data-type number, totype. Any old casting function is

over-written. A 0 is returned on success or a -1 on failure.

PyArray RegisterCanCast (int ) (PyArray Descr * descr, int totype,

PyArray SCALARKINDscalar)

Register the data-type number, totype, as castable from data-type object, descr,

of the given scalar kind. Use scalar = NPYNOSCALARto register that an

array of data-type descr can be cast safely to a data-type whose type number

is totype.

13.3.3.5 Special functions for PyArray OBJECT

PyArray INCREF (int ) (PyArrayObject * op)

Used for an array, op, that contains any Python objects. It increments the refer-

ence count of every object in the array according to the data-type of op. A -1

is returned if an error occurs, otherwise 0 is returned.

PyArray Item INCREF (void ) (char * ptr, PyArray Descr * dtype)

A function to INCREF all the objects at the location ptr according to the data-

type dtype. If ptr is the start of a record with an object at any offset, then

this will (recursively) increment the reference count of all object-like items in

the record.
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PyArray XDECREF (int ) (PyArrayObject * op)

Used for an array, op, that contains any Python objects. It decrements the

reference count of every object in the array according to the data-type of op.

Normal return value is 0. A -1 is returned if an error occurs.

PyArray Item XDECREF (void ) (char * ptr, PyArray Descr * dtype)

A function to XDECREF all the object-like items at the loacation ptr as recorded

in the data-type, dtype. This works recursively so that if dtype itself has fields

with data-types that contain object-like items, all the object-like fields will be

XDECREF’d .

PyArray FillObjectArray (void ) (PyArrayObject * arr, PyObject * obj)

Fill a newly created array with a single value obj at all locations in the structure

with object data-types. No checking is performed but arr must be of data-

type PyArray OBJECTand be single-segment and uninitialized (no previous

objects in position). Use PyArray DECREF(arr) if you need to decrement all

the items in the object array prior to calling this function.

13.3.4 Array flags

13.3.4.1 Basic Array Flags

An ndarray can have a data segment that is not a simple contiguous chunk of well-

behaved memory you can manipulate. It may not be aligned with word boundaries

(very important on some platforms). It might have its data in a different byte-

order than the machine recognizes. It might not be writeable. It might be in

Fortan-contiguous order. The array flags are used to indicate what can be said

about data associated with an array.

NPY C CONTIGUOUS The data area is in C-style contiguous order (last index

varies the fastest).

NPY F CONTIGUOUS The data area is in Fortran-style contiguous order (first

index varies the fastest).

NPY OWNDATA The data area is owned by this array.

NPY ALIGNED The data area is aligned appropriately (for all strides).

NPY WRITEABLE The data area can be written to.
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Notice that the above 3 flags are are defined so that a new, well-behaved array

has these flags defined as true.

NPY UPDATEIFCOPY The data area represents a (well-behaved) copy whose

information should be transferred back to the original when this array is

deleted.

13.3.4.2 Combinations of array flags

NPY BEHAVED NPYALIGNED | NPYWRITEABLE

NPY CARRAY NPYC CONTIGUOUS| NPYBEHAVED

NPY CARRAY RO NPYC CONTIGUOUS| NPYALIGNED

NPY FARRAY NPYF CONTIGUOUS| NPYBEHAVED

NPY FARRAY RO NPYF CONTIGUOUS| NPYALIGNED

NPY DEFAULT NPYCARRAY

NPY UPDATE ALL NPYC CONTIGUOUS | NPYF CONTIGUOUS |
NPYALIGNED

13.3.4.3 Flag-like constants

These constants are used in PyArray FromAny (and its macro forms) to specify

desired properties of the new array.

NPY FORCECAST Cast to the desired type, even if it can’t be done without

losing information.

NPY ENSURECOPY Make sure the resulting array is a copy of the original.

NPY ENSUREARRAY Make sure the resulting object is an actual ndarray (or

bigndarray), and not a sub-class.

NPY NOTSWAPPED Only used in PyArray CheckFromAny to over-ride the

byteorder of the data-type object passed in.

NPY BEHAVED NS NPYALIGNED | NPYWRITEABLE| NPYNOTSWAPPED
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13.3.4.4 Flag checking

For all of these macros arr must be an instance of a (subclass of) PyArray Type ,

but no checking is done.

PyArray CHKFLAGS (arr, flags)

The first parameter, arr, must be an ndarray or subclass. The parameter, flags,

should be an integer consisting of bitwise combinations of the possible flags an

array can have: NPYC CONTIGUOUS, NPYF CONTIGUOUS, NPYOWNDATA,

NPYALIGNED, NPYWRITEABLE, NPYUPDATEIFCOPY.

PyArray ISCONTIGUOUS (arr)

Evaluates true if arr is C-style contiguous.

PyArray ISFORTRAN (arr)

Evaluates true if arr is Fortran-style contiguous.

PyArray ISWRITEABLE (arr)

Evaluates true if the data area of arr can be written to

PyArray ISALIGNED (arr)

Evaluates true if the data area of arr is properly aligned on the machine.

PyArray ISBEHAVED (arr)

Evalutes true if the data area of arr is aligned and writeable and in machine

byte-order according to its descriptor.

PyArray ISBEHAVED RO (arr)

Evaluates true if the data area of arr is aligned and in machine byte-order.

PyArray ISCARRAY (arr)

Evaluates true if the data area of arr is C-style contiguous, and

PyArray ISBEHAVED(arr) is true.

PyArray ISFARRAY (arr)

Evaluates true if the data area of arr is Fortran-style contiguous and

PyArray ISBEHAVED(arr) is true.
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PyArray ISCARRAY RO (arr)

Evaluates true if the data area of arr is C-style contiguous, aligned, and in machine

byte-order.

PyArray ISFARRAY RO (arr)

Evaluates true if the data area of arr is Fortran-style contiguous, aligned, and in

machine byte-order.

PyArray ISONESEGMENT (arr)

Evaluates true if the data area of arr consists of a single (C-style or Fortran-style)

contiguous segment.

PyArray UpdateFlags (void ) (PyArrayObject * arr, int flagmask)

The NPYC CONTIGUOUS, NPYALIGNED, and NPYF CONTIGUOUSarray flags

can be “calculated” from the array object itself. This routine updates one or

more of these flags of arr as specified in flagmask by performing the required

calculation.

WARNING

It is important to keep the flags updated (using

PyArray UpdateFlags can help) whenever a manipulation

with an array is performed that might cause them to change.

Later calculations in NumPy that rely on the state of these flags

do not repeat the calculation to update them.

13.3.5 Array method alternative API

13.3.5.1 Conversion

PyArray GetField (PyObject * ) (PyArrayObject * self, PyArray Descr *
dtype, int offset)

Equivalent to self.getfield(dtype, offset). Return a new array of the given dtype

using the data in the current array at a specified offset in bytes. The offset

plus the itemsize of the new array type must be less than self ->descr->elsize

or an error is raised. The same shape and strides as the original array are

used. Therefore, this function has the effect of returning a field from a record
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array. But, it can also be used to select specific bytes or groups of bytes from

any array type.

PyArray SetField (int ) (PyArrayObject * self, PyArray Descr * dtype,

int offset, PyObject * val)

Equivalent to self.setfield(val, dtype, offset). Set the field starting at offset in

bytes and of the given dtype to val. The offset plus dtype->elsize must be less

than self ->descr->elsize or an error is raised. Otherwise, the val argument

is converted to an array and copied into the field pointed to. If necessary,

the elements of val are repeated to fill the destination array, But, the number

of elements in the destination must be an integer multiple of the number of

elements in val.

PyArray Byteswap (PyObject * ) (PyArrayObject * self, Bool inplace)

Equivalent to self.byteswap(inplace). Return an array whose data area is

byteswapped. If inplace is non-zero, then do the byteswap inplace and re-

turn a reference to self. Otherwise, create a byteswapped copy and leave self

unchanged.

PyArray NewCopy (PyObject * ) (PyArrayObject * old, NPYORDERorder)

Equivalent to self.copy(fortran). Make a copy of the old array. The returned ar-

ray is always aligned and writeable with data interpreted the same as the old

array. If order is NPYCORDER, then a C-style contiguous array is returned.

If order is NPYFORTRANORDER, then a Fortran-style contiguous array is re-

turned. If order is NPYANYORDER, then the array returned is Fortran-style

contiguous only if the old one is; otherwise, it is C-style contiguous.

PyArray ToList (PyObject * ) (PyArrayObject * self)

Equivalent to self.tolist(). Return a nested Python list from self.

PyArray ToString (PyObject*) (PyArrayObject* self, NPY ORDER order)

Equivalent to self.tostring(order). Return the bytes of this array in a Python

string.

PyArray ToFile (PyObject * ) (PyArrayObject * self, FILE * fp, char * sep,

char * format)
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Write the contents of self to the file pointer fp in C-style contiguous fashion.

Write the data as binary bytes if sep is the string “” or NULL. Otherwise,

write the contents of self as text using the sep string as the item separator.

Each item will be printed to the file. If the format string is not NULL or “”,

then it is a Python print statement format string showing how the items are

to be written.

PyArray Dump (int ) (PyObject * self, PyObject * file, int protocol)

Pickle the object in self to the given file (either a string or a Python file ob-

ject). If file is a Python string it is considered to be the name of a file which

is then opened in binary mode. The given protocol is used (if protocol is

negative, or the highest available is used). This is a simple wrapper around

cPickle.dump(self, file, protocol).

PyArray Dumps (PyObject * ) (PyObject * self, int protocol)

Pickle the object in self to a Python string and return it. Use the Pickle protocol

provided (or the highest available if protocol is negative).

PyArray FillWithScalar (int ) (PyArrayObject * arr, PyObject * obj)

Fill the array, arr, with the given scalar object, obj. The object is first converted

to the data type of arr, and then copied into every location. A -1 is returned

if an error occurs, otherwise 0 is returned.

PyArray View (PyObject * ) (PyArrayObject * self, PyArray Descr *
dtype)

Equivalent to self.view(dtype). Return a new view of the array self as possibly

a different data-type, dtype. If dtype is NULL, then the returned array will

have the same data type as self. The new data-type must be consistent with

the size of self. Either the itemsizes must be identical, or self must be single-

segment and the total number of bytes must be the same. In the latter case

the dimensions of the returned array will be altered in the last (or first for

Fortran-style contiguous arrays) dimension. The data area of the returned

array and self is exactly the same.

13.3.5.2 Shape Manipulation

PyArray Newshape (PyObject * ) (PyArrayObject * self, PyArray Dims*

newshape)
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Result will be a new array (pointing to the same memory location as self if

possible), but having a shape given by newshape. If the new shape is not

compatible with the strides of self, then a copy of the array with the new

specified shape will be returned.

PyArray Reshape (PyObject * ) (PyArrayObject * self, PyObject * shape)

Equivalent to self.reshape(shape) where shape is a sequence. Converts shape

to a PyArray Dims structure and calls PyArray Newshape internally.

PyArray Squeeze (PyObject * ) (PyArrayObject * self)

Equivalent to self.squeeze(). Return a new view of self with all of the dimensions

of length 1 removed from the shape.

WARNING

matrix objects are always 2-dimensional. Therefore,

PyArray Squeeze has no effect on arrays of matrix sub-class.

PyArray SwapAxes (PyObject * ) (PyArrayObject * self, int a1, int a2)

Equivalent to self.swapaxes(a1, a2 ). The returned array is a new view of the

data in self with the given axes, a1 and a2, swapped.

PyArray Resize (PyObject * ) (PyArrayObject * self, PyArray Dims* new-

shape, int refcheck)

Equivalent to self.resize(newshape, refcheck=refcheck). This function only works

on single-segment arrays. It changes the shape of self inplace and will reallo-

cate the memory for self if newshape has a different total number of elements

then the old shape. If reallocation is necessary, then self must own its data,

have self ->base==NULL , have self ->weakrefs==NULL , and (unless refcheck

is 0) not be referenced by any other array. A reference to the new array is

returned.

PyArray Transpose (PyObject * ) (PyArrayObject * self, PyArray Dims*
permute)

Equivalent to self.transpose(permute). Permute the axes of the ndarray object

self according to the data structure permute and return the result. If permute

is NULL, then the resulting array has its axes reversed. For example if self
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has shape 10× 20× 30, and permute.ptr is (0,2,1) the shape of the result is

10 × 30 × 20. If permute is NULL, the shape of the result is 30 × 20 × 10.

PyArray Flatten (PyObject * ) (PyArrayObject * self, NPYORDERorder)

Equivalent to self.flatten(order). Return a 1-d copy of the array. If order is

NPYFORTRANORDERthe elements are scanned out in Fortran order (first-

dimension varies the fastest). If order is NPYCORDER, the elements of

self are scanned in C-order (last dimension varies the fastest). If order

NPYANYORDER, then the result of PyArray ISFORTRAN(self ) is used to

determine which order to flatten.

PyArray Ravel (PyObject * ) (PyArrayObject * self, NPYORDERorder)

Equivalent to self.ravel(order). Same basic functionality as

PyArray Flatten (self, order) except if order is 0 and self is C-style

contiguous, the shape is altered but no copy is performed.

13.3.5.3 Item selection and manipulation

PyArray TakeFrom (PyObject * ) (PyArrayObject * self, PyObject * in-

dices, int axis, PyArrayObject * ret, NPYCLIPMODEclipmode)

Equivalent to self.take(indices, axis, ret, clipmode) except axis=None in Python

is obtained by setting axis=NPYMAXDIMSin C. Extract the items from self

indicated by the integer-valued indices along the given axis. The clipmode

argument can be NPYRAISE, NPYWRAP, or NPYCLIP to indicate what to

do with out-of-bound indices. The ret argument can specify an output array

rather than having one created internally.

PyArray PutTo (PyObject * ) (PyArrayObject * self, PyObject * values,

PyObject * indices, NPYCLIPMODEclipmode)

Equivalent to self.put(values, indices, clipmode). Put values into self at the

corresponding (flattened) indices. If values is too small it will be repeated as

necessary.

PyArray PutMask (PyObject * ) (PyArrayObject * self, PyObject * values,

PyObject * mask)

Place the values in self wherever corresponding positions (using a flattened con-

text) in mask are true. The mask and self arrays must have the same total

number of elements. If values is too small, it will be repeated as necessary.
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PyArray Repeat (PyObject * ) (PyArrayObject * self, PyObject * op, int

axis)

Equivalent to self.repeat(op, axis). Copy the elements of self, op times along

the given axis. Either op is a scalar integer or a sequence of length self -

>dimensions[axis ] indicating how many times to repeat each item along the

axis.

PyArray Choose (PyObject * ) (PyArrayObject * self, PyObject * op,

PyArrayObject * ret, NPYCLIPMODEclipmode)

Equivalent to self.choose(op, ret, clipmode). Create a new array by selecting

elements from the sequence of arrays in op based on the integer values in self.

The arrays must all be broadcastable to the same shape and the entries in self

should be between 0 and len(op). The output is placed in ret unless it is NULL

in which case a new output is created. The clipmode argument determines

behavior for when entries in self are not between 0 and len(op).

NPY RAISE raise a ValueError;

NPY WRAP wrap values <0 by adding len(op) and values >=len(op) by

subtracting len(op) until they are in range;

NPY CLIP all values are clipped to the region [0, len(op) ).

PyArray Sort (PyObject * ) (PyArrayObject * self, int axis)

Equivalent to self.sort(axis). Return an array with the items of self sorted along

axis.

PyArray ArgSort (PyObject * ) (PyArrayObject * self, int axis)

Equivalent to self.argsort(axis). Return an array of indices such that selection

of these indices along the given axis would return a sorted version of self.

If self ->descr is a data-type with fields defined, then self->descr->names is

used to determine the sort order. A comparison where the first field is equal

will use the second field and so on. To alter the sort order of a record array,

create a new data-type with a different order of names and construct a view

of the array with that new data-type.

PyArray LexSort (PyObject * ) (PyObject * sort keys, int axis)
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Given a sequence of arrays (sort keys) of the same shape, return an array of

indices (similar to PyArray ArgSort (...)) that would sort the arrays lexi-

cographically. A lexicographic sort specifies that when two keys are found to

be equal, the order is based on comparison of subsequent keys. A merge sort

(which leaves equal entries unmoved) is required to be defined for the types.

The sort is accomplished by sorting the indices first using the first sort key

and then using the second sort key and so forth. This is equivalent to the

lexsort(sort keys, axis) Python command. Because of the way the merge-sort

works, be sure to understand the order the sort keys must be in (reversed

from the order you would use when comparing two elements).

If these arrays are all collected in a record array, then PyArray Sort (...) can

also be used to sort the array directly.

PyArray SearchSorted (PyObject * ) (PyArrayObject * self, PyObject *

values)

Equivalent to self.searchsorted(values). Assuming self is a 1-d array in ascend-

ing order representing bin boundaries then the output is an array the same

shape as values of bin numbers, giving the bin into which each item in values

would be placed. No checking is done on whether or not self is in ascending

order.

PyArray Diagonal (PyObject * ) (PyArrayObject * self, int offset, int

axis1, int axis2)

Equivalent to self.diagonal(offset, axis1, axis2 ). Return the offset diagonals of

the 2-d arrays defined by axis1 and axis2.

PyArray Nonzero (PyObject * ) (PyArrayObject * self)

Equivalent to self.nonzero(). Returns a tuple of index arrays that select elements

of self that are nonzero. If (nd=PyArray NDIM(self ))==1, then a single

index array is returned. The index arrays have data type NPYINTP . If a

tuple is returned (nd6=1), then its length is nd.

PyArray Compress (PyObject * ) (PyArrayObject * self, PyObject * condi-

tion, int axis, PyArrayObject * out)

Equivalent to self.compress(condition, axis). Return the elements along axis

corresponding to elements of condition that are true.
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13.3.5.4 Calculation

i TIP

Pass in NPY MAXDIMS for axis in order to achieve the same effect

that is obtained by passing in axis = None in Python (treating the

array as a 1-d array).

PyArray ArgMax (PyObject * ) (PyArrayObject * self, int axis)

Equivalent to self.argmax(axis). Return the index of the largest element of self

along axis.

PyArray ArgMin (PyObject * ) (PyArrayObject * self, int axis)

Equivalent to self.argmin(axis). Return the index of the smallest element of self

along axis.

PyArray Max (PyObject * ) (PyArrayObject * self, int axis,

PyArrayObject * out)

Equivalent to self.max(axis). Return the largest element of self along the given

axis.

PyArray Min (PyObject * ) (PyArrayObject * self, int axis,

PyArrayObject * out)

Equivalent to self.min(axis). Return the smallest element of self along the given

axis.

PyArray Ptp (PyObject * ) (PyArrayObject * self, int axis,

PyArrayObject * out)

Equivalent to self.ptp(axis). Return the difference between the largest element

of self along axis and the smallest element of self along axis.

NOTE

The rtype argument specifies the data-type the reduction should

take place over. This is important if the data-type of the array

is not “large” enough to handle the output. By default, all inte-

ger data-types are made at least as large as NPY LONG for the

“add” and “multiply” ufuncs (which form the basis for mean, sum,

cumsum, prod, and cumprod functions).
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PyArray Mean (PyObject * ) (PyArrayObject * self, int axis, int rtype,

PyArrayObject * out)

Equivalent to self.mean(axis, rtype). Returns the mean of the elements along

the given axis, using the enumerated type rtype as the data type to sum in.

Default sum behavior is obtained using PyArray NOTYPEfor rtype.

PyArray Trace (PyObject * ) (PyArrayObject * self, int offset, int axis1,

int axis2, int rtype, PyArrayObject * out)

Equivalent to self.trace(offset, axis1, axis2, rtype). Return the sum (using rtype

as the data type of summation) over the offset diagonal elements of the 2-d

arrays defined by axis1 and axis2 variables. A positive offset chooses diagonals

above the main diagonal. A negative offset selects diagonals below the main

diagonal.

PyArray Clip (PyObject * ) (PyArrayObject * self, PyObject * min,

PyObject * max)

Equivalent to self.clip(min, max ). Clip an array, self, so that values larger than

max are fixed to max and values less than min are fixed to min.

PyArray Conjugate (PyObject * ) (PyArrayObject * self)

Equivalent to self.conjugate() and self.conj() Return the complex conjugate of

self. If self is not of complex data type, then return self with an reference.

PyArray Round (PyObject * ) (PyArrayObject * self, int decimals,

PyArrayObject * out)

Equivalent to self.round(decimals, out). Returns the array with elements

rounded to the nearest decimal place. The decimal place is defined as the

10−decimals digit so that negative decimals cause rounding to the nearest 10’s,

100’s, etc. If out is NULL, then the output array is created, otherwise the

output is placed in out which must be the correct size and type.

PyArray Std (PyObject * ) (PyArrayObject * self, int axis, int rtype,

PyArrayObject * out)

Equivalent to self.std(axis, rtype). Return the standard deviation using data

along axis converted to data type rtype.
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PyArray Sum (PyObject * ) (PyArrayObject * self, int axis, int rtype,

PyArrayObject * out)

Equivalent to self.sum(axis, rtype). Return 1-d vector sums of elements in

self along axis. Perform the sum after converting data to data type rtype.

PyArray CumSum (PyObject * ) (PyArrayObject * self, int axis, int rtype,

PyArrayObject * out)

Equivalent to self.cumsum(axis, rtype). Return cumulative 1-d sums of ele-

ments in self along axis. Perform the sum after converting data to data type

rtype.

PyArray Prod (PyObject * ) (PyArrayObject * self, int axis, int rtype,

PyArrayObject * out)

Equivalent to self.prod(axis, rtype). Return 1-d products of elements in self

along axis. Perform the product after converting data to data type rtype.

PyArray CumProd (PyObject * ) (PyArrayObject * self, int axis, int

rtype, PyArrayObject * out)

Equivalent to self.cumprod(axis, rtype). Return 1-d cumulative products of

elements in self along axis . Perform the product after converting data to

data type rtype .

PyArray All (PyObject * ) (PyArrayObject * self, int axis,

PyArrayObject * out)

Equivalent to self.all(axis). Return an array with True elements for every 1-d

sub-array of self defined by axis in which all the elements are True.

PyArray Any (PyObject * ) (PyArrayObject * self, int axis,

PyArrayObject * out)

Equivalent to self.any(axis). Return an array with True elements for every 1-d

sub-array of self defined by axis in which any of the elements are True.

13.3.6 Functions

13.3.6.1 Array Functions

PyArray AsCArray (int ) (PyObject ** op, void * ptr, npy intp * dims,

int nd, int typenum, int itemsize)
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Sometimes it is useful to access a multidimensional array as a C-style multi-

dimensional array so that algorithms can be implemented using C’s a[i][j][k]

syntax. This routine returns a pointer, ptr, that simulates this kind of C-style

array, for 1-, 2-, and 3-d ndarrays.

op The address to any Python object. This Python object will be replaced

with an equivalent well-behaved, C-style contiguous, ndarray of the given

data type specifice by the last two arguments. Be sure that stealing a

reference in this way to the input object is justified.

ptr The address to a (ctype* for 1-d, ctype** for 2-d or ctype*** for 3-d)

variable where ctype is the equivalent C-type for the data type. On

return, ptr will be addressable as a 1-d, 2-d, or 3-d array.

dims An output array that contains the shape of the array object. This array

gives boundaries on any looping that will take place.

nd The dimensionality of the array (1, 2, or 3).

typenum The expected data type of the array.

itemsize This argument is only needed when typenum represents a flexible

array. Otherwise it should be 0.

The simulation of a C-style array is not complete for 2-d and 3-d arrays. For

example, the simulated arrays of pointers cannot be passed to subroutines

expecting specific, statically-defined 2-d and 3-d arrays. To pass to functions

requiring those kind of inputs, you must statically define the required array

and copy data.

PyArray Free (int ) (PyObject * op, void * ptr)

Must be called with the same objects and memory locations returned from

PyArray AsCArray (...). This function cleans up memory that otherwise

would get leaked.

PyArray Concatenate (PyObject * ) (PyObject * obj, int axis)

Join the sequence of objects in obj together along axis into a single array. If the

dimensions or types are not compatible an error is raised.

PyArray InnerProduct (PyObject * ) (PyObject * obj1, PyObject * obj2)

Compute a product-sum over the last dimensions of obj1 and obj2. Neither array

is conjugated.
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PyArray MatrixProduct (PyObject * ) (PyObject * obj1, PyObject * obj)

Compute a product-sum over the last dimension of obj1 and the second-to-last

dimension of obj2. For 2-d arrays this is a matrix-product. Neither array is

conjugated.

PyArray CopyAndTranspose (PyObject * ) (PyObject * op)

A specialized copy and transpose function that works only for 2-d arrays. The

returned array is a transposed copy of op.

PyArray Correlate (PyObject * ) (PyObject * op1, PyObject * op2, int

mode)

Compute the 1-d correlation of the 1-d arrays op1 and op2. The correlation is

computed at each output point by multiplying op1 by a shifted version of op2

and summing the result. As a result of the shift, needed values outside of the

defined range of op1 and op2 are interpreted as zero. The mode determines

how many shifts to return: 0 - return only shifts that did not need to assume

zero-values; 1 - return an object that is the same size as op1, 2 - return all

possible shifts (any overlap at all is accepted).

PyArray Where (PyObject * ) (PyObject * condition, PyObject * x,

PyObject * y)

If both x and y are NULL, then return PyArray Nonzero (condition). Oth-

erwise, both x and y must be given and the object returned is shaped like

condition and has elements of x and y where condition is respectively True

or False.

13.3.6.2 Other functions

PyArray CheckStrides (Bool ) (int elsize, int nd, npy intp numbytes,

npy intp * dims, npy intp * newstrides)

Determine if newstrides is a strides array consistent with the memory of an

nd -dimensional array with shape dims and element-size, elsize. The new-

strides array is checked to see if jumping by the provided number of bytes

in each direction will ever mean jumping more than numbytes which is the

assumed size of the available memory segment. If numbytes is 0, then an

equivalent numbytes is computed assuming nd, dims, and elsize refer to a

267



single-segment array. Return NPYTRUEif newstrides is acceptable, otherwise

return NPYFALSE.

PyArray MultiplyList (npy intp ) (npy intp * seq, int n)

PyArray MultiplyIntList (int ) (int * seq, int n)

Both of these routines multiply an n-length array, seq, of integers and return the

result. No overflow checking is performed.

PyArray CompareLists (int ) (npy intp * l1, npy intp * l2, int n)

Given two n-length arrays of integers, l1, and l2, return 1 if the lists are identical;

otherwise, return 0.

13.3.7 Array Iterators

An array iterator is a simple way to access the elements of an N-dimensional array

quickly and efficiently. Section 15.1.1 provides more description and examples of

this useful approach to looping over an array.

PyArray IterNew (PyObject * ) (PyObject * arr)

Return an array iterator object from the array, arr. This is equivalent to arr.flat.

The array iterator object makes it easy to loop over an N-dimensional non-

contiguous array in C-style contiguous fashion.

PyArray IterAllButAxis (PyObject * ) (PyObject * arr, int *axis)

Return an array iterator that will iterate over all axes but the one provided in

*axis. The returned iterator cannot be used with PyArray ITER GOTO1D.

This iterator could be used to write something similar to what ufuncs do

wherein the loop over the largest axis is done by a separate sub-routine. If

*axis is negative then *axis will be set to the axis having the smallest stride

and that axis will be used.

PyArray BroadcastToShape (PyObject * )(PyObject * arr, npy intp *di-

mensions, int nd)

Return an array iterator that is broadcast to iterate as an array of the shape

provided by dimensions and nd.

PyArrayIter Check (int ) (PyObject * op)
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Evaluates true if op is an array iterator (or instance of a subclass of the array

iterator type).

PyArray ITER RESET (void ) (PyArrayIterObject * iterator)

Reset an iterator to the beginning of the array.

PyArray ITER NEXT (void ) (PyArrayIterObject * iterator)

Incremement the index and the dataptr members of the iterator to point to the

next element of the array. If the array is not (C-style) contiguous, also incre-

ment the N-dimensional coordinates array.

PyArray ITER GOTO (void ) (PyArrayIterObject * iterator, npy intp *

destination)

Set the iterator index, dataptr, and coordinates members to the location in the

array indicated by the N-dimensional c-array, destination, which must have

size at least iterator ->nd m1+1.

PyArray ITER GOTO1D (PyArrayIterObject * iterator, npy intp in-

dex)

Set the iterator index and dataptr to the location in the array indicated by the

integer index which points to an element in the C-styled flattened array.

13.3.8 Broadcasting (multi-iterators)

PyArray MultiIterNew (PyObject * ) (int num, ...)

A simplified interface to broadcasting. This function takes the number of arrays

to broadcast and then num extra (PyObject * ) arguments. These arguments

are converted to arrays and iterators are created. PyArray Broadcast is

then called on the resulting multi-iterator object. The resulting, broadcasted

mult-iterator object is then returned. A broadcasted operation can then be

performed using a single loop and using PyArray MultiIter NEXT(..)

PyArray MultiIter RESET (void ) (PyObject * multi)

Reset all the iterators to the beginning in a multi-iterator object, multi.

PyArray MultiIter NEXT (void ) (PyObject * multi)
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Advance each iterator in a multi-iterator object, multi, to its next (broadcasted)

element.

PyArray MultiIter DATA (char * )(PyObject * multi, int i)

Return the data-pointer of the ith iterator in a multi-iterator object.

PyArray MultiIter NEXTi (void ) (PyObject * multi, int i)

Advance the pointer of only the ith iterator.

PyArray MultiIter GOTO (void ) (PyObject * multi, npy intp * destina-

tion)

Advance each iterator in a multi-iterator object, multi, to the given N -dimensional

destination where N is the number of dimensions in the broadcasted array.

PyArray MultiIter GOTO1D (void) (PyObject * multi, npy intp index)

Advance each iterator in a multi-iterator object, multi, to the corresponding lo-

cation of the index into the flattened broadcasted array.

PyArray Broadcast (int ) (PyArrayMultiIterObject * mit)

This function encapsulates the broadcasting rules. The mit container should al-

ready contain iterators for all the arrays that need to be broadcast. On return,

these iterators will be adjusted so that iteration over each simultaneously will

accomplish the broadcasting. A negative number is returned if an error occurs.

PyArray RemoveSmallest (int ) (PyArrayMultiIterObject * mit)

This function takes a multi-iterator object that has been previously “broad-

casted,” finds the dimension with the smallest “sum of strides” in the broad-

casted result and adapts all the iterators so as not to iterate over that di-

mension (by effectively making them of length-1 in that dimension). The

corresponding dimension is returned unless mit ->nd is 0, then -1 is returned.

This function is useful for constructing ufunc-like routines that broadcast their

inputs correctly and then call a strided 1-d version of the routine as the inner-

loop. This 1-d version is usually optimized for speed and for this reason the

loop should be performed over the axis that won’t require large stride jumps.
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13.3.9 Array Scalars

PyArray Return (PyObject * ) (PyArrayObject * arr)

This function checks to see if arr is a 0-dimensional array and, if so, returns the

appropriate array scalar. It should be used whenever 0-dimensional arrays

could be returned to Python.

PyArray Scalar (PyObject * ) (void * data, PyArray Descr * dtype,

PyObject * itemsize)

Return an array scalar object of the given enumerated typenum and itemsize

by copying from memory pointed to by data. If swap is nonzero then this

function will byteswap the data if appropriate to the data-type because array

scalars are always in correct machine-byte order.

PyArray ToScalar (PyObject * ) (void * data, PyArrayObject * arr)

Return an array scalar object of the type and itemsize indicated by the array

object arr copied from the memory pointed to by data and swapping if the

data in arr is not in machine byte-order.

PyArray FromScalar (PyObject * ) (PyObject * scalar, PyArray Descr *
outcode)

Return a 0-dimensional array of type determined by outcode from scalar which

should be an array-scalar object. If outcode is NULL, then the type is deter-

mined from scalar.

PyArray ScalarAsCtype (void ) (PyObject * scalar, void * ctypeptr)

Return in ctypeptr a pointer to the actual value in an array scalar. There is no

error checking so scalar must be an array-scalar object, and ctypeptr must

have enough space to hold the correct type. For flexible-sized types, a pointer

to the data is copied into the memory of ctypeptr, for all other types, the

actual data is copied into the address pointed to by ctypeptr.

PyArray CastScalarToCtype (void ) (PyObject * scalar, void * ctypeptr,

PyArray Descr * outcode)

Return the data (cast to the data type indicated by outcode) from the array-

scalar, scalar, into the memory pointed to by ctypeptr (which must be large

enough to handle the incoming memory).
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PyArray TypeObjectFromType (PyObject * ) (int type)

Returns a scalar type-object from a type-number, type. Equivalent to

PyArray DescrFromType (type)->typeobj except for reference counting

and error-checking. Returns a new reference to the typeobject on success

or NULL on failure.

PyArray ScalarKind (NPYSCALARKIND) (int typenum, PyArrayObject **
arr)

Return the kind of scalar represented by typenum and the array in *arr (if arr

is not NULL). The array is assumed to be rank-0 and only used if typenum

represents a signed integer. If arr is not NULLand the first element is negative

then NPYINTNEG SCALARis returned, otherwise NPYINTPOS SCALARis

returned. The possible return values are NPY<kind> SCALARwhere <kind>

can be INTPOS, INTNEG, FLOAT, COMPLEX, BOOL, or OBJECT.

NPYNOSCALARis also an enumerated value NPYSCALARKINDvariables can

take on.

PyArray CanCoerceScalar (int ) (char thistype, char neededtype,

NPYSCALARKINDscalar)

Implements the rules for scalar coercion. Scalars are only silently co-

erced from thistype to neededtype if this function returns nonzero.

If scalar is NPYNOSCALAR, then this function is equivalent to

PyArray CanCastSafely . The rule is that scalars of the same KIND can

be coerced into arrays of the same KIND. This rule means that high-precision

scalars will never cause low-precision arrays of the same KIND to be upcast.
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13.3.10 Data-type descriptors

WARNING

Data-type objects must be reference counted so be aware of the

action on the data-type reference of different C-API calls. The

Rule is that when a data-type descriptor object is returned it is

a new reference. Functions that take PyArray Descr * objects

and return arrays steal references to their inputs unless otherwise

noted. Unless you just created the data-type object you must usu-

ally increase the reference count of an object passed in describing

the data-type.

PyArrayDescr Check (int ) (PyObject * obj)

Evaluates as true if obj is a data-type object (PyArray Descr * ).

PyArray DescrNew (PyArray Descr * ) (PyArray Descr * obj)

Return a new data-type object copied from obj (the fields reference is just updated

so that the new object points to the same fields dictionary if any).

PyArray DescrNewFromType (PyArray Descr * ) (int typenum)

Create a new data-type object from the built-in (or user-registered) data-type

indicated by typenum. All builtin types should not have any of their fields

changed. This creates a new copy of the PyArray Descr structure so that

you can fill it in as appropriate. This function is especially needed for flexible

data-types which need to have a new elsize member in order to be meaningful

in array construction.

PyArray DescrNewByteorder (PyArray Descr * ) (PyArray Descr * obj,

char newendian)

Create a new data-type object with the byteorder set according to newendian.

All referenced data-type objects (in subdescr and fields members of the data-

type object) are also changed (recursively). If a byteorder of NPYIGNOREis

encountered it is left alone. If newendian is NPYSWAP, then all byte-orders

are swapped. Other valid newendian values are NPYNATIVE, NPYLITTLE ,

and NPYBIG which all cause the returned data-typed descriptor (and all it’s

referenced data-type descriptors) to have the corresponding byte-order.
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PyArray DescrFromObject (PyArray Descr * ) (PyObject * op,

PyArray Descr * mintype)

Determine an appropriate data-type object from the object op (which should be

a “nested” sequence object) and the minimum data-type descriptor mintype

(which can be NULL). Similar in behavior to array(op).dtype. Don’t confuse

this function with PyArray DescrConverter . This function essentially

looks at all the objects in the (nested) sequence and determines the data-type

from the elements it finds.

PyArray DescrFromScalar (PyArray Descr * ) (PyObject * scalar)

Return a data-type object from an array-scalar object. No checking is done to be

sure that scalar is an array scalar. If no suitable data-type can be determined,

then a data-type of NPY OBJECT is returned by default.

PyArray DescrFromType (PyArray Descr * ) (int typenum)

Returns a data-type object corresponding to typenum. The typenum can be one

of the enumerated types, a character code for one of the enumerated types,

or a user-defined type.

PyArray DescrConverter (int ) (PyObject * obj, PyArray Descr ** dtype)

Convert any compatible Python object, obj, to a data-type object in dtype. A

large number of Python objects can be converted to data-type objects. See

Chapter 7 for a complete description. This version of the converter converts

None objects to a NPYDEFAULTTYPE data-type object. This function can

be used with the “O&” character code in PyArg ParseTuple processing.

PyArray DescrConverter2 (int ) (PyObject * obj, PyArray Descr **
dtype)

Convert any compatible Python object, obj, to a data-type object in dtype. This

version of the converter converts None objects so that the returned data-

type is NULL. This function can also be used with the “O&” character in

PyArg ParseTuple processing.

Pyarray DescrAlignConverter (int ) (PyObject * obj, PyArray Descr **
dtype)

Like PyArray DescrConverter except it aligns C-struct-like objects on word-

boundaries as the compiler would.
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Pyarray DescrAlignConverter2 (int ) (PyObject * obj, PyArray Descr **

dtype)

Like PyArray DescrConverter2 except it aligns C-struct-like objects on word-

boundaries as the compiler would.

PyArray FieldNames (PyObject * )(PyObject * dict)

Take the fields dictionary, dict, such as the one attached to a data-type object

and construct an ordered-list of field names such as is stored in the names

field of the PyArray Descr object.

13.3.11 Conversion Utilities

13.3.11.1 For use with PyArg ParseTuple

All of these functions can be used in PyArg ParseTuple (...) with the “O&”

format specifier to automatically convert any Python object to the required C-

object. All of these functions return NPYSUCCEEDif successful and NPYFAIL if

not. The first argument to all of these function is a Python object. The second

argument is the address of the C-type to convert the Python object to.

WARNING

Be sure to understand what steps you should take to manage the

memory when using these conversion functions. These functions

can require freeing memory, incrementing or decrementing refer-

ence counts of specific objects based on your use.

PyArray Converter (int ) (PyObject * obj, PyObject ** address)

Convert any Python object to a PyArrayObject . If PyArray Check (obj)

is TRUE then its reference count is incremented and a reference placed

in address. If obj is not an array, then convert it to an array using

PyArray FromAny . No matter what is returned, you must DECREF the

object returned by this routine in address when you are done with it.

PyArray OutputConverter (int )(PyObject * obj, PyArrayObject ** ad-

dress)

This is a default converter for output arrays given to functions. If obj is

Py None or NULL, then *address will be NULL but the call will succeed.
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If PyArray Check (obj ) is TRUE then it is returned in *address without

incrementing its reference count.

PyArray IntpConverter (int ) (PyObject * obj, PyArray Dims* seq)

Convert any Python sequence, obj, smaller than NPYMAXDIMSto an array of

npy intp’s . The Python sequence could also be a single number. The seq

variable is a pointer to a structure with members ptr and len. On successful

return, seq->ptr contains a pointer to memory that must be freed to avoid

a memory leak. The restriction on memory size allows this converter to be

conveniently used for sequences intended to be interpreted as array shapes.

PyArray BufferConverter (int ) (PyObject * obj, PyArray Chunk* buf)

Convert any Python object, obj, with a (single-segment) buffer interface to a

variable with members that detail the object’s use of its chunk of memory. The

buf variable is a pointer to a structure with base, ptr, len, and flags members.

The PyArray Chunk structure is binary compatibile with the Python’s buffer

object (through its len member on 32-bit platforms and its ptr member on

64-bit platforms or in Python 2.5). On return, the base member is set to obj

(or its base if obj is already a buffer object pointing to another object). If you

need to hold on to the memory be sure to INCREF the base member. The

chunk of memory is pointed to by buf ->ptr member and has length buf ->len.

The flags member of buf is NPYBEHAVEDROwith the NPYWRITEABLEflag

set if obj has a writeable buffer interface.

PyArray AxisConverter (int ) (PyObject * obj, int * axis)

Convert a Python object, obj, representing an axis argument to the proper value

for passing to the functions that take an integer axis. Specifically, if obj

is None, set axis to NPYMAXDIMSwhich is interpreted by all these C-API

functions correctly.

PyArray BoolConverter (int ) (PyObject * obj, Bool * value)

Convert any Python object, obj, to NPYTRUEor NPYFALSE, and place the result

in value.

PyArray ByteorderConverter (int ) (PyObject * obj, char * endian)

Convert Python strings into the corresponding byte-order character: ’>’, ’<’, ’s’,

’=’, or ’|’.
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PyArray SortkindConverter (int ) (PyObject * obj, NPYSORTKIND* sort)

Convert Python strings into one of NPYQUICKSORT(starts with ’q’ or ’Q’) ,

NPYHEAPSORT(starts with ’h’ or ’H’), or NPYMERGESORT(starts with ’m’

or ’M’).

PyArray SearchsideConverter (int ) (PyObject * obj, NPYSEARCHSIDE*

side)

Convert Python strings into one of NPYSEARCHLEFT(starts with ’l’ or ’L’), or

NPYSEARCHRIGHT(starts with ’r’ or ’R’).

13.3.11.2 Other conversions

PyArray PyIntAsInt (int ) (PyObject * op)

Convert all kinds of Python objects (including arrays and array scalars) to a

standard integer. On error, -1 is returned and an exception set. You may find

useful the macro:

#define error converting(x) (((x) == -1) && PyErr Occurred()

PyArray PyIntAsIntp (npy intp ) (PyObject * op)

Convert all kinds of Python objects (including arrays and array scalars) to a

(platform-pointer-sized) integer. On error, -1 is returned and an exception

set.

PyArray IntpFromSequence (int ) (PyObject * seq, npy intp * vals, int

maxvals)

Convert any Python sequence (or single Python number) passed in as seq to

(up to) maxvals pointer-sized integers and place them in the vals array. The

sequence can be smaller then maxvals as the number of converted objects is

returned.

PyArray TypestrConvert (int ) (int itemsize, int gentype)

Convert typestring characters (with itemsize) to basic enumerated data types.

The typestring character corresponding to signed and unsigned integers, float-

ing point numbers, and complex-floating point numbers are recognized and

converted. Other values of gentype are returned. This function can be used

to convert, for example, the string ’f4’ to NPYFLOAT32.
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13.3.12 Miscellaneous

13.3.12.1 Importing the API

In order to make use of the C-API from another extension module, the

import array () command must be used. If the extension module is self-contained

in a single .c file, then that is all that needs to be done. If however, the extension

module involve multiple files where the C-API is needed then some additional steps

must be taken.

import array (void) (void)

This function must be called in the initialization section of a module that will

make use of the C-API. It imports the module where the function-pointer

table is stored and points the correct variable to it.

PY ARRAY UNIQUE SYMBOL

NO IMPORT ARRAY

Using these #defines you can use the C-API in multiple files for a single ex-

tension module. In each file you must define PY ARRAYUNIQUESYMBOLto

some name that will hold the C-API (e.g. myextension ARRAY API). This

must be done before including the numpy/arrayobject.h file. In the module

intialization routine you call import array (). In addition, in the files that

do not have the module initialization sub routine define NOIMPORTARRAY

prior to including numpy/arrayobject.h.

Suppose I have two files coolmodule.c and coolhelper.c which need to be compiled

and linked into a single extension module. Suppose coolmodule.c contains

the required initcool module initialization function (with the import array()

function called). Then, coolmodule.c would have at the top:

#define PY ARRAYUNIQUESYMBOL cool ARRAYAPI

#include numpy/arrayobject.h

On the other hand, coolhelper.c would contain at the top:

#define PY ARRAYUNIQUESYMBOL cool ARRAYAPI

#define NO IMPORTARRAY

#include numpy/arrayobject.h

PyArray GetNDArrayCVersion (unsigned int ) (void )
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This just returns the value NPYVERSION. Because it is in the C-API, however,

comparing the output of this function from the value defined in the current

header gives a way to test if the C-API has changed thus requiring a re-

compilation of extension modules that use the C-API.

13.3.12.2 Internal Flexibility

PyArray SetNumericOps (int ) (PyObject * dict)

NumPy stores an internal table of Python callable objects that are used to im-

plement arithmetic operations for arrays as well as certain array calculation

methods. This function allows the user to replace any or all of these Python

objects with their own versions. The keys of the dictionary, dict, are the

named functions to replace and the paired value is the Python callable object

to use. Care should be taken that the function used to replace an internal

array operation does not itself call back to that internal array operation (un-

less you have designed the function to handle that), or an unchecked infinite

recursion can result (possibly causing program crash). The key names that

represent operations that can be replaced are:

add, subtract, multiply, divide, remainder, power, sqrt, neg-

ative, absolute, invert, left shift, right shift, bitwise and, bit-

wise xor, bitwise or, less, less equal, equal, not equal, greater,

greater equal, floor divide, true divide, logical or, logical and,

floor, ceil, maximum, minimum.

These functions are included here because they are used at least once in the array

object’s methods. The function returns -1 (without setting a Python Error)

if one of the objects being assigned is not callable.

PyArray GetNumericOps (PyObject * ) (void )

Return a Python dictionary containing the callable Python objects stored in the

the internal arithmetic operation table. The keys of this dictionary are given

in the explanation for PyArray SetNumericOps .

PyArray SetStringFunction (void ) (PyObject * op, int repr)

This function allows you to alter the tp str and tp repr methods of the array

object to any Python function. Thus you can alter what happens for all

arrays when str(arr) or repr(arr) is called from Python. The function to be
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called is passed in as op. If repr is non-zero, then this function will be called

in response to repr(arr), otherwise the function will be called in response to

str(arr). No check on whether or not op is callable is performed. The callable

passed in to op should expect an array argument and should return a string

to be printed.

13.3.12.3 Memory management

PyDataMem NEW (char * ) (size t nbytes)

PyDataMem FREE (char * ptr)

PyDataMem RENEW (char * ) (void * ptr, size t newbytes)

Macros to allocate, free, and reallocate memory. These macros are used internally

to create arrays.

PyDimMem NEW (npy intp * ) (nd)

PyDimMem FREE (npy intp * ptr)

PyDimMem RENEW (npy intp * ) (npy intp * ptr, npy intp newnd)

Macros to allocate, free, and reallocate dimension and strides memory.

PyArray malloc (nbytes)

PyArray free (ptr)

PyArray realloc (ptr, nbytes)

These macros use different memory allocators, depending on the constant

NPYUSEPYMEM. Currently, the system malloc or the Python Object allo-

cator can be used.

13.3.12.4 Threading support

These macros are only meaningful if NPYALLOWTHREADSevaluates True during

compilation of the extension module. Otherwise, these macros are equivalent to

whitespace. Python uses a single Global Interpreter Lock (GIL) for each Python

process so that only a single thread may excecute at a time (even on multi-cpu

machines). When calling out to a compiled function that may take time to compute

(and does not have side-effects for other threads like updated global variables),
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the GIL should be released so that other Python threads can run while the time-

consuming calculations are performed. This can be accomplished using two groups

of macros. Typically, if one macro in a group is used in a code block, all of them

must be used in the same code block. Currently, NPYALLOWTHREADSis defined

to the python-defined WITH THREADSconstant unless the environment variable

NPYNOSMPis set in which case NPYALLOWTHREADSis defined to be 0.

Group 1 This group is used to call code that may take some time but does not

use any Python C-API calls. Thus, the GIL should be released during its

calculation.

NPY BEGIN ALLOW THREADS Equivalent to

Py BEGIN ALLOWTHREADS except it uses NPYALLOWTHREADS

to determine if the macro if replaced with white-space or not.

NPY END ALLOW THREADS Equivalent to

Py ENDALLOWTHREADS except it uses NPYALLOWTHREADS to

determine if the macro if replaced with white-space or not.

NPY BEGIN THREADS DEF Place in the variable declaration area.

This macro sets up the variable needed for storing the Python state.

NPY BEGIN THREADS Place right before code that does not need the

Python interpreter (no Python C-API calls). This macro saves the

Python state and releases the GIL.

NPY END THREADS Place right after code that does not need the

Python interpreter. This macro acquires the GIL and restores the Python

state from the saved variable.

NPY BEGIN THREADS DESCR (PyArray Descr * dtype) Useful to

release the GIL only if dtype does not contain arbitrary Python objects

which may need the Python interpreter during execution of the loop.

Equivalent to

NPY END THREADS DESCR (PyArray Descr * dtype) Useful to re-

gain the GIL in situations where it was released using the BEGIN form

of this macro.

Group 2 This group is used to re-acquire the Python GIL after it has been released.

For example, suppose the GIL has been released (using the previous calls),

and then some path in the code (perhaps in a different subroutine) requires

use of the Python C-API, then these macros are useful to acquire the GIL.
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These macros accomplish essentially a reverse of the previous three (acquire

the LOCK saving what state it had) and then re-release it with the saved

state.

NPY ALLOW C API DEF Place in the variable declaration area to set

up the necessary variable.

NPY ALLOW C API Place before code that needs to call the Python C-

API (when it is known that the GIL has already been released).

NPY DISABLE C API Place after code that needs to call the Python

C-API (to re-release the GIL).

i TIP

Never use semicolons after the threading support macros.

13.3.12.5 Priority

NPY PRIOIRTY Default priority for arrays.

NPY SUBTYPE PRIORITY Default subtype priority.

NPY SCALAR PRIORITY Default scalar priority (very small)

PyArray GetPriority (double ) (PyObject * obj, double def)

Return the array priority attribute (converted to a double) of obj or def if

no attribute of that name exists. Fast returns that avoid the attribute lookup

are provided for objects of type PyArray Type .

13.3.12.6 Default buffers

NPY BUFSIZE Default size of the user-settable internal buffers.

NPY MIN BUFSIZE Smallest size of user-settable internal buffers.

NPY MAX BUFSIZE Largest size allowed for the user-settable buffers.

13.3.12.7 Other constants

NPY NUM FLOATTYPE The number of floating-point types

NPY MAXDIMS The maximum number of dimensions allowed in arrays.
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NPY VERSION The current version of the ndarray object (check to see if this

variable is defined to guarantee the numpy/arrayobject.h header is being

used).

NPY FALSE Defined as 0 for use with Bool.

NPY TRUE Defined as 1 for use with Bool.

NPY FAIL The return value of failed converter functions which are called using

the “O&” syntax in PyArg ParseTuple-like functions.

NPY SUCCEED The return value of successful converter functions which are

called using the “O&” syntax in PyArg ParseTuple-like functions.

13.3.12.8 Miscellaneous Macros

PyArray SAMESHAPE (a1, a2)

Evaluates as True if arrays a1 and a2 have the same shape.

PyArray MAX (a,b)

Returns the maximum of a and b. If (a) or (b) are expressions they are evaluated

twice.

PyArray MIN (a,b)

Returns the minimum of a and b. If (a) or (b) are expressions they are evaluated

twice.

PyArray REFCOUNT (PyObject * op)

Returns the reference count of any Python object.

PyArray XDECREF ERR (PyObject *obj)

DECREF’s an array object which may have the NPYUPDATEIFCOPYflag set

without causing the contents to be copied back into the original array. Resets

the NPYWRITEABLEflag on the base object. This is useful for recovering

from an error condition when NPYUPDATEIFCOPYis used.
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13.3.12.9 Enumerated Types

NPY SORTKIND A special variable-type which can take on the values

NPY <KIND> where <KIND> is

QUICKSORT, HEAPSORT, MERGESORT

NPY NSORTS is defined to be the number of sorts.

NPY SCALARKIND A special variable type indicating the number of “kinds”

of scalars distinguished in determining scalar-coercion rules. This variable can

take on the values NPY <KIND> where <KIND> can be

NOSCALAR, BOOL SCALAR, INTPOS SCALAR, INT-

NEG SCALAR, FLOAT SCALAR, COMPLEX SCALAR,

OBJECT SCALAR

NPY NSCALARKINDS is defined to be the number of scalar kinds (not in-

cluding NPYNOSCALAR).

NPY ORDER A variable type indicating the order that an array should be in-

terpreted in. The value of a variable of this type can be NPY <ORDER>

where <ORDER> is

ANYORDER, CORDER, FORTRANORDER

NPY CLIPMODE A variable type indicating the kind of clipping that should

be applied in certain functions. The value of a variable of this type can be

NPY <MODE> where <MODE> is

CLIP, WRAP, RAISE

13.4 UFunc API

13.4.1 Constants

UFUNC ERR <HANDLER>

<HANDLER> can be IGNORE, WARN, RAISE, or CALL

UFUNC <THING> <ERR>

<THING> can be MASK, SHIFT, or FPE, and <ERR> can be DIVIDE-

BYZERO, OVERFLOW, UNDERFLOW, and INVALID.

PyUFunc <VALUE> <VALUE> can be One (1), Zero (0), or None (-1)
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13.4.2 Macros

NPY LOOP BEGIN THREADS

Used in universal function code to only release the Python GIL if loop->obj

is not true (i.e. this is not an OBJECT array loop). Requires use of

NPYBEGIN THREADSDEF in variable declaration area.

NPY LOOP END THREADS

Used in universal function code to re-acquire the Python GIL if it was released

(because loop->obj was not true).

UFUNC CHECK ERROR (loop)

A macro used internally to check for errors and goto fail if found. This macro

requires a fail label in the current code block. The loop variable must have at

least members (obj, errormask, and errorobj). If loop->obj is nonzero, then

PyErr Occurred () is called (meaning the GIL must be held). If loop->obj

is zero, then if loop->errormask is nonzero, PyUFunc checkfperr is called

with arguments loop->errormask and loop->errobj. If the result of this check

of the IEEE floating point registers is true then the code redirects to the fail

label which must be defined.

UFUNC CHECK STATUS (ret)

A macro that expands to platform-dependent code. The ret variable can can be

any integer. The UFUNCFPE <ERR> bits are set in ret according to the

status of the corresponding error flags of the floating point processor.

13.4.3 Functions

PyUFunc FromFuncAndData (PyObject * ) (PyUFuncGenericFunction *
func, void ** data, char * types, int ntypes, int nin, int nout, int iden-

tity, char * name, char * doc, int check return)

Create a new broadcasting universal function from required variables. Each ufunc

builds around the notion of an element-by-element operation. Each ufunc

object contains pointers to 1-d loops implementing the basic functionality for

each supported type.

nin The number of inputs to this operation.
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nout The number of outputs

ntypes How many different data-type “signatures” the ufunc has implemented.

func Must to an array of length ntypes containing PyUFuncGenericFunction

items. These items are pointers to functions that acutally implement the

underlying (element-by-element) function N times. T

types Must be of length (nin+nout)*ntypes, and it contains the data-types (built-

in only) that the corresponding function in the func array can deal with.

data Should be NULLor a pointer to an array of size ntypes. This array may contain

arbitrary extra-data to be passed to the corresponding 1-d loop function in

the func array.

name The name for the ufunc.

doc Allows passing in a documentation string to be stored with the ufunc. The

documentation string should not contain the name of the function or the

calling signature as that will be dynamically determined from the object and

available when accessing the doc attribute of the ufunc.

check return Unused and present for backwards compatibility of the C-API. A

corresponding check return integer does exist in the ufunc structure and it

does get set with this value when the ufunc object is created.

PyUFunc RegisterLoopForType (int ) (PyUFuncObject * ufunc, int user-

type, PyUFuncGenericFunction function, int * arg types, void * data)

This function allows the user to register a 1-d loop with an already-created ufunc

to be used whenever the ufunc is called with any of its input arguments as

the user-defined data-type. This is needed in order to make ufuncs work with

built-in data-types. The data-type must have been previously registered with

the numpy system. The loop is passed in as function. This loop can take

arbitrary data which should be passed in as data. The data-types the loop

requires are passed in as arg types which must be a pointer to memory at least

as large as ufunc->nargs.

PyUFunc ReplaceLoopBySignature (int ) (PyUFuncObject *

ufunc, PyUFuncGenericFunction newfunc, int * signature,

PyUFuncGenericFunction * oldfunc)
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Replace a 1-d loop matching the given signature in the already-created ufunc

with the new 1-d loop newfunc. Return the old 1-d loop function in oldfunc.

Return 0 on success and -1 on failure. This function works only with built-

in types (use PyUFunc RegisterLoopForType for user-defined types). A

signature is an array of data-type numbers indicating the inputs followed by

the outputs assumed by the 1-d loop.

PyUFunc GenericFunction (int ) (PyUFuncObject * self, PyObject * args,

PyArrayObject ** mps)

A generic ufunc call. The ufunc is passed in as self, the arguments to the ufunc as

args. The mps argument is an array of PyArrayObject pointers containing

the converted input arguments as well as the ufunc outputs on return. The

user is responsible for managing this array and receives a new reference for

each array in mps. The total number of arrays in mps is given by self ->nin

+ self ->nout.

PyUFunc checkfperr (int ) (int errmask, PyObject * errobj)

A simple interface to the IEEE error-flag checking support. The errmask argu-

ment is a mask of UFUNCMASK<ERR>bitmasks indicating which errors to

check for (and how to check for them). The errobj must be a Python tuple

with two elements: a string containing the name which will be used in any

communication of error and either a callable Python object (call-back func-

tion) or Py None. The callable object will only be used if UFUNCERRCALL

is set as the desired error checking method. This routine manages the GIL and

is safe to call even after releasing the GIL. If an error in the IEEE-compatibile

hardware is determined a -1 is returned, otherwise a 0 is returned.

PyUFunc clearfperr (void ) ()

Clear the IEEE error flags.

PyUFunc GetPyValues (void ) (char * name, int * bufsize, int * errmask,

PyObject ** errobj)

Get the Python values used for ufunc processing from the thread-local storage area

unless the defaults have been set in which case the name lookup is bypassed.

The name is placed as a string in the first element of *errobj. The second

element is the looked-up function to call on error callback. The value of the
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looked-up buffer-size to use is passed into bufsize, and the value of the error

mask is placed into errmask.

13.4.4 Generic functions

At the core of every ufunc is a collection of type-specific functions that defines the

basic functionality for each of the supported types. These functions must evaluate

the underlying function N ≥ 1 times. Extra-data may be passed in that may be

used during the calculation. This feature allows some general functions to be used

as these basic looping functions. The general function has all the code needed to

point variables to the right place and set up a function call. The general function

assumes that the actual function to call is passed in as the extra data and calls it

with the correct values. All of these functions are suitable for placing directly in the

array of functions stored in the functions member of the PyUFuncObject structure.

PyUFunc f f As d d (void ) (char ** args, npy intp * dimensions,

npy intp * steps, void * func)

PyUFunc d d (void ) (char ** args, npy intp * dimensions, npy intp * steps,

void * func)

PyUFunc f f (void ) (char ** args, npy intp * dimensions, npy intp * steps,

void * func)

PyUFunc g g (void ) (char ** args, npy intp * dimensions, npy intp * steps,

void * func)

PyUFunc F F As D D (void ) (char ** args, npy intp * dimensions,

npy intp * steps, void * func)

PyUFunc F F (void ) (char ** args, npy intp * dimensions, npy intp * steps,

void * func)

PyUFunc D D (void ) (char ** args, npy intp * dimensions, npy intp *

steps, void * func)

PyUFunc G G (void ) (char ** args, npy intp * dimensions, npy intp *
steps, void * func)

Type specific, core 1-d functions for ufuncs where each calculation is obtained

by calling a function taking one input argument and returning one output.

This function is passed in func . The letters correspond to dtypechar’s of
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the supported data types (f - float, d - double, g - long double, F - cfloat,

D - cdouble, G - clongdouble). The argument func must support the same

signature. The As X X variants assume ndarray’s of one data type but cast

the values to use an underlying function that takes a different data type.

Thus, PyUFunc f f As d d uses ndarrays of data type NPYFLOATbut calls

out to a C-function that takes double and returns double.

PyUFunc ff f As dd d (void ) (char ** args, npy intp * dimensions,

npy intp * steps, void * func)

PyUFunc ff f (void ) (char ** args, npy intp * dimensions, npy intp * steps,

void * func)

PyUFunc dd d (void ) (char ** args, npy intp * dimensions, npy intp *

steps, void * func)

PyUFunc gg g (void ) (char ** args, npy intp * dimensions, npy intp *

steps, void * func)

PyUFunc FF F As DD D (void ) (char ** args, npy intp * dimensions,

npy intp * steps, void * func)

PyUFunc DD D (void ) (char ** args, npy intp * dimensions, npy intp *

steps, void * func)

PyUFunc FF F (void ) (char ** args, npy intp * dimensions, npy intp *

steps, void * func)

PyUFunc GG G (void ) (char ** args, npy intp * dimensions, npy intp *
steps, void * func)

Type specific, core 1-d functions for ufuncs where each calculation is obtained

by calling a function taking two input arguments and returning one output.

The underlying function to call is passed in as func. The letters correspond

to dtypechar’s of the specific data type supported by the general-purpose

function. The argument func must support the corresponding signature. The

As XX X variants assume ndarrays of one data type but cast the values at

each iteration of the loop to use the underlying function that takes a different

data type.

PyUFunc O O (void ) (char ** args, npy intp * dimensions, npy intp *

steps, void * func)
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PyUFunc OO O (void ) (char ** args, npy intp * dimensions, npy intp *

steps, void * func)

One-input, one-output, and two-input, one-output core 1-d functions for the

NPYOBJECTdata type. These functions handle reference count issues and

return early on error. The actual function to call is func and it must ac-

cept calls with the signature (PyObject * ) (PyObject * ) for PyUFunc O O

or (PyObject * ) (PyObject *, PyObject *) for PyUFunc OOO.

PyUFunc O O method (void ) (char ** args, npy intp * dimensions,

npy intp * steps, void * func)

This general purpose 1-d core function assumes that func is a string representing

a method of the input object. For each iteration of the loop, the Python

obejct is extracted from the array and its func method is called returning the

result to the output array.

PyUFunc OO O method (void ) (char ** args, npy intp * dimensions,

npy intp * steps, void * func)

This general purpose 1-d core function assumes that func is a string representing

a method of the input object that takes one argument. The first argument in

args is the method whose function is called, the second argument in args is

the argument passed to the function. The output of the function is stored in

the third entry of args.

PyUFunc On Om (void ) (char ** args, npy intp * dimensions, npy intp *

steps, void * func)

This is the 1-d core function used by the dynamic ufuncs created by

umath.frompyfunc(function, nin, nout). In this case func is a pointer to a

PyUFunc PyFuncData structure which has definition {int nin; int nout;

PyObject * callable}. At each iteration of the loop, the nin input objects

are exctracted from their object arrays and placed into an argument tuple,

the Python callable is called with the input arguments, and the nout outputs

are placed into their object arrays.

13.5 Importing the API

PY UFUNC UNIQUE SYMBOL
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NO IMPORT UFUNC

import ufunc (void ) (void )

These are the constants and functions for accessing the ufunc C-API from exten-

sion modules in precisely the same way as the array C-API can be accessed.

The import ufunc () function must always be called (in the initialization

subroutine of the extension module). If your extension module is in one

file then that is all that is required. The other two constants are useful

if your extension module makes use of multiple files. In that case, define

PY UFUNCUNIQUESYMBOLto something unique to your code and then in

source files that do not contain the module initialization function but still

need access to the UFUNC API, define PY UFUNCUNIQUESYMBOLto the

same name used previously and also define NOIMPORTUFUNC.

The C-API is actually an array of function pointers. This array is created (and

pointed to by a global variable) by import ufunc. The global variable is either

statically defined or allowed to be seen by other files depending on the state

of Py UFUNCUNIQUESYMBOLand NOIMPORTUFUNC.
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Chapter 14

How to extend NumPy

14.1 Writing an extension module

While the ndarray object is designed to allow rapid computation in Python, it is also

designed to be general-purpose and satisfy a wide-variety of computational needs.

As a result, if absolute speed is essential, there is no replacement for a well-crafted,

compiled loop specific to your application and hardware. This is one of the reasons

that numpy includes f2py so that an easy-to-use mechanisms for linking (simple)

C/C++ and (arbitrary) Fortran code directly into Python are available. You are

encouraged to use and improve this mechanism. The purpose of this section is not

to document this tool but to document the more basic steps to writing an extension

module that this tool depends on.

When an extension module is written, compiled, and installed to somewhere in

the Python path (sys.path), the code can then be imported into Python as if it

were a standard python file. It will contain objects and methods that have been

defined and compiled in C code. The basic steps for doing this in Python are well-

documented and you can find more information in the documentation for Python

itself available online at www.python.org http://www.python.org .

In addition to the Python C-API, there is a full and rich C-API for NumPy

allowing sophisticated manipulations on a C-level. However, for most applications,

only a few API calls will typically be used. If all you need to do is extract a pointer to

memory along with some shape information to pass to another calculation routine,

then you will use very different calls, then if you are trying to create a new array-like

type or add a new data type for ndarrays. This chapter documents the API calls

and macros that are most commonly used.
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14.2 Required subroutine

There is exactly one function that must be defined in your C-code in order for

Python to use it as an extension module. The function must be called init<name>

where <name> is the name of the module from Python. This function must be de-

clared so that it is visible to code outside of the routine. Besides adding the methods

and constants you desire, this subroutine must also contain calls to import array()

and/or import ufunc() depending on which C-API is needed. Forgetting to place

these commands will show itself as an ugly segmentation fault (crash) as soon as

any C-API subroutine is actually called. It is actually possible to have multiple

init<name> functions in a single file in which case multiple modules will be defined

by that file. However, there are some tricks to get that to work correctly and it is

not covered here.

A minimal init<name> method looks like

PyMODINIT FUNC

init<name>(void)

{
(void)Py InitModule(’’<name>’’, mymethods);

import array();

}

The mymethods must be an array (usually statically declared) of PyMethodDef

structures which contain method names, actual C-functions, a variable indicating

whether the method uses keyword arguments or not, and docstrings. These are

explained in the next section. If you want to add constants to the module, then you

store the returned value from Py InitModule which is a module object. The most

general way to add itmes to the module is to get the module dictionary using Py-

Module GetDict(module). With the module dictionary, you can add whatever you

like to the module manually. An easier way to add objects to the module is to use

one of three additional Python C-API calls that do not require a separate extraction

of the module dictionary. These are documented in the Python documentation, but

repeated here for convenience:

PyModule AddObject (int ) (PyObject * module, char * name, PyObject *

value)

PyModule AddIntConstant (int ) (PyObject * module, char * name, long

value)
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PyModule AddStringConstant (int ) (PyObject * module, char * name,

char * value)

All three of these functions require the module object (the return value of

Py InitModule). The name is a string that labels the value in the mod-

ule. Depending on which function is called, the value argument is either

a general object (PyModule AddObject steals a reference to it), an integer

constant, or a string constant.

14.3 Defining functions

The second argument passed in to the Py InitModule function is a structure that

makes it easy to to define functions in the module. In the example given above,

the mymethods structure would have been defined earlier in the file (usually right

before the init<name> subroutine) to

static PyMethodDef mymethods[] = {
{’’nokeywordfunc’’,nokeyword cfunc,

METHVARARGS,

’’Doc string’’ },

{’’keywordfunc’’, keyword cfunc,

METHVARARGS|METHKEYWORDS,

’’Doc string’’ },

{NULL, NULL, 0, NULL } / * Sentinel * /

}

Each entry in the mymethods array is a PyMethodDef structure containing 1) the

Python name, 2) the C-function that implements the function, 3) flags indicating

whether or not keywords are accepted for this function, and 4) The docstring for the

function. Any number of functions may be defined for a single module by adding

more entries to this table. The last entry must be all NULL as shown to act as

a sentinel. Python looks for this entry to know that all of the functions for the

module have been defined.

The last thing that must be done to finish the extension module is to actually

write the code that performs the desired functions. There are two kinds of functions:

those that don’t accept keyword arguments, and those that do.
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14.3.1 Functions without keyword arguments

Functions that don’t accept keyword arguments should be written as

static PyObject *
nokeyword cfunc (PyObject * dummy, PyObject * args)

{
/ * convert Python arguments * /

/ * do function * /

/ * return something * /

}

The dummy argument is not used in this context and can be safely ignored. The

args argument contains all of the arguments passed in to the function as a tu-

ple. You can do anything you want at this point, but usually the easiest way to

manage the input arguments is to call PyArg ParseTuple (args, format string,

addresses to C variables...) or PyArg UnpackTuple (tuple, “name”, min, max,

...). A good description of how to use the first function is contained in the Python

C-API reference manual under section 5.5 (Parsing arguments and building values).

You should pay particular attention to the “O&” format which uses converter func-

tions to go between the Python object and the C object. All of the other format

functions can be (mostly) thought of as special cases of this general rule. There are

several converter functions defined in the NumPy C-API that may be of use. In

particular, the PyArray DescrConverter function is very useful to support arbi-

trary data-type specification. This function transforms any valid data-type Python

object into a PyArray Descr * object. Remember to pass in the address of the

C-variables that should be filled in.

There are lots of examples of how to use PyArg ParseTuple throughout the

NumPy source code. The standard usage is like this:

PyObject * input;

PyArray Descr * dtype;

if (!PyArg ParseTuple(args, "OO&", &input,

PyArray DescrConverter,

&dtype)) return NULL;

It is important to keep in mind that you get a borrowed reference to the object when

using the “O” format string. However, the converter functions usually require some

form of memory handling. In this example, if the conversion is successful, dtype will
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hold a new reference to a PyArray Descr * object, while input will hold a borrowed

reference. Therefore, if this conversion were mixed with another conversion (say to

an integer) and the data-type conversion was successful but the integer conversion

failed, then you would need to release the reference count to the data-type object

before returning. A typical way to do this is to set dtype to NULL before calling

PyArg ParseTuple and then use Py XDECREFon dtype before returning.

After the input arguments are processed, the code that actually does the work

is written (likely calling other functions as needed). The final step of the C-function

is to return something. If an error is encountered then NULL should be returned

(making sure an error has actually been set). If nothing should be returned then

increment Py None and return it. If a single object should be returned then it is

returned (ensuring that you own a reference to it first). If multiple objects should

be returned then you need to return a tuple. The Py BuildValue (format string,

c variables...) function makes it easy to build tuples of Python objects from C

variables. Pay special attention to the difference between ’N’ and ’O’ in the format

string or you can easily create memory leaks. The ’O’ format string increments

the reference count of the PyObject * C-variable it corresponds to, while the ’N’

format string steals a reference to the corresponding PyObject * C-variable. You

should use ’N’ if you ave already created a reference for the object and just want

to give that reference to the tuple. You should use ’O’ if you only have a borrowed

reference to an object and need to create one to provide for the tuple.

14.3.2 Functions with keyword arguments

These functions are very similar to functions without keyword arguments. The only

difference is that the function signature is

static PyObject *

keyword cfunc (PyObject * dummy, PyObject * args, PyObject * kwds)

{
...

}

The kwds argument holds a Python dictionary whose keys are the names of the

keyword arguments and whose values are the corresponding keyword-argument val-

ues. This dictionary can be processed however you see fit. The easiest way to

handle it, however, is to replace the PyArg ParseTuple (args, format string, ad-

dresses...) function with a call to PyArg ParseTupleAndKeywords (args, kwds,
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format string, char *kwlist[], addresses...). The kwlist parameter to this function

is a NULL-terminated array of strings providing the expected keyword arguments.

There should be one string for each entry in the format string. Using this function

will raise a TypeError if invalid keyword arguments are passed in.

For more help on this function please see section 1.8 (Keyword Paramters for

Extension Functions) of the Extending and Embedding tutorial in the Python doc-

umentation.

14.3.3 Reference counting

The biggest difficulty when writing extension modules is reference counting. It is an

important reason for the popularity of f2py, weave, pyrex, ctypes, etc.... If you mis-

handle reference counts you can get problems from memory-leaks to segmentation

faults. The only strategy I know of to handle reference counts correctly is blood,

sweat, and tears. First, you force it into your head that every Python variable has

a reference count. Then, you understand exactly what each function does to the

reference count of your objects, so that you can properly use DECREF and INCREF

when you need them. Reference counting can really test the amount of patience and

diligence you have towards your programming craft. Despite the grim depiction,

most cases of reference counting are quite straightforward with the most common

difficulty being not using DECREF on objects before exiting early from a routine

due to some error. In second place, is the common error of not owning the reference

on an object that is passed to a function or macro that is going to steal the reference

(e.g. PyTuple SET ITEM, and most functions that take PyArray Descr objects).

Typically you get a new reference to a variable when it is created or is the return

value of some function (there are some prominent exceptions, however — such as

getting an item out of a tuple or a dictionary). When you own the reference, you

are responsible to make sure that Py DECREF(var) is called when the variable is no

longer necessary (and no other function has “stolen” its reference). Also, if you are

passing a Python object to a function that will “steal” the reference, then you need

to make sure you own it (or use Py INCREFto get your own reference). You will also

encounter the notion of borrowing a reference. A function that borrows a reference

does not alter the reference count of the object and does not expect to “hold on”

to the reference. It’s just going to use the object temporarily. When you use

PyArg ParseTuple or PyArg UnpackTuple you receive a borrowed reference

to the objects in the tuple and should not alter their reference count inside your

function. With practice, you can learn to get reference counting right, but it can
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be frustrating at first.

One common source of reference-count errors is the Py BuildValue function.

Pay careful attention to the difference between the ’N’ format character and the ’O’

format character. If you create a new object in your subroutine (such as an output

array), and you are passing it back in a tuple of return values, then you should

most-likely use the ’N’ format character in Py BuildValue . The ’O’ character will

increase the reference count by one. This will leave the caller with two reference

counts for a brand-new array. When the variable is deleted and the reference count

decremented by one, there will still be that extra reference count, and the array

will never be deallocated. You will have a reference-counting induced memory leak.

Using the ’N’ character will avoid this situation as it will return to the caller an

object (inside the tuple) with a single reference count.

14.4 Dealing with array objects

Most extension modules for NumPy will need to access the memory for an ndarray

object (or one of it’s sub-classes). The easiest way to do this doesn’t require you to

know much about the internals of NumPy. The method is to

1. Ensure you are dealing with a well-behaved array (aligned, in machine byte-

order and single-segment) of the correct type and number of dimensions.

(a) By converting it from some Python object using PyArray FromAny or

a macro built on it.

(b) By constructing a new ndarray of your desired shape and type using

PyArray NewFromDescr or a simpler macro or function based on it.

2. Get the shape of the array and a pointer to its actual data.

3. Pass the data and shape information on to a subroutine or other section of

code that actually performs the computation.

4. If you are writing the algorithm, then I recommend that you use the stride

information contained in the array to access the elements of the array (the

PyArray GETPTRmacros make this painless). Then, you can relax your

requirements so as not to force a single-segment array and the data-copying

that might result.

Each of these sub-topics is covered in the following sub-sections.
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14.4.1 Converting an arbitrary sequence object

The main routine for obtaining an array from any Python object that can be

converted to an array is PyArray FromAny . This function is very flexible with

many input arguments. Several macros make it easier to use the basic function.

PyArray FROMOTF is arguably the most useful of these macros for the most com-

mon uses. It allows you to convert an arbitrary Python object to an array of a

specific builtin data-type (e.g. float), while specifying a particular set of require-

ments (e.g. contiguous, aligned, and writeable). The syntax is

PyArray FROM OTF (PyObject * ) (PyObject * obj, int typenum, int re-

quirements)

Return an ndarray from any Python object, obj, that can be converted to an array.

The number of dimensions in the returned array is determined by the object.

The desired data-type of the returned array is provided in typenum which

should be one of the enumerated types. The requirements for the returned

array can be any combination of standard array flags. Each of these arguments

is explained in more detail below. You receive a new reference to the array

on success. On failure, NULL is returned and an exception is set.

obj The object can be any Python object convertable to an ndarray. If the ob-

ject is already (a subclass of) the ndarray that satisfies the requirements

then a new reference is returned. Otherwise, a new array is constructed.

The contents of obj are copied to the new array unless the array interface

is used so that data does not have to be copied. Objects that can be con-

verted to an array include: 1) any nested sequence object, 2) any object

exposing the array interface, 3) any object with an array method

(which should return an ndarray), and 4) any scalar object (becomes a

zero-dimensional array). Sub-classes of the ndarray that otherwise fit the

requirements will be passed through. If you want to ensure a base-class

ndarray, then use NPYENSUREARRAYin the requirements flag. A copy

is made only if necessary. If you want to guarantee a copy, then pass in

NPYENSURECOPYto the requirements flag.

typenum One of the enumerated types or NPYNOTYPEif the data-type

should be determined from the object itself. The C-based names can

be used:

NPYBOOL, NPYBYTE, NPYUBYTE, NPYSHORT, NPYUSHORT,

NPYINT , NPYUINT, NPYLONG, NPYULONG, NPYLONGLONG,
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NPYULONGLONG, NPYDOUBLE, NPYLONGDOUBLE,

NPYCFLOAT, NPYCDOUBLE, NPYCLONGDOUBLE,

NPYOBJECT.

Alternatively, the bit-width names can be used as supported on the plat-

form. For example:

NPYINT8 , NPYINT16 , NPYINT32 , NPYINT64 , NPYUINT8 ,

NPYUINT16 , NPYUINT32 , NPYUINT64 , NPYFLOAT32,

NPYFLOAT64, NPYCOMPLEX64, NPYCOMPLEX128.

The object will be converted to the desired type only if it can be done

without losing precision. Otherwise NULL will be returned and an error

raised. Use NPYFORCECASTin the requirements flag to override this

behavior.

requirements The memory model for an ndarray admits arbitrary strides

in each dimension to advance to the next element of the array. Often,

however, you need to interface with code that expects a C-contiguous

or a Fortran-contiguous memory layout. In addition, an ndarray can be

misaligned (the address of an element is not at an integral multiple of the

size of the element) which can cause your program to crash (or at least

work more slowly) if you try and dereference a pointer into the array

data. Both of these problems can be solved by converting the Python

object into an array that is more “well-behaved” for your specific usage.

The requirements flag allows specification of what kind of array is accept-

able. If the object passed in does not satisfy this requirements then a

copy is made so that thre returned object will satisfy the requirements.

these ndarray can use a very generic pointer to memory. This flag al-

lows specification of the desired properties of the returned array object.

All of the flags are explained in the detailed API chapter. The flags

most commonly needed are NPY IN ARRAY, NPY OUT ARRAY, and

NPY INOUT ARRAY:

NPY IN ARRAY Equivalent to NPY CONTIGUOUS |
NPY ALIGNED. This combination of flags is useful for arrays

that must be in C-contiguous order and aligned. These kinds of

arrays are usually input arrays for some algorithm.

NPY OUT ARRAY Equivalent to NPY CONTIGUOUS |
NPY ALIGNED | NPY WRITEABLE. This combination of
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flags is useful to specify an array that is in C-contiguous order, is

aligned, and can be written to as well. Such an array is usually

returned as output (although normally such output arrays are

created from scratch).

NPY INOUT ARRAY Equivalent to NPY CONTIGUOUS |
NPY ALIGNED | NPY WRITEABLE | NPY UPDATEIFCOPY.

This combination of flags is useful to specify an array that will be

used for both input and output. If a copy is needed, then when

the temporary is deleted (by your use of Py DECREF at the end

of the interface routine), the temporary array will be copied back

into the original array passed in. Use of the UPDATEIFCOPY flag

requires that the input object is already an array (because other

objects cannot be automatically updated in this fashion). If an error

occurs use PyArray DECREF ERR(obj) on an array with the

NPY UPDATEIFCOPY flag set. This will delete the array without

causing the contents to be copied back into the original array.

Other useful flags that can be OR’d as additional requirements are:

NPY FORCECAST Cast to the desired type, even if it can’t be done

without losing information.

NPY ENSURECOPY Make sure the resulting array is a copy of the

original.

NPY ENSUREARRAY Make sure the resulting object is an actual

ndarray and not a sub-class.

NOTE

Whether or not an array is byte-swapped is determined by the

data-type of the array. Native byte-order arrays are always re-

quested by PyArray FROM OTF and so there is no need for a

NPY NOTSWAPPED flag in the requirements argument. There

is also no way to get a byte-swapped array from this routine.

14.4.2 Creating a brand-new ndarray

Quite often new arrays must be created from within extension-module code. Per-

haps an output array is needed and you don’t want the caller to have to supply

it. Perhaps only a temporary array is needed to hold an intermediate calculation.
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Whatever the need there are simple ways to get an ndarray object of whatever data-

type is needed. The most general function for doing this is PyArray NewFromDescr.

All array creation functions go through this heavily re-used code. Because of its

flexibility, it can be somewhat confusing to use. As a result, simpler forms exist

that are easier to use.

PyArray SimpleNew (PyObject * )(int nd, npy intp * dims, int typenum)

This function allocates new memory and places it in an ndarray with nd dimen-

sions whose shape is determined by the array of at least nd items pointed

to by dims . The memory for the array is uninitialized (unless typenum is

PyArray OBJECT in which case each element in the array is set to NULL).

The typenum argument allows specification of any of the builtin data-types

such as PyArray FLOAT or PyArray LONG. The memory for the array

can be set to zero if desired using PyArray FILLWBYTE(return object,

0).

PyArray SimpleNewFromData (PyObject * ) (int nd, npy intp * dims,

int typenum, void * data)

Sometimes, you want to wrap memory allocated elsewhere into an ndarray object

for downstream use. This routine makes it straightforward to do that. The

first three arguments are the same as in PyArray SimpleNew, the final

argument is a pointer to a block of contiguous memory that the ndarray

should use as it’s data-buffer which will be interpreted in C-style contiguous

fashion. A new reference to an ndarray is returned, but the ndarray will not

own its data. When this ndarray is deallocated, the pointer will not be freed.

You should ensure that the provided memory is not freed while the returned

array is in existence. The easiest way to handle this is if data comes from

another reference-counted Python object. The reference count on this object

should be increased after the pointer is passed in, and the base member of

the returned ndarray should point to the Python object that owns the data.

Then, when the ndarray is deallocated, the base-member will be DECREF’d

appropriately. If you want the memory to be freed as soon as the ndarray is

deallocated then simply set the OWNDATA flag on the returned ndarray.
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14.4.3 Getting at ndarray memory and accessing elements of

the ndarray

If obj is an ndarray (PyArrayObject *), then the data-area of the ndarray is

pointed to by the void* pointer PyArray DATA(obj) or the char* pointer

PyArray BYTES(obj). Remember that (in general) this data-area may not be

aligned according to the data-type, it may represent byte-swapped data, and/or it

may not be writeable. If the data area is aligned and in native byte-order, then

how to get at a specific element of the array is determined only by the array of

npy intp variables, PyArray STRIDES(obj). In particular, this c-array of inte-

gers shows how many bytes must be added to the current element pointer to get

to the next element in each dimension. For arrays less than 4-dimensions there

are PyArray GETPTR<k>(obj, ...) macros where <k> is the integer 1, 2,

3, or 4 that make using the array strides easier. The arguments .... represent

<k> non-negative integer indices into the array. For example, suppose E is a 3-

dimensional ndarray. A (void*) pointer to the element E[i,j,k] is obtained as

PyArray GETPTR3(E, i, j, k).

As explained previously, C-style contiguous arrays and Fortran-style contiguous

arrays have particular striding patterns. Two array flags (NPY C CONTIGUOUS

and NPY F CONTIGUOUS) indicate whether or not the striding pattern of a par-

ticular array matches the C-style contiguous or Fortran-style contiguous or neither.

Whether or not the striding pattern matches a standard C or Fortran one can be

tested Using PyArray ISCONTIGUOUS(obj) and PyArray ISFORTRAN(obj) re-

spectively. Most third-party libraries expect contiguous arrays. But, often it is not

difficult to support general-purpose striding. I encourage you to use the striding

information in your own code whenever possible, and reserve single-segment re-

quirements for wrapping third-party code. Using the striding information provided

with the ndarray rather than requiring a contiguous striding reduces copying that

otherwise must be made.

14.5 Example

The following example shows how you might write a wrapper that accepts two input

arguments (that will be converted to an array) and an output argument (that must

be an array). The function returns None and updates the output array.

static PyObject *

example wrapper(PyObject * dummy, PyObject * args)
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{
PyObject * arg1=NULL, * arg2=NULL, * out=NULL;

PyObject * arr1=NULL, * arr2=NULL, * oarr=NULL;

if (!PyArg ParseTuple(args, ‘‘OOO&’’, &arg1, * arg2,

&PyArrayType, * out)) return NULL;

arr1 = PyArray FROMOTF(arg1, NPY DOUBLE, NPYIN ARRAY);

if (arr1 == NULL) return NULL;

arr2 = PyArray FROMOTF(arg2, NPY DOUBLE, NPYIN ARRAY);

if (arr2 == NULL) goto fail;

oarr = PyArray FROMOTF(out, NPY DOUBLE, NPYINOUT ARRAY);

if (oarr == NULL) goto fail;

/ * code that makes use of arguments * /

/ * You will probably need at least

nd = PyArray NDIM(<..>) -- number of dimensions

dims = PyArray DIMS(<..>) -- npy intp array of length nd

showing length in each dim.

dptr = (double * )PyArray DATA(<..>) -- pointer to data.

If an error occurs goto fail.

* /

Py DECREF(arr1);

Py DECREF(arr2);

Py DECREF(oarr);

Py INCREF(Py None);

return Py None;

fail:

Py XDECREF(arr1);

Py XDECREF(arr2);

PyArray XDECREFERR(oarr);

return NULL;

}
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Chapter 15

Beyond the Basics

15.1 Iterating over elements in the array

15.1.1 Basic Iteration

One common algorithmic requirement is to be able to walk over all elements in

a multidimensional array. The array iterator object makes this easy to do in a

generic way that works for arrays of any dimension. Naturally, if you know the

number of dimensions you will be using, then you can always write nested for loops

to accomplish the iteration. If, however, you want to write code that works with

any number of dimensions, then you can make use of the array iterator. An array

iterator object is returned when accessing the .flat attribute of an array.

Basic usage is to call PyArray IterNew (array ) where array is an ndarray

object (or one of its sub-classes). The returned object is an array-iterator object

(the same object returned by the .flat attribute of the ndarray). This object is

usually cast to PyArrayIterObject* so that its members can be accessed. The only

members that are needed are iter->size which contains the total size of the

array, iter->index , which contains the current 1-d index into the array, and

iter->dataptr which is a pointer to the data for the current element of the

array. Sometimes it is also useful to access iter->ao which is a pointer to the

underlying ndarray object.

After processing data at the current element of the array, the next element

of the array can be obtained using the macro PyArray ITER NEXT(iter ).

The iteration always proceeds in a C-style contiguous fashion (last index varying

the fastest). The PyArray ITER GOTO(iter , destination ) can be used to
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jump to a particular point in the array, where destination is an array of npy intp

data-type with space to handle at least the number of dimensions in the underlying

array. Occasionally it is useful to use PyArray ITER GOTO1D(iter , index )

which will jump to the 1-d index given by the value of index . The most common

usage, however, is given in the following example.

PyObject * obj; / * assumed to be some ndarray object * /

PyArrayIterObject * iter;

...

iter = (PyArrayIterObject * )PyArray IterNew(obj);

if (iter == NULL) goto fail; / * Assume fail has clean-up code * /

while (iter->index < iter->size) {
/ * do something with the data at it->dataptr * /

PyArray ITER NEXT(it);

}
...

You can also use PyArrayIter Check(obj ) to ensure you have an iterator ob-

ject and PyArray ITER RESET(iter ) to reset an iterator object back to the

beginning of the array.

It should be emphasized at this point that you may not need the array iterator

if your array is already contiguous (using an array iterator will work but will be

slower than the fastest code you could write). The major purpose of array iterators

is to encapsulate iteration over N-dimensional arrays with arbitrary strides. They

are used in many, many places in the NumPy source code itself. If you already

know your array is contiguous (Fortran or C), then simply adding the element-size

to a running pointer variable will step you through the array very efficiently. In

other words, code like this will probably be faster for you in the contiguous case

(assuming doubles).

npy intp size;

double * dptr; / * could make this any variable type * /

size = PyArray SIZE(obj);

dptr = PyArray DATA(obj);

while(size--) {
/ * do something with the data at dptr * /

dptr++;

}

306



15.1.2 Iterating over all but one axis

A common algorithm is to loop over all elements of an array and perform some

function with each element by issuing a function call. As function calls can be time

consuming, one way to speed up this kind of algorithm is to write the function so it

takes a vector of data and then write the iteration so the function call is performed

for an entire dimension of data at a time. This increases the amount of work done

per function call, thereby reducing the function-call over-head to a small(er) fraction

of the total time. Even if the interior of the loop is performed without a function

call it can be advantageous to perform the inner loop over the dimension with the

highest number of elements to take advantage of speed enhancements available on

micro-processors that use pipelining to enhance fundmental operations.

The PyArray IterAllButAxis(array , &dim ) constructs an iterator object

that is modified so that it will not iterate over the dimension indicated by dim. The

only restriction on this iterator object, is that the PyArray Iter GOTO1D(it ,

ind ) macro cannot be used (thus flat indexing won’t work either if you pass this

object back to Python — so you shouldn’t do this). Note that the returned object

from this routine is still usually cast to PyArrayIterObject *. All that’s been done

is to modify the strides and dimensions of the returned iterator to simulate iterating

over array[...,0,...] where 0 is placed on the dimth dimension. If dim is negative,

then the dimension with the largest axis is found and used.

15.1.3 Iterating over multiple arrays

Very often, it is desireable to iterate over several arrays at the same time. The

universal functions are an example of this kind of behavior. If all you want to do

is iterate over arrays with the same shape, then simply creating several iterator

objects is the standard procedure. For example, the following code iterates over

two arrays assumed to be the same shape and size (actually obj1 just has to have

at least as many total elements as does obj2):

/ * It is already assumed that obj1 and obj2

are ndarrays of the same shape and size.

* /

iter1 = (PyArrayIterObject * )PyArray IterNew(obj1);

if (iter1 == NULL) goto fail;

iter2 = (PyArrayIterObject * )PyArray IterNew(obj2);

if (iter2 == NULL) goto fail; / * assume iter1 is DECREF’d at fail *
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while (iter2->index < iter2->size) {
/ * process with iter1->dataptr and iter2->dataptr * /

PyArray ITER NEXT(iter1);

PyArray ITER NEXT(iter2);

}

15.1.4 Broadcasting over multiple arrays

When multiple arrays are involved in an operation, you may want to use the same

broadcasting rules that the math operations (i.e. the ufuncs) use. This can be

done easily using the PyArrayMultiIterObject. This is the object returned from

the Python command numpy.broadcast and it is almost as easy to use from C. The

function PyArray MultiIterNew (n, ... ) is used (with n input objects in place

of ... ). The input objects can be arrays or anything that can be converted into

an array. A pointer to a PyArrayMultiIterObject is returned. Broadcasting has

already been accomplished which adjusts the iterators so that all that needs to be

done to advance to the next element in each array is for PyArray ITER NEXT to

be called for each of the inputs. This incrementing is automatically performed by

PyArray MultiIter NEXT(obj ) macro (which can handle a multiterator obj

as either a PyArrayMultiObject* or a PyObject*). The data from input number i is

available using PyArray MultiIter DATA(obj , i ) and the total (broadcasted)

size as PyArray MultiIter SIZE(obj ). An example of using this feature follows.

mobj = PyArray MultiIterNew(2, obj1, obj2);

size = PyArray MultiIter SIZE(obj);

while(size--) {
ptr1 = PyArray MultiIter DATA(mobj, 0);

ptr2 = PyArray MultiIter DATA(mobj, 1);

/ * code using contents of ptr1 and ptr2 * /

PyArray MultiIter NEXT(mobj);

}

The function PyArray RemoveLargest(multi ) can be used to take a multi-

iterator object and adjust all the iterators so that iteration does not take place over

the largest dimension (it makes that dimension of size 1). The code being looped

over that makes use of the pointers will very-likely also need the strides data for

each of the iterators. This information is stored in multi->iters[i]->strides.
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There are several examples of using the multi-iterator in the NumPy source

code as it makes N-dimensional broadcasting-code very simple to write. Browse the

source for more examples.

15.2 Creating a new universal function

The umath module is a computer-generated C-module that creates many ufuncs.

It provides a great many examples of how to create a universal function. Creating

your own ufunc that will make use of the ufunc machinery is not difficult either.

Suppose you have a function that you want to operate element-by-element over its

inputs. By creating a new ufunc you will obtain a function that handles

• broadcasting

• N-dimensional looping

• automatic type-conversions with minimal memory usage

• optional output arrays

It is not difficult to create your own ufunc. All that is required is a 1-d loop for each

data-type you want to support. Each 1-d loop must have a specific signature, and

only ufuncs for fixed-size data-types can be used. The function call used to create

a new ufunc to work on built-in data-types is given below. A different mechanism

is used to register ufuncs for user-defined data-types.

PyUFunc FromFuncAndData (PyObject * ) (PyUFuncGenericFunction *
func, void ** data, char * types, int ntypes, int nin, int nout, int iden-

tity, char * name, char * doc, int check return)

func A pointer to an array of 1-d functions to use. This array must

be at least ntypes long. Each entry in the array must be a

PyUFuncGenericFunction function. This function has the following

signature. An example of a valid 1d loop function is also given.

void loop1d (char ** args, npy intp * dimensions, npy intp * steps,

void * data)

args An array of pointers to the actual data for the input and output

arrays. The input arguments are given first followed by the output

arguments.

309



dimensions A pointer to the size of the dimension over which this func-

tion is looping.

steps A pointer to the number of bytes to jump to get to the next ele-

ment in this dimension for each of the input and output arguments.

data Arbitrary data (extra arguments, function names, etc.) that can

be stored with the ufunc and will be passed in when it is called.

static void

double add(char * args, npy intp * dimensions, npy intp * steps, void

{
npy intp i;

npy intp is1=steps[0], is2=steps[1];

npy intp os=steps[2], n=dimensions[0];

char * i1=args[0], * i2=args[1], * op=args[2];

for (i=0; i<n; i++) {
* ((double * )op) = * ((double * )i1) + \

* ((double * )i2);

i1 += is1; i2 += is2; op += os;

}
}

data An array of data. There should be ntypes entries (or NULL) — one

for every loop function defined for this ufunc. This data will be passed

in to the 1-d loop. One common use of this data variable is to pass in

an actual function to call to compute the result when a generic 1-d loop

(e.g. PyUFunc d d) is being used.

types An array of type-number signatures (type char ). This array should

be of size (nin+nout)*ntypes and contain the data-types for the corre-

sponding 1-d loop. The inputs should be first followed by the outputs.

For example, suppose I have a ufunc that supports 1 integer and 1 double

1-d loop (length-2 func and data arrays) that takes 2 inputs and returns

1 output that is always a complex double, then the types array would be

char my sigs[] = \
{NPYINT, NPY INT, NPY CDOUBLE,

NPYDOUBLE, NPYDOUBLE, NPYCDOUBLE};

The bit-width names can also be used (e.g. NPYINT32 , NPYCOMPLEX128)

if desired.
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ntypes The number of data-types supported. This is equal to the number of

1-d loops provided.

nin The number of input arguments.

nout The number of output arguments.

identity Either PyUFunc One, PyUFunc Zero, PyUFunc None. This

specifies what should be returned when an empty array is passed to the

reduce method of the ufunc.

name A NULL-terminated string providing the name of this ufunc (should be

the Python name it will be called).

doc A documentation string for this ufunc (will be used in generating the re-

sponse to <ufunc name>. doc ). Do not include the function signature

or the name as this is generated automatically.

check return Not presently used, but this integer value does get set in the

structure-member of similar name.

The returned ufunc object is a callable Python object. It should be placed in a

(module) dictionary under the same name as was used in the name argument to the

ufunc-creation routine. The following example is adapted from the umath module:

static PyUFuncGenericFunction atan2 functions[]= \
{PyUFunc ff f, PyUFunc dd d,

PyUFunc gg g, PyUFunc OOO method };

static void * atan2 data[]= \
{(void * )atan2f,(void * ) atan2,

(void * )atan2l,(void * )"arctan2" };

static char atan2 signatures[]= \
{NPYFLOAT, NPY FLOAT, NPY FLOAT,

NPYDOUBLE, NPYDOUBLE,

NPYDOUBLE, NPYLONGDOUBLE,

NPYLONGDOUBLE, NPYLONGDOUBLE

NPYOBJECT, NPYOBJECT,

NPYOBJECT};

...

/ * in the module initialization code * /

PyObject * f, * dict, * module;

...
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dict = PyModule GetDict(module);

...

f = PyUFunc FromFuncAndData(atan2 functions,

atan2 data, atan2 signatures, 4, 2, 1,

PyUFunc None, "arctan2",

"a safe and correct arctan(x1/x2)", 0);

PyDict SetItemString(dict, "arctan2", f);

Py DECREF(f);

...

15.3 User-defined data-types

NumPy comes with 21 builtin data-types. While this covers a large majority of pos-

sible use cases, it is conceivable that a user may have a need for an additional data-

type. There is some support for adding an additional data-type into the NumPy

system. This additional data-type will behave much like a regular data-type except

ufuncs must have 1-d loops registered to handle it separately. Also checking for

whether or not other data-types can be cast “safely” to and from this new type

or not will always return “can cast” unless you also register which types your new

data-type can be cast to and from. Adding data-types is one of the less well-tested

areas for NumPy 1.0, so there may be bugs remaining in the approach. Only add

a new data-type if you can’t do what you want to do using the OBJECT or VOID

data-types that are already available. As an example of what I consider a useful

application of the ability to add data-types is the possibility of adding a data-type

of arbitrary precision floats to NumPy.

15.3.1 Adding the new data-type

To begin to make use of the new data-type, you need to first define a new Python

type to hold the scalars of your new data-type. It should be acceptable to inherit

from one of the array scalars if your new type has a binary compatible layout.

This will allow your new data type to have the methods and attributes of array

scalars. New data-types must have a fixed memory size (if you want to define

a data-type that needs a flexible representation, like a variable-precision number,

then use a pointer to the object as the data-type). The memory layout of the object

structure for the new Python type must be PyObject HEAD followed by the fixed-

size memory needed for the data-type. For example, a suitable structure for the
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new Python type is:

typedef struct {
PyObject HEAD;

some data type obval;

/ * the name can be whatever you want * /

} PySomeDataTypeObject;

After you have defined a new Python type object, you must then define a new

PyArray Descr structure whose typeobject member will contain a pointer to the

data-type you’ve just defined. In addition, the required functions in the “.f” member

must be defined: nonzero, copyswap, copyswapn, setitem, getitem, and cast. The

more functions in the “.f” member you define, however, the more useful the new

data-type will be. It is very important to intialize unused functions to NULL. This

can be achieved using PyArray InitArrFuncs(f).

Once a new PyArray Descr structure is created and filled with the needed infor-

mation and useful functions you call PyArray RegisterDataType(new descr).

The return value from this call is an integer providing you with a unique

type number that specifies your data-type. This type number should be stored

and made available by your module so that other modules can use it to recognize

your data-type (the other mechanism for finding a user-defined data-type number is

to search based on the name of the type-object associated with the data-type using

PyArray TypeNumFromName).

15.3.2 Registering a casting function

You may want to allow builtin (and other user-defined) data-types to be cast au-

tomatically to your data-type. In order to make this possible, you must register a

casting function with the data-type you want to be able to cast from. This requires

writing low-level casting functions for each conversion you want to support and

then registering these functions with the data-type descriptor. A low-level casting

function has the signature.

castfunc (void ) (void * from, void * to, npy intp n, void * fromarr, void *
toarr)

Cast n elements from one type to another. The data to cast from is in a

contiguous, correctly-swapped and aligned chunk of memory pointed to by

from. The buffer to cast to is also contiguous, correctly-swapped and aligned.
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The fromarr and toarr arguments should only be used for flexible-element-

sized arrays (string, unicode, void).

An example castfunc is

static void

double to float(double * from, float * to, npy intp n,

void * ig1, void * ig2);

while (n--) {
( * to++) = (double) * (from++);

}

This could then be registered to convert doubles to floats using the code

doub = PyArray DescrFromType(NPY DOUBLE);

PyArray RegisterCastFunc(doub, NPY FLOAT,

(PyArray VectorUnaryFunc * )double to float);

Py DECREF(doub);

15.3.3 Registering coercion rules

By default, all user-defined data-types are not presumed to be safely castable to

any builtin data-types. In addition builtin data-types are not presumed to be safely

castable to user-defined data-types. This situation limits the ability of user-defined

data-types to participate in the coercion system used by ufuncs and other times

when automatic coercion takes place in NumPy. This can be changed by register-

ing data-types as safely castable from a particlar data-type object. The function

PyArray RegisterCanCast (from descr, totype number, scalarkind) should be

used to specify that the data-type object from descr can be cast to the data-type

with type number totype number. If you are not trying to alter scalar coercion

rules, then use PyArray NOSCALAR for the scalarkind argument.

If you want to allow your new data-type to also be able to share in the scalar

coercion rules, then you need to specify the scalarkind function in the data-type

object’s “.f” member to return the kind of scalar the new data-type should be seen

as (the value of the scalar is available to that function). Then, you can register

data-types that can be cast to separately for each scalar kind that may be returned

from your user-defined data-type. If you don’t register scalar coercion handling,

then all of your user-defined data-types will be seen as PyArray NOSCALAR.
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15.3.4 Registering a ufunc loop

You may also want to register low-level ufunc loops for your data-type so that an

ndarray of your data-type can have math applied to it seamlessly. Registering a

new loop with exactly the same arg types signature, silently replaces any previously

registered loops for that data-type.

Before you can register a 1-d loop for a ufunc, the ufunc must be previously

created. Then you call PyUFunc RegisterLoopForType(...) with the informa-

tion needed for the loop. The return value of this function is 0 if the process was

successful and -1 with an error condition set if it was not successful.

PyUFunc RegisterLoopForType (int ) (PyUFuncObject * ufunc, int user-

type, PyUFuncGenericFunction function, int * arg types, void * data)

ufunc The ufunc to attach this loop to.

usertype The user-defined type this loop should be indexed under. This number

must be a user-defined type or an error occurs.

function The ufunc inner 1-d loop. This function must have the signature as

explained in Section 15.2.

arg types (optional) If given, this should contain an array of integers of at least

size ufunc.nargs containing the data-types expected by the loop function. The

data will be copied into a NumPy-managed structure so the memory for this

argument should be deleted after calling this function. If this is NULL, then

it will be assumed that all data-types are of type usertype.

data (optional) Specify any optional data needed by the function which will be

passed when the function is called.

15.4 Subtyping the ndarray in C

One of the lesser-used features that has been lurking in Python since 2.2 is the

ability to sub-class types in C. This facility is one of the important reasons for

basing NumPy off of the Numeric code-base which was already in C. A sub-type in

C allows much more flexibility with regards to memory management. Sub-typing

in C is not difficult even if you have only a rudimentary understanding of how to

create new types for Python. While it is easiest to sub-type from a single parent

type, sub-typing from multiple parent types is also possible. Multiple inheritence
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in C is generally less useful than it is in Python because a restriction on Python

sub-types is that they have a binary compatible memory layout. Perhaps for this

reason, it is somewhat easier to sub-type from a single parent type.

All C-structures corresponding to Python objects must begin with PyOb-

ject HEAD (or PyObject VAR HEAD). In the same way, any sub-type must have

a C-structure that begins with exactly the same memory layout as the parent type

(or all of the parent types in the case of multiple-inheritance). The reason for this

is that Python may attempt to access a member of the sub-type structure as if it

had the parent structure (i.e. it will cast a given pointer to a pointer to the parent

structure and then dereference one of it’s members). If the memory layouts are not

compatible, then this attempt will cause unpredictable behavior (eventually leading

to a memory violation and program crash).

One of the elements in PyObject HEAD is a pointer to a type-object structure.

A new Python type is created by creating a new type-object structure and popu-

lating it with functions and pointers to describe the desired behavior of the type.

Typically, a new C-structure is also created to contain the instance-specific informa-

tion needed for each object of the type as well. For example, &PyArray Type is a

pointer to the type-object table for the ndarray while a PyArrayObject* variable is

a pointer to a particular instance of an ndarray (one of the members of the ndarray

structure is, in turn, a pointer to the type-object table &PyArray Type). Finally

PyType Ready(<pointer to type object>) must be called for every new Python

type.

15.4.1 Creating sub-types

To create a sub-type, a similar proceedure must be followed except only behaviors

that are different require new entries in the type-object structure. All other entires

can be NULL and will be filled in by PyType Ready with appropriate functions

from the parent type(s). In particular, to create a sub-type in C follow these steps:

1. If needed create a new C-structure to handle each instance of your type. A

typical C-structure would be

typedef new struct {
PyArrayObject base;

/ * new things here * /

} NewArrayObject;
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Notice that the full PyArrayObject is used as the first entry in order to en-

sure that the binary layout of instances of the new type is identical to the

PyArrayObject.

2. Fill in a new Python type-object structure with pointers to new functions

that will over-ride the default behavior while leaving any function that should

remain the same unfilled (or NULL). The tp name element should be different.

3. Fill in the tp base member of the new type-object structure with a pointer

to the (main) parent type object. For multiple-inheritance, also fill in the

tp bases member with a tuple containing all of the parent objects in the order

they should be used to define inheritance. Remember, all parent-types must

have the same C-structure for multiple inheritance to work properly.

4. Call PyType Ready(<pointer to new type>). If this function returns a

negative number, a failure occurred and the type is not initialized. Otherwise,

the type is ready to be used. It is generally important to place a reference to

the new type into the module dictionary so it can be accessed from Python.

More information on creating sub-types in C can be learned by reading PEP 253

(available at http://www.python.org/dev/peps/pep-0253).

15.4.2 Specific features of ndarray sub-typing

Some special methods and attributes are used by arrays in order to facilitate the

interoperation of sub-types with the base ndarray type.

15.4.2.1 The array finalize method

Several array-creation functions of the ndarray allow specification of a particu-

lar sub-type to be created. This allows sub-types to be handled seamlessly in

many routines. When a sub-type is created in such a fashion, however, neither

the new method nor the init method gets called. Instead, the sub-type is

allocated and the appropriate instance-structure members are filled in. Finally,

the array finalize attribute is looked-up in the object dictionary. If it is

present and not None, then it can be either a CObject containing a pointer to

a PyArray FinalizeFunc or it can be a method taking a single argument (which

could be None).

If the array finalize attribute is a CObject, then the pointer must be a

pointer to a function with the signature:
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(int) (PyArrayObject *, PyObject *)

The first argument is the newly created sub-type. The second argument (if not

NULL) is the “parent” array (if the array was created using slicing or some other

operation where a clearly-distinguishable parent is present). This routine can do

anything it wants to. It should return a -1 on error and 0 otherwise.

If the array finalize attribute is not None nor a CObject, then it must be

a Python method that takes the parent array as an argument (which could be None

if there is no parent), and returns nothing. Errors in this method will be caught

and handled.

15.4.2.2 The array priority attribute

This attribute allows simple but flexible determination of which sub-type should be

considered “primary” when an operation involving two or more sub-types arises. In

operations where different sub-types are being used, the sub-type with the largest

array priority attribute will determine the sub-type of the output(s). If two

sub-types have the same array prioirty then the sub-type of the first argument

determines the output. The default array priority attribute returns a value

of 0.0 for the base ndarray type and 1.0 for a sub-type. This attribute can also

be defined by objects that are not sub-types of the ndarray and can be used to

determine which array wrap method should be called for the return output.

15.4.2.3 The array wrap method

Any class or type can define this method which should take an ndarray argument

and return an instance of the type. It can be seen as the opposite of the array

method. This method is used by the ufuncs (and other NumPy functions) to allow

other objects to pass through. For Python >2.4, it can also be used to write a

decorator that converts a function that works only with ndarrays to one that works

with any type with array and array wrap methods.
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Chapter 16

Using Python as glue

Many people like to say that Python is a fantastic glue language. Hopefully, this

Chapter will convince you that this is true. The first adopters of Python for science

were typically people who used it to glue together large applicaton codes running

on super-computers. Not only was it much nicer to code in Python than in a shell

script or Perl, in addition, the ability to easily extend Python made it relatively

easy to create new classes and types specifically adapted to the problems being

solved. From the interactions of these early contributors, Numeric emerged as an

array-like object that could be used to pass data between these applications.

As Numeric has matured and developed into NumPy, people have been able to

write more code directly in NumPy. Often this code is fast-enough for production

use, but there are still times that there is a need to access compiled code. Either

to get that last bit of efficiency out of the algorithm or to make it easier to access

widely-available codes written in C/C++ or Fortran.

This chapter will review many of the tools that are available for the purpose

of accessing code written in other compiled languages. There are many resources

available for learning to call other compiled libraries from Python and the purpose

of this Chapter is not to make you an expert. The main goal is to make you aware

of some of the possibilities so that you will know what to “Google” in order to learn

more.

The http://www.scipy.org website also contains a great deal of use-

ful information about many of these tools. For example, there is a

nice description of using several of the tools explained in this chapter at

http://www.scipy.org/PerformancePython. This link provides several ways to solve

the same problem showing how to use and connect with compiled code to get the
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best performance. In the process you can get a taste for several of the approaches

that will be discussed in this chapter.

16.1 Calling other compiled libraries from Python

While Python is a great language and a pleasure to code in, its dynamic nature

results in overhead that can cause some code (i.e. raw computations inside of for

loops) to be up 10-100 times slower than equivalent code written in a static compiled

language. In addition, it can cause memory usage to be larger than necessary as

temporary arrays are created and destroyed during computation. For many types

of computing needs the extra slow-down and memory consumption can often not be

spared (at least for time- or memory-critical portions of your code). Therefore one

of the most common needs is to call out from Python code to a fast, machine-code

routine (e.g. compiled using C/C++ or Fortran). The fact that this is relatively

easy to do is a big reason why Python is such an excellent high-level language for

scientific and engineering programming.

Their are two basic approaches to calling compiled code: writing an extension

module that is then imported to Python using the import command, or calling a

shared-library subroutine directly from Python using the ctypes module (included

in the standard distribution with Python 2.5). The first method is the most common

(but with the inclusion of ctypes into Python 2.5 this status may change).

WARNING

Calling C-code from Python can result in Python crashes if you are

not careful. None of the approaches in this chapter are immune.

You have to know something about the way data is handled by

both NumPy and by the third-party library being used.

16.2 Hand-generated wrappers

Extension modules were discussed in Chapter 14.1. The most basic way to interface

with compiled code is to write an extension module and construct a module method

that calls the compiled code. For improved readability, your method should take

advantage of the PyArg ParseTuple call to convert between Python objects and C

data-types. For standard C data-types there is probably already a built-in converter.

For others you may need to write your own converter and use the “O&” format string
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which allows you to specify a function that will be used to perform the conversion

from the Python object to whatever C-structures are needed.

Once the conversions to the appropriate C-structures and C data-types have

been performed, the next step in the wrapper is to call the underlying function.

This is straightforward if the underlying function is in C or C++. However, in order

to call Fortran code you must be familiar with how Fortran subroutines are called

from C/C++ using your compiler and platform. This can vary somewhat platforms

and compilers (which is another reason f2py makes life much simpler for interfacing

Fortran code) but generally involves underscore mangling of the name and the fact

that all variables are passed by reference (i.e. all arguments are pointers).

The advantage of the hand-generated wrapper is that you have complete control

over how the C-library gets used and called which can lead to a lean and tight in-

terface with minimal over-head. The disadvantage is that you have to write, debug,

and maintain C-code, although most of it can be adapted using the time-honored

technique of “cutting-pasting-and-modifying” from other extension modules. Be-

cause, the procedure of calling out to additional C-code is fairly regimented, code-

generation procedures have been developed to make this process easier. One of these

code-generation techniques is distributed with NumPy and allows easy integration

with Fortran and (simple) C code. This package, f2py, will be covered briefly in the

next session.

16.3 f2py

F2py allows you to automatically construct an extension module that interfaces to

routines in Fortran 77/90/95 code. It has the ability to parse Fortran 77/90/95 code

and automatically generate Python signatures for the subroutines it encounters,

or you can guide how the subroutine interfaces with Python by constructing an

interface-defintion-file (or modifying the f2py-produced one).

16.3.1 Creating source for a basic extension module

Probably the easiest way to introduce f2py is to offer a simple example. Here is one

of the subroutines contained in a file named add.f

C

SUBROUTINE ZADD(A,B,C,N)

C

DOUBLE COMPLEX A(* )
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DOUBLE COMPLEX B(* )

DOUBLE COMPLEX C(* )

INTEGER N

DO 20 J = 1, N

C(J) = A(J)+B(J)

20 CONTINUE

END

This routine simply adds the elements in two contiguous arrays and places the result

in a third. The memory for all three arrays must be provided by the calling routine.

A very basic interface to this routine can be automatically generated by f2py:

f2py -m add add.f

You should be able to run this command assuming your search-path is set-up prop-

erly. This command will produce an extension module named addmodule.c in the

current directory. This extension module can now be compiled and used from

Python just like any other extension module.

16.3.2 Creating a compiled extension module

You can also get f2py to compile add.f and also compile its produced extension mod-

ule leaving only a shared-library extension file that can be imported from Python:

f2py -c -m add add.f

This command leaves a file named add.<ext> in the current directory (where <ext>

is the appropriate extension for a python extension module on your platform — so,

pyd, etc.). This module may then be imported from Python. It will contain a

method for each subroutin in add (zadd, cadd, dadd, sadd). The docstring of each

method contains information about how the module method may be called:

>>> import add

>>> print add.zadd. doc

zadd - Function signature:

zadd(a,b,c,n)

Required arguments:

a : input rank-1 array(’D’) with bounds ( * )

b : input rank-1 array(’D’) with bounds ( * )

c : input rank-1 array(’D’) with bounds ( * )

n : input int
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16.3.3 Improving the basic interface

The default interface is a very literal translation of the fortran code into Python.

The Fortran array arguments must now be NumPy arrays and the integer argument

should be an integer. The interface will attempt to convert all arguments to their

required types (and shapes) and issue an error if unsuccessful. However, because it

knows nothing about the semantics of the arguments (such that C is an output and

n should really match the array sizes), it is possible to abuse this function in ways

that can cause Python to crash. For example

>>> add.zadd([1,2,3],[1,2],[3,4],1000)

will cause a program crash on most systems. Under the covers, the lists are being

converted to proper arrays but then the underlying add loop is told to cycle way

beyond the borders of the allocated memory.

In order to improve the interface, directives should be provided. This is accom-

plished by constructing an interface definition file. It is usually best to start from

the interface file that f2py can produce (where it gets its default behavior from).

To get f2py to generate the interface file use the -h option:

f2py -h add.pyf -m add add.f

This command leaves the file add.pyf in the current directory. The section of this

file corresponding to zadd is:

subroutine zadd(a,b,c,n) ! in :add:add.f

double complex dimension( * ) :: a

double complex dimension( * ) :: b

double complex dimension( * ) :: c

integer :: n

end subroutine zadd

By placing intent directives and checking code, the interface can be cleaned up quite

a bit until the Python module method is both easier to use and more robust.

subroutine zadd(a,b,c,n) ! in :add:add.f

double complex dimension(n) :: a

double complex dimension(n) :: b

double complex intent(out),dimension(n) :: c

integer intent(hide),depend(a) :: n=len(a)

end subroutine zadd

323



The intent directive, intent(out) is used to tell f2py that c is an output variable

and should be created by the interface before being passed to the underlying code.

The intent(hide) directive tells f2py to not allow the user to specify the variable, n,

but instead to get it from the size of a. The depend(a) directive is necessary to tell

f2py that the value of n depends on the input a (so that it won’t try to create the

variable n until the variable a is created).

The new interface has docstring:

>>> print add.zadd. doc

zadd - Function signature:

c = zadd(a,b)

Required arguments:

a : input rank-1 array(’D’) with bounds (n)

b : input rank-1 array(’D’) with bounds (n)

Return objects:

c : rank-1 array(’D’) with bounds (n)

Now, the function can be called in a much more robust way:

>>> add.zadd([1,2,3],[4,5,6])

array([ 5.+0.j, 7.+0.j, 9.+0.j])

Notice the automatic conversion to the correct format that occurred.

16.3.4 Inserting directives in Fortran source

The nice interface can also be generated automatically by placing the variable di-

rectives as special comments in the original fortran code. Thus, if I modify the

source code to contain:

C

SUBROUTINE ZADD(A,B,C,N)

C

CF2PY INTENT(OUT) :: C

CF2PY INTENT(HIDE) :: N

CF2PY DOUBLE COMPLEX :: A(N)

CF2PY DOUBLE COMPLEX :: B(N)

CF2PY DOUBLE COMPLEX :: C(N)

DOUBLE COMPLEX A(* )
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DOUBLE COMPLEX B(* )

DOUBLE COMPLEX C(* )

INTEGER N

DO 20 J = 1, N

C(J) = A(J) + B(J)

20 CONTINUE

END

Then, I can compile the extension module using

f2py -c -m add add.f

The resulting signature for the function add.zadd is exactly the same one that was

created previously. If the original source code had contained A(N) instead of A(*)

and so forth with B and C, then I could obtain (nearly) the same interface simply

by placing the INTENT(OUT) :: C comment line in the source code. The only

difference is that N would be an optional input that would default to the length of

A.

16.3.5 A filtering example

For comparison with the other methods to be discussed. Here is another example

of a function that filters a two-dimensional array of double precision floating-point

numbers using a fixed averaging filter. The advantage of using Fortran to index

into multi-dimensional arrays should be clear from this example.

SUBROUTINE DFILTER2D(A,B,M,N)

C

DOUBLE PRECISION A(M,N)

DOUBLE PRECISION B(M,N)

INTEGER N, M

CF2PY INTENT(OUT) :: B

CF2PY INTENT(HIDE) :: N

CF2PY INTENT(HIDE) :: M

DO 20 I = 2,M-1

DO 40 J=2,N-1

B(I,J) = A(I,J) +

$ (A(I-1,J)+A(I+1,J) +

$ A(I,J-1)+A(I,J+1) ) * 0.5D0 +
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$ (A(I-1,J-1) + A(I-1,J+1) +

$ A(I+1,J-1) + A(I+1,J+1)) * 0.25D0

40 CONTINUE

20 CONTINUE

END

This code can be compiled and linked into an extension module named filter using

f2py -c -m filter filter.f

This will produce an extension module named filter.so in the current directory with

a method named dfilter2d that returns a filtered version of the input.

16.3.6 Calling f2py from Python

The f2py program is written in Python and can be run from inside your mod-

ule. This provides a facility that is somewhat similar to the use of weave.ext tools

described below. An example of the final interface executed using Python code is

import numpy.f2py as f2py

fid = open(’add.f’)

source = fid.read()

fid.close()

f2py.compile(source, modulename=’add’)

import add

The source string can be any valid Fortran code. If you want to save the extension-

module source code then a suitable file-name can be provided by the source fn

keyword to the compile function.

16.3.7 Automatic extension module generation

If you want to distribute your f2py extension module, then you only need to include

the .pyf file and the Fortran code. The distutils extensions in NumPy allow you to

define an extension module entirely in terms of this interface file. A valid setup.py

file allowing distribution of the add.f module (as part of the package f2py examples

so that it would be loaded as f2py examples.add) is

def configuration(parent package=’’, top path=None)

from numpy.distutils.misc util import Configuration
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config = Configuration(’f2py examples’,parent package, top path)

config.add extension(’add’, sources=[’add.pyf’,’add.f’])

return config

if name == ’ main ’:

from numpy.distutils.core import setup

setup( ** configuration(top path=’’).todict())

Installation of the new package is easy using

python setup.py install

assuming you have the proper permissions to write to the main site-packages direc-

tory for the version of Python you are using. For the resulting package to work, you

need to create a file named init .py (in the same directory as add.pyf). Notice

the extension module is defined entirely in terms of the “add.pyf” and “add.f” files.

The conversion of the .pyf file to a .c file is handled by numpy.disutils.

16.3.8 Conclusion

The interface definition file (.pyf) is how you can fine-tune the interface be-

tween Python and Fortran. There is decent documentation for f2py found in the

numpy/f2py/docs directory where-ever NumPy is installed on your system (usually

under site-packages). There is also more information on using f2py (including how

to use it to wrap C codes) at http://www.scipy.org/Cookbook under the “Using

NumPy with Other Languages” heading.

The f2py method of linking compiled code is currently the most sophisticated and

integrated approach. It allows clean separation of Python with compiled code while

still allowing for separate distribution of the extension module. The only draw-back

is that it requires the existence of a Fortran compiler in order for a user to install

the code. However, with the existence of the free-compilers g77, gfortran, and g95,

as well as high-quality commerical compilers, this restriction is not particularly

onerous. In my opinion, Fortran is still the easiest way to write fast and clear

code for scientific computing. It handles complex numbers, and multi-dimensional

indexing in the most straightforward way. Be aware, however, that some Fortran

compilers will not be able to optimize code as well as good hand-written C-code.
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16.4 weave

Weave is a scipy package that can be used to automate the process of extending

Python with C/C++ code. It can be used to speed up evaluation of an array

expression that would otherwise create temporary variables, to directly “inline”

C/C++ code into Python, or to create a fully-named extension module. You must

either install scipy or get the weave package separately and install it using the

standard python setup.py install. You must also have a C/C++-compiler installed

and useable by Python distutils in order to use weave.

Somewhat dated, but still useful documentation for weave can be found at the

link http://www.scipy/Weave. There are also many examples found in the examples

directory which is installed under the weave directory in the place where weave is

installed on your system.

16.4.1 Speed up code involving arrays (also see

scipy.numexpr)

This is the easiest way to use weave and requires minimal changes to your Python

code. It involves placing quotes around the expression of interest and calling

weave.blitz. Weave will parse the code and generate C++ code using Blitz C++

arrays. It will then compile the code and catalog the shared library so that the next

time this exact string is asked for (and the array types are the same), the already-

compiled shared library will be loaded and used. Because Blitz makes extensive

use of C++ templating, it can take a long time to compile the first time. After

that, however, the code should evaluate more quickly than the equivalent NumPy

expression. This is especially true if your array sizes are large and the expression

would require NumPy to create several temporaries. Only expressions involving

basic arithmetic operations and basic array slicing can be converted to Blitz C++

code.

For example, consider the expression

d = 4* a + 5* a* b + 6* b* c

where a, b, and c are all arrays of the same type and shape. When the data-type is

double-precision and the size is 1000x1000, this expression takes about 0.5 seconds

to compute on an 1.1Ghz AMD Athlon machine. When this expression is executed

instead using blitz:

d = empty(a.shape, ’d’); weave.blitz(expr)
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execution time is only about 0.20 seconds (about 0.14 seconds spent in weave and

the rest in allocating space for d). Thus, we’ve sped up the code by a factor of 2

using only a simnple command (weave.blitz). Your mileage may vary, but factors

of 2-8 speed-ups are possible with this very simple technique.

If you are interested in using weave in this way, then you should also look at

scipy.numexpr which is another similar way to speed up expressions by eliminat-

ing the need for temporary variables. Using numexpr does not require a C/C++

compiler.

16.4.2 Inline C-code

Probably the most widely-used method of employing weave is to “in-line” C/C++

code into Python in order to speed up a time-critical section of Python code. In this

method of using weave, you define a string containing useful C-code and then pass it

to the function weave.inline(code string , variables ), where code string is a

string of valid C/C++ code and variables is a list of variables that should be passed

in from Python. The C/C++ code should refer to the variables with the same

names as they are defined with in Python. If weave.line should return anything the

the special value return val should be set to whatever object should be returned.

The following example shows how to use weave on basic Python objects

code = r"""

int i;

py::tuple results(2);

for (i=0; i<a.length(); i++) {
a[i] = i;

}
results[0] = 3.0;

results[1] = 4.0;

return val = results;

"""

a = [None] * 10

res = weave.inline(code,[’a’])

The C++ code shown in the code string uses the name ’a’ to refer to the Python

list that is passed in. Because the Python List is a mutable type, the elements of

the list itself are modified by the C++ code. A set of C++ classes are used to

access Python objects using simple syntax.
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The main advantage of using C-code, however, is to speed up processing on an

array of data. Accessing a NumPy array in C++ code using weave, depends on

what kind of type converter is chosen in going from NumPy arrays to C++ code.

The default converter creates 5 variables for the C-code for every NumPy array

passed in to weave.inline. The following table shows these variables which can all

be used in the C++ code. The table assumes that myvar is the name of the array

in Python with data-type <dtype> (i.e. float64, float32, int8, etc.)

Variable Type Contents

myvar <dtype>* Pointer to the first element of the array

Nmyvar npy intp* A pointer to the dimensions array

Smyvar npy intp* A pointer to the strides array

Dmyvar int The number of dimensions

myvar array PyArrayObject* The entire structure for the array

The in-lined code can contain references to any of these variables as well as

to the standard macros MYVAR1(i), MYVAR2(i,j), MYVAR3(i,j,k), and MY-

VAR4(i,j,k,l). These name-based macros (they are the Python name capitalized

followed by the number of dimensions needed) will de-reference the memory for the

array at the given location with no error checking (be-sure to use the correct macro

and ensure the array is aligned and in correct byte-swap order in order to get useful

results). The following code shows how you might use these variables and macros

to code a loop in C that computes a simple 2-d weighted averaging filter.

int i,j;

for(i=1;i<Na[0]-1;i++) {
for(j=1;j<Na[1]-1;j++) {

B2(i,j) = A2(i,j) + (A2(i-1,j) +

A2(i+1,j)+A2(i,j-1)

+ A2(i,j+1)) * 0.5

+ (A2(i-1,j-1)

+ A2(i-1,j+1)

+ A2(i+1,j-1)

+ A2(i+1,j+1)) * 0.25

}
}

The above code doesn’t have any error checking and so could fail with a Python

crash if, a had the wrong number of dimensions, or b did not have the same shape
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as a. However, it could be placed inside a standard Python function with the

necessary error checking to produce a robust but fast subroutine.

One final note about weave.inline: if you have additional code you want to in-

clude in the final extension module such as supporting function calls, include stat-

ments, etc. you can pass this code in as a string using the keyword support code:

weave.inline(code, variables, support code=support) . If you need

the extension module to link against an additional library then you can also pass

in distutils-style keyword arguments such as library dirs, libraries, and/or run-

time library dirs which point to the appropriate libraries and directories.

16.4.3 Simplify creation of an extension module

The inline function creates one extension module for each function to-be inlined.

It also generates a lot of intermediate code that is duplicated for each extension

module. If you have several related codes to execute in C, it would be better to make

them all separate functions in a single extension module with multiple functions.

You can also use the tools weave provides to produce this larger extension module.

In fact, the weave.inline function just uses these more general tools to do its work.

The approach is to:

1. construct a extension module object using

ext tools.ext module(module name);

2. create function objects using ext tools.ext function(func name, code ,

variables );

3. (optional) add support code to the function using the .cus-

tomize.add support code(support code ) method of the function object;

4. add the functions to the extension module object using the

.add function(func ) method;

5. when all the functions are added, compile the extension with its .compile()

method.

Several examples are available in the examples directory where weave is installed on

your system. Look particularly at ramp2.py, increment example.py and fibonacii.py
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16.4.4 Conclusion

Weave is a useful tool for quickly routines in C/C++ and linking them into Python.

It’s caching-mechanism allows for on-the-fly compilation which makes it particularly

attractive for in-house code. Because of the requirement that the user have a C++-

compiler, it can be difficult (but not impossible) to distribute a package that uses

weave to other users who don’t have a compiler installed. Of course, weave could be

used to construct an extension module which is then distributed in the normal way

(using a setup.py file). While you can use weave to build larger extension modules

with many methods, creating methods with a variable-number of arguments is not

possible. Thus, for a more sophisticated module, you will still probably want a

Python-layer that calls the weave-produced extension.

16.5 Pyrex

Pyrex is a way to write C-extension modules using Python-like syntax. It is an

interesting way to generate extension modules that is growing in popularity, par-

ticularly among people who have rusty or non-existent C-skills. It does require the

user to write the “interface” code and so is more time-consuming than SWIG or

f2py if you are trying to interface to a large library of code. However, if you are

writing an extension module that will include quite a bit of your own algorithmic

code, as well, then Pyrex is a good match. A big weakness perhaps is the inability

to easily and quickly access the elements of a multidimensional array.

Notice that Pyrex is an extension-module generator only. Unlike weave or f2py,

it includes no automatic facility for compiling and linking the extension module

(which must be done in the usual fashion). It does provide a modified distutils class

called build ext which lets you build an extension module from a .pyx source. Thus,

you could write in a setup.py file

from Pyrex.Distutils import build ext

from distutils.extension import Extension

from distutils.core import setup

import numpy

py ext = Extension(’mine’, [’mine.pyx’],

include dirs=[numpy.get include()])

setup(name=’mine’, description=’Nothing’,
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ext modules=[pyx ext],

cmdclass = {’build ext’:build ext })

Adding the NumPy include directory is, of course, only necessary if you are using

NumPy arrays in the extension module (which is what I assume you are using Pyrex

for). The distutils extensions in NumPy also include support for automatically

producing the extension-module and linking it from a .pyx file. It works so that

if the user does not have Pyrex installed, then it looks for a file with the same

file-name but a .c extension which it then uses instead of trying to produce the .c

file again.

Pyrex does not natively understand NumPy arrays. However, it is not diffi-

cult to include information that lets Pyrex deal with them usefully. In fact, the

numpy.random.mtrand module was written using Pyrex so an example of Pyrex us-

age is already included in the NumPy source distribution. That experience led to the

creation of a standard c numpy.pxd file that you can use to simplify interacting with

NumPy array objects in a Pyrex-written extension. The file may not be complete

(it wasn’t at the time of this writing). If you have additions you’d like to contribute,

please send them. The file is located in the .../site-packages/numpy/doc/pyrex di-

rectory where you have Python installed. There is also an example in that directory

of using Pyrex to construct a simple extension module. It shows that Pyrex looks

a lot like Python but also contains some new syntax that is necessary in order to

get C-like speed.

If you just use Pyrex to compile a standard Python module, then you will get

a C-extension module that runs either as fast or, possibly, more slowly than the

equivalent Python module. Speed increases are possible only when you use cdef to

statically define C variables and use a special construct to create for loops:

cdef int i

for i from start <= i < stop

Let’s look at two examples we’ve seen before to see how they might be implemented

using Pyrex. These examples were compiled into extension modules using Pyrex-

0.9.3.1.

16.5.1 Pyrex-add

Here is part of a Pyrex-file I named add.pyx which implements the add functions

we previously implemented using f2py:

333



cimport c numpy

from c numpy cimport import array, ndarray, npy intp, npy cdouble, \
npy cfloat, NPY DOUBLE, NPYCDOUBLE, NPYFLOAT, \
NPYCFLOAT

#We need to initialize NumPy

import array()

def zadd(object ao, object bo):

cdef ndarray c, a, b

cdef npy intp i

a = c numpy.PyArray ContiguousFromAny(ao,

NPYCDOUBLE, 1, 1)

b = c numpy.PyArray ContiguousFromAny(bo,

NPYCDOUBLE, 1, 1)

c = c numpy.PyArray SimpleNew(a.nd, a.dimensions,

a.descr.type num)

for i from 0 <= i < a.dimensions[0]:

(<npy cdouble * >c.data)[i].real = \
(<npy cdouble * >a.data)[i].real + \
(<npy cdouble * >b.data)[i].real

(<npy cdouble * >c.data)[i].imag = \
(<npy cdouble * >a.data)[i].imag + \
(<npy cdouble * >b.data)[i].imag

return c

This module shows use of the cimport statement to load the definitions from the

c numpy.pxd file. As shown, both versions of the import statement are supported.

It also shows use of the NumPy C-API to construct NumPy arrays from arbitrary

input objects. The array c is created using PyArray SimpleNew. Then the c-array

is filled by addition. Casting to a particiular data-type is accomplished using <cast

*>. Pointers are de-referenced with bracket notation and members of structures are

accessed using ’.’ notation even if the object is techinically a pointer to a structure.

The use of the special for loop construct ensures that the underlying code will have

a similar C-loop so the addition calculation will proceed quickly. Notice that we

have not checked for NULL after calling to the C-API — a cardinal sin when writing

C-code. For routines that return Python objects, Pyrex inserts the checks for NULL
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into the C-code for you and returns with failure if need be. There is also a way to

get Pyrex to automatically check for exceptions when you call functions that don’t

return Python objects. See the documentation of Pyrex for details.

16.5.2 Pyrex-filter

The two-dimensional example we created using weave is a bit uglierto implement

in Pyrex because two-dimensional indexing using Pyrex is not as simple. But, it is

straightforward (and possibly faster because of pre-computed indices). Here is the

Pyrex-file I named image.pyx.

cimport c numpy

from c numpy cimport import array, ndarray, npy intp, \
NPYDOUBLE, NPYCDOUBLE, \
NPYFLOAT, NPY CFLOAT, NPYALIGNED \

#We need to initialize NumPy

import array()

def filter(object ao):

cdef ndarray a, b

cdef npy intp i, j, M, N, oS

cdef npy intp r,rm1,rp1,c,cm1,cp1

cdef double value

# Require an ALIGNED array

# (but not necessarily contiguous)

# We will use strides to access the elements.

a = c numpy.PyArray FROMANY(ao, NPYDOUBLE, \
2, 2, NPY ALIGNED)

b = c numpy.PyArray SimpleNew(a.nd,a.dimensions, \
a.descr.type num)

M = a.dimensions[0]

N = a.dimensions[1]

S0 = a.strides[0]

S1 = a.strides[1]

for i from 1 <= i < M-1:

r = i * S0

rm1 = r-S0

rp1 = r+S0
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oS = i * N

for j from 1 <= j < N-1:

c = j * S1

cm1 = c-S1

cp1 = c+S1

(<double * >b.data)[oS+j] = \
(<double * >(a.data+r+c))[0] + \
((<double * >(a.data+rm1+c))[0] + \

(<double * >(a.data+rp1+c))[0] + \
(<double * >(a.data+r+cm1))[0] + \
(<double * >(a.data+r+cp1))[0]) * 0.5 + \

((<double * >(a.data+rm1+cm1))[0] + \
(<double * >(a.data+rp1+cm1))[0] + \
(<double * >(a.data+rp1+cp1))[0] + \
(<double * >(a.data+rm1+cp1))[0]) * 0.25

return b

This 2-d averaging filter runs quickly because the loop is in C and the pointer

computations are done only as needed. However, it is not particularly easy to

understand what is happening. A 2-d image, in , can be filtered using this code

very quickly using

import image

out = image.filter(in)

16.5.3 Conclusion

There are several disadvantages of using Pyrex:

1. The syntax for Pyrex can get a bit bulky, and it can be confusing at first to

understand what kind of objects you are getting and how to interface them

with C-like constructs.

2. Inappropriate Pyrex syntax or incorrect calls to C-code or type-mismatches

can result in failures such as

(a) Pyrex failing to generate the extension module source code,

(b) Compiler failure while generating the extension module binary due to

incorrect C syntax,
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(c) Python failure when trying to use the module.

3. It is easy to lose a clean separation between Python and C which makes re-

using your C-code for other non-Python-related projects more difficult.

4. Multi-dimensional arrays are “bulky” to index (appropriate macros may be

able to fix this).

5. The C-code generated by Prex is hard to read and modify (and typically

compiles with annoying but harmless warnings).

Writing a good Pyrex extension module still takes a bit of effort because not only

does it require (a little) familiarity with C, but also with Pyrex’s brand of Python-

mixed-with C. One big advantage of Pyrex-generated extension modules is that

they are easy to distribute using distutils. In summary, Pyrex is a very capable tool

for either gluing C-code or generating an extension module quickly and should not

be over-looked. It is especially useful for people that can’t or won’t write C-code

or Fortran code. But, if you are already able to write simple subroutines in C or

Fortran, then I would use one of the other approaches such as f2py (for Fortran),

ctypes (for C shared-libraries), or weave (for inline C-code).

16.6 ctypes

Ctypes is a python extension module (downloaded separately for Python <2.5 and

included with Python 2.5) that allows you to call an arbitrary function in a shared

library directly from Python. This approach allows you to interface with C-code

directly from Python. This opens up an enormous number of libraries for use from

Python. The drawback, however, is that coding mistakes can lead to ugly program

crashes very easily (just as can happen in C) because there is little type or bounds

checking done on the parameters. This is especially true when array data is passed

in as a pointer to a raw memory location. The responsibility is then on you that the

subroutine will not access memory outside the actual array area. But, if you don’t

mind living a little dangerously ctypes can be an effective tool for quickly taking

advantage of a large shared library (or writing extended functionality in your own

shared library).

Because the ctypes approach exposes a raw interface to the compiled code it is

not always tolerant of user mistakes. Robust use of the ctypes module typically

involves an additional layer of Python code in order to check the data types and
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array bounds of objects passed to the underlying subroutine. This additional layer

of checking (not to mention the conversion from ctypes objects to C-data-types

that ctypes itself performs), will make the interface slower than a hand-written

extension-module interface. However, this overhead should be neglible if the C-

routine being called is doing any significant amount of work. If you are a great

Python programmer with weak C-skills, ctypes is an easy way to write a useful

interface to a (shared) library of compiled code.

To use c-types you must

1. Have a shared library.

2. Load the shared library.

3. Convert the python objects to ctypes-understood arguments.

4. Call the function from the library with the ctypes arguments.

16.6.1 Having a shared library

There are several requirements for a shared library that can be used with c-types

that are platform specific. This guide assumes you have some familiarity with

making a shared library on your system (or simply have a shared library available

to you). Items to remember are:

• A shared library must be compiled in a special way (e.g. using the -shared

flag with gcc).

• On some platforms (e.g. Windows) , a shared library requires a .def file that

specifies the functions to be exported. For example a mylib.def file might

contain.

LIBRARY mylib.dll

EXPORTS

cool function1

cool function2

Alternatively, you may be able to use the storage-class specifier

declspec(dllexport) in the C-definition of the function to avoid the need

for this .def file.
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There is no standard way in Python distutils to create a standard shared library

(an extension module is a “special” shared library Python understands) in a cross-

platform manner. Thus, a big disadvantage of ctypes at the time of writing this book

is that it is difficult to distribute in a cross-platform manner a Python extension

that uses c-types and includes your own code which should be compiled as a shared

library on the users system.

16.6.2 Loading the shared library

A simple, but robust way to load the shared library is to get the absolute path

name and load it using the cdll object of ctypes.

lib = ctypes.cdll[<full path name>]

However, on Windows accessing an attribute of the cdll method will load the first

DLL by that name found in the current directory or on the PATH. Loading the

absolute path name requires a little finesse for cross-platform work since the exten-

sion of shared libraries varies. There is a ctypes.util.find library utility

available that can simplify the process of finding the library to load but it is not

foolproof. Complicating matters, different platforms have different default exten-

sions used by shared libraries (e.g. .dll – Windows, .so – Linux, .dylib – Mac OS

X). This must also be taken into account if you are using c-types to wrap code that

needs to work on several platforms.

NumPy provides a convenience function called ctypeslib.load library(name,

path). This function takes the name of the shared library (including any prefix

like ’lib’ but excluding the extension) and a path where the shared library can

be located. It returns a ctypes library object or raises an OSError if the library

cannot be found or raises an ImportError if the ctypes module is not available.

(Windows users: the ctypes library object loaded using load library is always

loaded assuming cdecl calling convention. See the ctypes documentation under

ctypes.windll and/or ctypes.oledll for ways to load libraries under other calling

conventions).

The functions in the shared library are available as attributes of the

ctypes library object (returned from ctypeslib.load library) or as items using

lib[’func name’] syntax. The latter method for retrieving a function name is par-

ticularly useful if the function name contains characters that are not allowable in

Python variable names.
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16.6.3 Converting arguments

Python ints/longs, strings, and unicode objects are automatically converted as

needed to equivalent c-types arguments The None object is also converted auto-

matically to a NULL pointer. All other Python objects must be converted to

ctypes-specific types. There are two ways around this restriction that allow c-types

to integrate with other objects.

1. Don’t set the argtypes attribute of the function object and define an

as parameter method for the object you want to pass in. The as parameter

method must return a Python int which will be passed directly to the function.

2. Set the argtypes attribute to a list whose entries contain objects with a class-

method named from param that knows how to convert your object to an

object that ctypes can understand (an int/long, string, unicode, or object

with the as parameter attribute).

NumPy uses both methods with a preference for the second method because it

can be safer. The ctypes attribute of the ndarray returns an object that has an

as parameter attribute which returns an integer representing the address of the

ndarray to which it is associated. As a result, one can pass this ctypes attribute

object directly to a function expecting a pointer to the data in your ndarray. The

caller must be sure that the ndarray object is of the correct type, shape, and has

the correct flags set or risk nasty crashes if the data-pointer to inappropriate arrays

are passsed in.

To implement the second method, NumPy provides the class-factory function

ndpointer in the ctypeslib module. This class-factory function produces an ap-

propriate class that can be placed in an argtypes attribute entry of a ctypes function.

The class will contain a from param method which ctypes will use to convert any

ndarray passed in to the function to a ctypes-recognized object. In the process,

the conversion will perform checking on any properties of the ndarray that were

specified by the user in the call to ndpointer. Aspects of the ndarray that can be

checked include the data-type, the number-of-dimensions, the shape, and/or the

state of the flags on any array passed. The return value of the from param method

is the ctypes attribute of the array which (because it contains the as parameter

attribute pointing to the array data area) can be used by ctypes directly.

The ctypes attribute of an ndarray is also endowed with additional attributes

that may be convenient when passing additional information about the array into

a ctypes function. The attributes data, shape, and strides can provide c-types
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compatible types corresponding to the data-area, the shape, and the strides of the

array. The data attribute reutrns a c void p representing a pointer to the data

area. The shape and strides attributes each return an array of ctypes integers (or

None representing a NULL pointer, if a 0-d array). The base ctype of the array is a

ctype integer of the same size as a pointer on the platform. There are also methods

data as(<ctype>), shape as(<base ctype>), and strides as(<base ctype>). These

return the data as a ctype object of your choice and the shape/strides arrays using

an underlying base type of your choice. For convenience, the ctypeslib module

also contains c intp as a ctypes integer data-type whose size is the same as the size

of c void p on the platform (it’s value is None if ctypes is not installed).

16.6.4 Calling the function

The function is accessed as an attribute of or an item from the loaded shared-

library. Thus, if “./mylib.so” has a function named “cool function1”, I could access

this function either as

lib = numpy.ctypeslib.load library(’mylib’,’.’)

func1 = lib.cool function1 # or equivalently

func1 = lib[’cool function1’]

In ctypes, the return-value of a function is set to be ’int’ by default. This behavior

can be changed by setting the restype attribute of the function. Use None for the

restype if the function has no return value (’void’):

func1.restype = None

As previously discussed, you can also set the argtypes attribute of the function in

order to have ctypes check the types of the input arguments when the function is

called. Use the ndpointer factory function to generate a ready-made class for data-

type, shape, and flags checking on your new function. The ndpointer function has

the signature

ndpointer (dtype=None, ndim=None, shape=None, flags=None)

Keyword arguments with the value None are not checked. Specifying a keyword

enforces checking of that aspect of the ndarray on conversion to a ctypes-

compatible object. The dtype keyword can be any object understood as a

data-type object. The ndim keyword should be an integer, and the shape

keyword should be an integer or a sequence of integers. The flags keyword
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specifies the minimal flags that are required on any array passed in. This can

be specified as a string of comma separated requirements, an integer indicating

the requirement bits OR’d together, or a flags object returned from the flags

attribute of an array with the necessary requirements.

Using an ndpointer class in the argtypes method can make it significantly safer

to call a C-function using ctypes and the data-area of an ndarray. You may still

want to wrap the function in an additional Python wrapper to make it user-friendly

(hiding some obvious arguments and making some arguments output arguments).

In this process, the requires function in NumPy may be useful to return the right

kind of array from a given input.

16.6.5 Complete example

In this example, I will show how the addition function and the filter function im-

plemented previously using the other approaches can be implemented using ctypes.

First, the C-code which implements the algorithms contains the functions zadd,

dadd, sadd, cadd, and dfilter2d. The zadd function is

/ * Add arrays of contiguous data * /

typedef struct {double real; double imag; } cdouble;

typedef struct {float real; float imag; } cfloat;

void zadd(cdouble * a, cdouble * b, cdouble * c, long n)

{
while (n--) {

c->real = a->real + b->real;

c->imag = a->imag + b->imag;

a++; b++; c++;

}
}

with similar code for cadd, dadd, and sadd that handles complex float, double, and

float data-types, respectively:

void cadd(cfloat * a, cfloat * b, cfloat * c, long n)

{
while (n--) {

c->real = a->real + b->real;

c->imag = a->imag + b->imag;
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a++; b++; c++;

}
}
void dadd(double * a, double * b, double * c, long n)

{
while (n--) {

* c++ = * a++ + * b++;

}
}
void sadd(float * a, float * b, float * c, long n)

{
while (n--) {

* c++ = * a++ + * b++;

}
}

The code.c file also contains the function dfilter2d:

/ * Assumes b is contiguous and

a has strides that are multiples of sizeof(double)

* /

void

dfilter2d(double * a, double * b, int * astrides, int * dims)

{
int i, j, M, N, S0, S1;

int r, c, rm1, rp1, cp1, cm1;

M = dims[0]; N = dims[1];

S0 = astrides[0]/sizeof(double);

S1=astrides[1]/sizeof(double);

for (i=1; i<M-1; i++) {
r = i * S0; rp1 = r+S0; rm1 = r-S0;

for (j=1; j<N-1; j++) {
c = j * S1; cp1 = j+S1; cm1 = j-S1;

b[i * N+j] = a[r+c] + \
(a[rp1+c] + a[rm1+c] + \

a[r+cp1] + a[r+cm1]) * 0.5 + \
(a[rp1+cp1] + a[rp1+cm1] + \
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a[rm1+cp1] + a[rm1+cp1]) * 0.25;

}
}

}

A possible advantage this code has over the Fortran-equivalent code is that it takes

arbitrarily strided (i.e. non-contiguous arrays) and may also run faster depending on

the optimization capability of your compiler. But, it is a obviously more complicated

than the simple code in filter.f. This code must be compiled into a shared library.

On my Linux system this is accomplished using

gcc -o code.so -shared code.c

Which creates a shared library named code.so in the current directory. On Windows

don’t forget to either add declspec(dllexport) in front of void on the line preceeding

each function definition, or write a code.def file that lists the names of the functions

to be exported.

A suitable Python interface to this shared library should be constructed. To do

this create a file named interface.py with the following lines at the top:

all = [’add’, ’filter2d’]

import numpy as N

import os

path = os.path.dirname(’ file ’)

lib = N.ctypeslib.load library(’code’, path)

typedict = {’zadd’ : complex, ’sadd’ : N.single,

’cadd’ : N.csingle, ’dadd’ : float }
for name in typedict.keys():

val = getattr(lib, name)

val.restype = None

type = typedict[name]

val.argtypes = [N.ctypeslib.ndpointer( type,

flags=’aligned, contiguous’),

N.ctypeslib.ndpointer( type,

flags=’aligned, contiguous’),

N.ctypeslib.ndpointer( type,

flags=’aligned, contiguous,’ \
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’writeable’),

N.ctypeslib.c intp]

This code loads the shared library named code.<ext> located in the same path as

this file. It then adds a return type of void to the functions contained in the library.

It also adds argument checking to the functions in the library so that ndarrays can

be passed as the first three arguments along with an integer (large enough to hold

a pointer on the platform) as the fourth argument.

Setting up the filtering function is similar and allows the filtering function to

be called with ndarray arguments as the first two arguments and with pointers to

integers (large enough to handle the strides and shape of an ndarray) as the last

two arguments.

lib.dfilter2d.restype=None

lib.dfilter2d.argtypes = [N.ctypeslib.ndpointer(float , ndim=2,

flags=’aligned’),

N.ctypeslib.ndpointer(float, ndim=2,

flags=’aligned, contiguous,’ \
’writeable’),

ctypes.POINTER(N.ctypeslib.c intp),

ctypes.POINTER(N.ctypeslib.c intp)]

Next, define a simple selection function that chooses which addition function to call

in the shared library based on the data-type:

def select(dtype):

if dtype.char in [’?bBhHf’]:

return lib.sadd, single

elif dtype.char in [’F’]:

return lib.cadd, csingle

elif dtype.char in [’DG’]:

return lib.zadd, complex

else:

return lib.dadd, float

return func, ntype

Finally, the two functions to be exported by the interface can be written simply as

def add(a, b):
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requires = [’CONTIGUOUS’, ’ALIGNED’]

a = N.asanyarray(a)

func, dtype = select(a.dtype)

a = N.require(a, dtype, requires)

b = N.require(b, dtype, requires)

c = N.empty like(a)

func(a,b,c,a.size)

return c

and

def filter2d(a):

a = N.require(a, float, [’ALIGNED’])

b = N.zeros like(a)

lib.dfilter2d(a, b, a.ctypes.strides, a.ctypes.shape)

return b

16.6.6 Conclusion

Using ctypes is a powerful way to connect Python with arbitrary C-code. It’s

advantages for extending Python include

• clean separation of C-code from Python code

– no need to learn a new syntax except Python and C

– allows re-use of C-code

– functionality in shared libraries written for other purposes can be ob-

tained with a simple Python wrapper and search for the library.

• easy integration with NumPy through the ctypes attribute

• full argument checking with the ndpointer class factory

It’s disadvantages include

• It is difficult to distribute an extension module made using ctypes because of

a lack of support for building shared libraries in distutils (but I suspect this

will change in time).

• You must have shared-libraries of your code (no static libraries).

346



• Very little support for C++ code and it’s different library-calling conventions.

You will probably need a C-wrapper around C++ code to use with ctypes (or

just use Boost.Python instead).

Because of the difficulty in distributing an extension module made using ctypes,

f2py is still the easiest way to extend Python for package creation. However, ctypes

is a close second and will probably be growing in popularity now that it is part

of the Python distribution. This should bring more features to ctypes that should

eliminate the difficulty in extending Python and distributing the extension using

ctypes.

16.7 Additional tools you may find useful

These tools have been found useful by others using Python and so are included here.

They are discussed separately because I see them as either older ways to do things

more modernly handled by f2py, weave, Pyrex, or ctypes (SWIG, PyFort, PyInline)

or because I don’t know much about them (SIP, Boost, Instant). I have not added

links to these methods because my experience is that you can find the most relevant

link faster using Google or some other search engine, and any links provided here

would be quickly dated. Do not assume that just because it is included in this list,

I don’t think the package deserves your attention. I’m including information about

these packages because many people have found them useful and I’d like to give

you as many options as possible for tackling the problem of easily integrating your

code.

16.7.1 SWIG

Simplified Wrapper and Interface Generator (SWIG) is an old and fairly stable

method for wrapping C/C++-libraries to a large variety of other languages. It does

not specifically understand NumPy arrays but can be made useable with NumPy

through the use of typemaps. There are some sample typemaps in the numpy/-

doc/swig directory under numpy.i along with an example module that makes use

of them. SWIG excels at wrapping large C/C++ libraries because it can (almost)

parse their headers and auto-produce an interface. Technically, you need to generate

a .i file that defines the interface. Often, however, this .i file can be parts of the

header itself. The interface usually needs a bit of tweaking to be very useful. This

ability to parse C/C++ headers and auto-generate the interface still makes SWIG

a useful approach to adding functionalilty from C/C++ into Python, despite the
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other methods that have emerged that are more targeted to Python. SWIG can ac-

tually target extensions for several languages, but the typemaps usually have to be

language-specific. Nonetheless, with modifications to the Python-specific typemaps,

SWIG can be used to interface a library with other languages such as Perl, Tcl, and

Ruby.

My experience with SWIG has been generally positive in that it is relatively

easy to use and quite powerful. I used to use it quite often before becoming more

proficient at writing C-extensions. However, I struggled writing custom interfaces

with SWIG because it must be done using the concept of typemaps which are not

Python specific and are written in a C-like syntax. Therefore, I tend to prefer other

gluing strategies and would only attempt to use SWIG to wrap a very-large C/C++

library. Nonetheless, there are others who use SWIG quite happily.

16.7.2 SIP

SIP is another tool for wrapping C/C++ libraries that is Python specific and ap-

pears to have very good support for C++. Riverbank Computing developed SIP in

order to create Python bindings to the QT library. An interface file must be written

to generate the binding, but the interface file looks a lot like a C/C++ header file.

While SIP is not a full C++ parser, it understands quite a bit of C++ syntax as

well as its own special directives that allow modification of how the Python binding

is accomplished. It also allows the user to define mappings between Python types

and C/C++ structrues and classes.

16.7.3 Boost Python

Boost is a repository of C++ libraries and Boost.Python is one of those libraries

which provides a concise interface for binding C++ classes and functions to Python.

The amazing part of the Boost.Python approach is that it works entirely in

pure C++ without introducing a new syntax. Many users of C++ report that

Boost.Python makes it possible to combine the best of both worlds in a seamless

fashion. I have not used Boost.Python because I am not a big user of C++ and

using Boost to wrap simple C-subroutines is usually over-kill. It’s primary purpose

is to make C++ classes available in Python. So, if you have a set of C++ classes

that need to be integrated cleanly into Python, consider learning about and using

Boost.Python.
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16.7.4 Instant

This is a relatively new package (called pyinstant at sourceforge) that builds on top

of SWIG to make it easy to inline C and C++ code in Python very much like weave.

However, Instant builds extension modules on the fly with specific module names

and specific method names. In this repsect it is more more like f2py in its behavior.

The extension modules are built on-the fly (as long as the SWIG is installed). They

can then be imported. Here is an example of using Instant with NumPy arrays

(adapted from the test2 included in the Instant distribution):

code="""

PyObject * add(PyObject * a , PyObject * b ) {
/ *

various checks

* /

PyArrayObject * a=(PyArrayObject * ) a ;

PyArrayObject * b=(PyArrayObject * ) b ;

int n = a->dimensions[0];

int dims[1];

dims[0] = n;

PyArrayObject * ret;

ret = (PyArrayObject * ) PyArray FromDims(1, dims, NPY DOUBLE);

int i;

char * aj=a->data;

char * bj=b->data;

double * retj = (double * )ret->data;

for (i=0; i < n; i++) {
* retj++ = * ((double * )aj) + * ((double * )bj);

aj += a->strides[0];

bj += b->strides[0];

}
return (PyObject * )ret;

}
"""

import Instant, numpy

ext = Instant.Instant()

ext.create extension(code=s, headers=["numpy/arrayobject.h"],

import test2b ext
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a = numpy.arange(1000)

b = numpy.arange(1000)

d = test2b ext.add(a,b)

Except perhaps for the dependence on SWIG, Instant is a straightforward utility

for writing extension modules.

16.7.5 PyInline

This is a much older module that allows automatic building of extension modules

so that C-code can be included with Python code. It’s latest release (version 0.03)

was in 2001, and it appears that it is not being updated.

16.7.6 PyFort

PyFort is a nice tool for wrapping Fortran and Fortran-like C-code into Python

with support for Numeric arrays. It was written by Paul Dubois, a distinguished

computer scientist and the very first maintainer of Numeric (now retired). It is

worth mentioning in the hopes that somebody will update PyFort to work with

NumPy arrays as well which now support either Fortran or C-style contiguous

arrays.
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Chapter 17

Code Explanations

This Chapter attempts to explain the logic behind some of the new pieces of code.

The purpose behind these explanations is to enable somebody to be able to under-

stand the ideas behind the implementation somewhat more easily than just staring

at the code. Perhaps in this way, the algorithms can be improved on, borrowed

from, and/or optimized.

17.1 Memory model

One fundamental aspect of the ndarray is that an array is seen as a “chunk” of

memory starting at some location. The interpretation of this memory depends on

the stride information. For each dimension in an N -dimensional array, an integer

(stride) dictates how many bytes must be skipped to get to the next element in that

dimension. Unless you have a single-segment array, this stride information must be

consulted when traversing through an array. It is not difficult to write code that

accepts strides, you just have to use (char *) pointers because strides are in units

of bytes. Keep in mind also that strides do not have to be unit-multiples of the

element size. Also, remember that if the number of dimensions of the array is 0

(sometimes called a rank-0 array), then the strides and dimensions variables are

NULL.

Besides the structural information contained in the strides and dimensions mem-

bers of the PyArrayObject, the flags contain important information about how the

data may be accessed. In particular, the NPY ALIGNED flag is set when the mem-

ory is on a suitable boundary according to the data-type array. Even if you have

a contiguous chunk of memory, you cannot just assume it is safe to dereference a
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data-type-specific pointer to an element. Only if the NPY ALIGNED flag is set

is this a safe operation (on some platforms it will work but on others, like Solaris,

it will cause a bus error). The NPY WRITEABLE should also be ensured if you

plan on writing to the memory area of the array. It is also possible to obtain a

pointer to an unwriteable memory area. Sometimes, writing to the memory area

when the NPY WRITEABLE flag is not set will just be rude. Other times it can

cause program crashes (e.g. a data-area that is a read-only memory-mapped file).

17.2 Data-type encapsulation

The data-type is an important abstraction of the ndarray. Operations will look to

the data-type to provide the key functionality that is needed to operate on the array.

This functionality is provided in the list of function pointers pointed to by the ’f’

member of the PyArray Descr structure. In this way, the number of data-types can

be extended simply by providing a PyArray Descr structure with suitable function

pointers in the ’f’ member. For built-in types there are some optimizations that

by-pass this mechanism, but the point of the data-type abstraction is to allow new

data-types to be added.

One of the built-in data-types, the void data-type allows for arbitrary records

containing 1 or more fields as elements of the array. A field is simply another

data-type object along with an offset into the current record. In order to support

arbitrarily nested fields, several recursive implementations of data-type access are

implemented for the void type. A common idiom is to cycle through the elements

of the dictionary and perform a specific operation based on the data-type object

stored at the given offset. These offsets can be arbitrary numbers. Therefore,

the possibility of encountering mis-aligned data must be recognized and taken into

account if necessary.

17.3 N-D Iterators

A very common operation in much of NumPy code is the need to iterate over all

the elements of a general, strided, N-dimensional array. This operation of a general-

purpose N-dimensional loop is abstracted in the notion of an iterator object. To

write an N-dimensional loop, you only have to create an iterator object from an

ndarray, work with the dataptr member of the iterator object structure and call

the macro PyArray ITER NEXT(it) on the iterator object to move to the next
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element. The “next” element is always in C-contiguous order. The macro works by

first special casing the C-contiguous, 1-d, and 2-d cases which work very simply.

For the general case, the iteration works by keeping track of a list of coordinate

counters in the iterator object. At each iteration, the last coordinate counter is

increased (starting from 0). If this counter is smaller then one less than the size of

the array in that dimension (a pre-computed and stored value), then the counter

is increased and the dataptr member is increased by the strides in that dimension

and the macro ends. If the end of a dimension is reached, the counter for the last

dimension is reset to zero and the dataptr is moved back to the beginning of that di-

mension by subtracting the strides value times one less than the number of elements

in that dimension (this is also pre-computed and stored in the backstrides member

of the iterator object). In this case, the macro does not end, but a local dimension

counter is decremented so that the next-to-last dimension replaces the role that

the last dimension played and the previously-described tests are executed again on

the next-to-last dimension. In this way, the dataptr is adjusted appropriately for

arbitrary striding.

The coordinates member of the PyArrayIterObject structure maintains the

current N-d counter unless the underlying array is C-contiguous in which case

the coordinate counting is by-passed. The index member of the PyArrayIterOb-

ject keeps track of the current flat index of the iterator. It is updated by the

PyArray ITER NEXT macro.

17.4 Broadcasting

In Numeric, broadcasting was implemented in several lines of code buried deep in

ufuncobject.c. In NumPy, the notion of broadcasting has been abstracted so that

it can be performed in multiple places. Broadcasting is handled by the function

PyArray Broadcast. This function requires a PyArrayMultiIterObject (or some-

thing that is a binary equivalent) to be passed in. The PyArrayMultiIterObject

keeps track of the broadcasted number of dimensions and size in each dimension

along with the total size of the broadcasted result. It also keeps track of the number

of arrays being broadcast and a pointer to an iterator for each of the arrays being

broadcasted.

The PyArray Broadcast function takes the iterators that have already been de-

fined and uses them to determine the broadcast shape in each dimension (to create

the iterators at the same time that broadcasting occurs then use the PyMuliIter New

function). Then, the iterators are adjusted so that each iterator thinks it is iterat-
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ing over an array with the broadcasted size. This is done by adjusting the iterators

number of dimensions, and the shape in each dimension. This works because the

iterator strides are also adjusted. Broadcasting only adjusts (or adds) length-1

dimensions. For these dimensions, the strides variable is simply set to 0 so that

the data-pointer for the iterator over that array doesn’t move as the broadcasting

operation operates over the extended dimension.

Broadcasting was always implemented in Numeric using 0-valued strides for the

extended dimensions. It is done in exactly the same way in NumPy. The big dif-

ference is that now the array of strides is kept track of in a PyArrayIterObject, the

iterators involved in a broadcasted result are kept track of in a PyArrayMultiIter-

Object, and the PyArray BroadCast call implements the broad-casting rules.

17.5 Array Scalars

The array scalars offer a hierarchy of Python types that allow a one-to-one corre-

spondence between the data-type stored in an array and the Python-type that is

returned when an element is extracted from the array. An exception to this rule was

made with object arrays. Object arrays are heterogeneous collections of arbitrary

Python objects. When you select an item from an object array, you get back the

original Python object (and not an object array scalar which does exist but is rarely

used for practical purposes).

The array scalars also offer the same methods and attributes as arrays with the

intent that the same code can be used to support arbitrary dimensions (including

0-dimensions). The array scalars are read-only (immutable) with the exception of

the void scalar which can also be written to so that record-array field setting works

more naturally (a[0][’f1’] = value ).

17.6 Advanced (“Fancy”) Indexing

The implementation of advanced indexing represents some of the most difficult

code to write and explain. In fact, there are two implementations of advanced

indexing. The first works only with 1-d arrays and is implemented to handle ex-

pressions involving a.flat[obj]. The second is general-purpose that works for arrays

of “arbitrary dimension” (up to a fixed maximum). The one-dimensional indexing

approaches were implemented in a rather straightforward fashion, and so it is the

general-purpose indexing code that will be the focus of this section.
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There is a multi-layer approach to indexing because the indexing code can at

times return an array scalar and at other times return an array. The functions with

“ nice” appended to their name do this special handling while the function without

the nice appendage always return an array (perhaps a 0-dimensional array). Some

special-case optimizations (the index being an integer scalar, and the index being

a tuple with as many dimensions as the array) are handled in array subscript nice

function which is what Python calls when presented with the code “a[obj].” These

optimizations allow fast single-integer indexing, and also ensure that a 0-dimensional

array is not created only to be discarded as the array scalar is returned instead.

This provides significant speed-up for code that is selecting many scalars out of an

array (such as in a loop). However, it is still not faster than simply using a list to

store standard Python scalars, because that is optimized by the Python interpreter

itself.

After these optimizations, the array subscript function itself is called. This

function first checks for field selection which occurs when a string is passed as the

indexing object. Then, 0-d arrays are given special-case consideration. Finally, the

code determines whether or not advanced, or fancy, indexing needs to be performed.

If fancy indexing is not needed, then standard view-based indexing is performed

using code borrowed from Numeric which parses the indexing object and returns

the offset into the data-buffer and the dimensions necessary to create a new view of

the array. The strides are also changed by multiplying each stride by the step-size

requested along the corresponding dimension.

17.6.1 Fancy-indexing check

The fancy indexing check routine determines whether or not to use standard view-

based indexing or new copy-based indexing. If the indexing object is a tuple, then

view-based indexing is assumed by default. Only if the tuple contains an array

object or a sequence object is fancy-indexing assumed. If the indexing object is

an array, then fancy indexing is automatically assumed. If the indexing object

is any other kind of sequence, then fancy-indexing is assumed by default. This

is over-ridden to simple indexing if the sequence contains any slice, newaxis, or

Ellipsis objects, and no arrays or additional sequences are also contained in the

sequence. The purpose of this is to allow the construction of “slicing” sequences

which is a common technique for building up code that works in arbitrary numbers

of dimensions.
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17.6.2 Fancy-indexing implementation

The concept of indexing was also abstracted using the idea of an iterator. If fancy

indexing is performed, then a PyArrayMapIterObject is created. This internal ob-

ject is not exposed to Python. It is created in order to handle the fancy-indexing at

a high-level. Both get and set fancy-indexing operations are implemented using this

object. Fancy indexing is abstracted into three separate operations: (1) creating the

PyArrayMapIterObject from the indexing object, (2) binding the PyArrayMapIter-

Object to the array being indexed, and (3) getting (or setting) the items deter-

mined by the indexing object. There is an optimization implemented so that the

PyArrayIterObject (which has it’s own less complicated fancy-indexing) is used for

indexing when possible.

17.6.2.1 Creating the mapping object

The first step is to convert the indexing objects into a standard form where iterators

are created for all of the index array inputs and all Boolean arrays are converted

to equivalent integer index arrays (as if nonzero(arr) had been called). Finally, all

integer arrays are replaced with the integer 0 in the indexing object and all of the

index-array iterators are “broadcast” to the same shape.

17.6.2.2 Binding the mapping object

When the mapping object is created it does not know which array it will be used

with so once the index iterators are constructed during mapping-object creation,

the next step is to associate these iterators with a particular ndarray. This process

interprets any ellipsis and slice objects so that the index arrays are associated with

the appropriate axis (the axis indicated by the iteraxis entry corresponding to the

iterator for the integer index array). This information is then used to check the

indices to be sure they are within range of the shape of the array being indexed.

The presence of ellipsis and/or slice objects implies a sub-space iteration that is

accomplished by extracting a sub-space view of the array (using the index object

resulting from replacing all the integer index arrays with 0) and storing the infor-

mation about where this sub-space starts in the mapping object. This is used later

during mapping-object iteration to select the correct elements from the underlying

array.
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17.6.2.3 Getting (or Setting)

After the mapping object is successfully bound to a particular array, the mapping

object contains the shape of the resulting item as well as iterator objects that will

walk through the currently-bound array and either get or set its elements as needed.

The walk is implemented using the PyArray MapIterNext function. This function

sets the coordinates of an iterator object into the current array to be the next

coordinate location indicated by all of the indexing-object iterators while adjusting,

if necessary, for the presence of a sub-space. The result of this function is that the

dataptr member of the mapping object structure is pointed to the next position in

the array that needs to be copied out or set to some value.

When advanced indexing is used to extract an array, an iterator for the new array

is constructed and advanced in phase with the mapping object iterator. When

advanced indexing is used to place values in an array, a special “broadcasted”

iterator is constructed from the object being placed into the array so that it will

only work if the values used for setting have a shape that is “broadcastable” to the

shape implied by the indexing object.

17.7 Universal Functions

Universal functions are callable objects that take N inputs and produce M out-

puts by wrapping basic 1-d loops that work element-by-element into full easy-to

use functions that seamlessly implement broadcasting, type-checking and buffered

coercion, and output-argument handling. New universal functions are normally cre-

ated in C, although there is a mechanism for creating ufuncs from Python functions

(frompyfunc). The user must supply a 1-d loop that implements the basic function

taking the input scalar values and placing the resulting scalars into the appropriate

output slots as explaine n implementation.

17.7.1 Setup

Every ufunc calculation involves some overhead related to setting up the calcula-

tion. The practical significance of this overhead is that even though the actual

calculation of the ufunc is very fast, you will be able to write array and type-

specific code that will work faster for small arrays than the ufunc. In particular,

using ufuncs to perform many calculations on 0-d arrays will be slower than other

Python-based solutions (the silently-imported scalarmath module exists precisely
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to give array scalars the look-and-feel of ufunc-based calculations with significantly

reduced overhead).

When a ufunc is called, many things must be done. The information collected

from these setup operations is stored in a loop-object. This loop object is a C-

structure (that could become a Python object but is not initialized as such because

it is only used internally). This loop object has the layout needed to be used with

PyArray Broadcast so that the broadcasting can be handled in the same way as it

is handled in other sections of code.

The first thing done is to look-up in the thread-specific global dictionary the

current values for the buffer-size, the error mask, and the associated error object.

The state of the error mask controls what happens when an error-condiction is

found. It should be noted that checking of the hardware error flags is only performed

after each 1-d loop is executed. This means that if the input and output arrays are

contiguous and of the correct type so that a single 1-d loop is performed, then

the flags may not be checked until all elements of the array have been calcluated.

Looking up these values in a thread-specific dictionary takes time which is easily

ignored for all but very small arrays.

After checking, the thread-specific global variables, the inputs are evaluated to

determine how the ufunc should proceed and the input and output arrays are con-

structed if necessary. Any inputs which are not arrays are converted to arrays (using

context if necessary). Which of the inputs are scalars (and therefore converted to

0-d arrays) is noted.

Next, an appropriate 1-d loop is selected from the 1-d loops available to the

ufunc based on the input array types. This 1-d loop is selected by trying to match

the signature of the data-types of the inputs against the available signatures. The

signatures corresponding to built-in types are stored in the types member of the

ufunc structure. The signatures corresponding to user-defined types are stored in

a linked-list of function-information with the head element stored as a CObject

in the userloops dictionary keyed by the data-type number (the first user-defined

type in the argument list is used as the key). The signatures are searched until a

signature is found to which the input arrays can all be cast safely (ignoring any

scalar arguments which are not allowed to determine the type of the result). The

implication of this search procedure is that “lesser types” should be placed below

“larger types” when the signatures are stored. If no 1-d loop is found, then an error

is reported. Otherwise, the argument list is updated with the stored signature —

in case casting is necessary and to fix the output types assumed by the 1-d loop.

If the ufunc has 2 inputs and 1 output and the second input is an Object array
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then a special-case check is performed so that NotImplemented is returned if the

second input is not an ndarray, has the array priority attribute, and has an

r<op> special method. In this way, Python is signaled to give the other object a

chance to complete the operation instead of using generic object-array calculations.

This allows (for example) sparse matrices to override the multiplication operator

1-d loop.

For input arrays that are smaller than the specified buffer size, copies are made

of all non-contiguous, mis-aligned, or out-of-byteorder arrays to ensure that for

small arrays, a single-loop is used. Then, array iterators are created for all the

input arrays and the resulting collection of iterators is broadcast to a single shape.

The output arguments (if any) are then processed and any missing return arrays

are constructed. If any provided output array doesn’t have the correct type (or is

mis-aligned) and is smaller than the buffer size, then a new output array is con-

structed with the special UPDATEIFCOPY flag set so that when it is DECREF’d

on completion of the function, it’s contents will be copied back into the output

array. Iterators for the output arguments are then processed.

Finally, the decision is made about how to execute the looping mechanism to

ensure that all elements of the input arrays are combined to produce the output

arrays of the correct type. The options for loop execution are one-loop (for con-

tiguous, aligned, and correct data-type), strided-loop (for non-contiguous but still

aligned and correct data-type), and a buffered loop (for mis-aligned or incorrect

data-type situations). Depending on which execution method is called for, the loop

is then setup and computed.

17.7.2 Function call

This section describes how the basic universal function computation loop is setup

and executed for each of the three different kinds of execution possibilities. If

NPY ALLOW THREADS is defined during compilation, then the Python Global

Interpreter Lock (GIL) is released prior to calling all of these loops (as long as they

don’t involve object arrays). It is re-acquired if necessary to handle error conditions.

The hardware error flags are checked only after the 1-d loop is calcluated.

17.7.2.1 One Loop

This is the simplest case of all. The ufunc is executed by calling the underlying 1-d

loop exactly once. This is possible only when we have aligned data of the correct

type (including byte-order) for both input and output and all arrays have uniform
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strides (either contiguous, 0-d, or 1-d). In this case, the 1-d computational loop is

called once to compute the calculation for the entire array. Note that the hardware

error flags are only checked after the entire calculation is complete.

17.7.2.2 Strided Loop

When the input and output arrays are aligned and of the correct type, but the

striding is not uniform (non-contiguous and 2-d or larger), then a second looping

structure is employed for the calculation. This approach converts all of the iterators

for the input and output arguments to iterate over all but the largest dimension.

The inner loop is then handled by the underlying 1-d computational loop. The

outer loop is a standard iterator loop on the converted iterators. The hardware

error flags are checked after each 1-d loop is completed.

17.7.2.3 Buffered Loop

This is the code that handles the situation whenever the input and/or output arrays

are either misaligned or of the wrong data-type (including being byte-swapped)

from what the underlying 1-d loop expects. The arrays are also assumed to be

non-contiguous. The code works very much like the strided loop except for the

inner 1-d loop is modified so that pre-processing is performed on the inputs and

post-processing is performed on the outputs in bufsize chunks (where bufsize is

a user-settable parameter). The underlying 1-d computational loop is called on

data that is copied over (if it needs to be). The setup code and the loop code is

considerably more complicated in this case because it has to handle:

• memory allocation of the temporary buffers

• deciding whether or not to use buffers on the input and output data (mis-

aligned and/or wrong data-type)

• copying and possibly casting data for any inputs or outputs for which buffers

are necessary.

• special-casing Object arrays so that reference counts are properly handled

when copies and/or casts are necessary.

• breaking up the inner 1-d loop into bufsize chunks (with a possible remainder).

Again, the hardware error flags are checked at the end of each 1-d loop.
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17.7.3 Final output manipulation

Ufuncs allow other array-like classes to be passed seamlessly through the interface

in that inputs of a particular class will induce the outputs to be of that same

class. The mechanism by which this works is the following. If any of the inputs

are not ndarrays and define the array wrap method, then the class with the

largest array priority attribute determines the type of all the outputs (with

the exception of any output arrays passed in). The array wrap method of the

input array will be called with the ndarray being returned from the ufunc as it’s

input. There are two calling styles of the array wrap function supported. The

first takes the ndarray as the first argument and a tuple of “context” as the second

argument. The context is (ufunc, arguments, output argument number). This is

the first call tried. If a TypeError occurs, then the function is called with just the

ndarray as the first argument.

17.7.4 Methods

Their are three methods of ufuncs that require calculation similar to the general-

purpose ufuncs. These are reduce, accumulate, and reduceat. Each of these methods

requires a setup command followed by a loop. There are four loop styles possible for

the methods corresponding to no-elements, one-element, strided-loop, and buffered-

loop. These are the same basic loop styles as implemented for the general purpose

function call except for the no-element and one-element cases which are special-cases

occurring when the input array objects have 0 and 1 elements respectively.

17.7.4.1 Setup

The setup function for all three methods is construct reduce . This function

creates a reducing loop object and fills it with parameters needed to complete the

loop. All of the methods only work on ufuncs that take 2-inputs and return 1 output.

Therefore, the underlying 1-d loop is selected assuming a signature of [otype ,

otype , otype ] where otype is the requested reduction data-type. The buffer size

and error handling is then retrieved from (per-thread) global storage. For small

arrays that are mis-aligned or have incorrect data-type, a copy is made so that the

un-buffered section of code is used. Then, the looping strategy is selected. If there

is 1 element or 0 elements in the array, then a simple looping method is selected.

If the array is not mis-aligned and has the correct data-type, then strided looping

is selected. Otherwise, buffered looping must be performed. Looping parameters
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are then established, and the return array is constructed. The output array is

of a different shape depending on whether the method is reduce, accumulate, or

reduceat. If an output array is already provided, then it’s shape is checked. If

the output array is not C-contiguous, aligned, and of the correct data type, then

a temporary copy is made with the UPDATEIFCOPY flag set. In this way, the

methods will be able to work with a well-behaved output array but the result

will be copied back into the true output array when the method computation is

complete. Finally, iterators are set up to loop over the correct axis (depending

on the value of axis provided to the method) and the setup routine returns to the

actual computation routine.

17.7.4.2 Reduce

All of the ufunc methods use the same underlying 1-d computational loops with

input and output arguments adjusted so that the appropriate reduction takes place.

For example, the key to the functioning of reduce is that the 1-d loop is called with

the output and the second input pointing to the same position in memory and both

having a step-size of 0. The first input is pointing to the input array with a step-

size given by the appropriate stride for the selected axis. In this way, the operation

performed is

o = i[0]

o = i[k] ¡op¿ o k = 1 . . .N

where N + 1 is the number of elements in the input, i, o is the output, and i[k] is

the kth element of i along the selected axis. This basic operations is repeated for

arrays with greater than 1 dimension so that the reduction takes place for every 1-d

sub-array along the selected axis. An iterator with the selected dimension removed

handles this looping.

For buffered loops, care must be taken to copy and cast data before the loop

function is called because the underlying loop expects aligned data of the correct

data-type (including byte-order). The buffered loop must handle this copying and

casting prior to calling the loop function on chunks no greater than the user-specified

bufsize.
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17.7.4.3 Accumulate

The accumulate function is very similar to the reduce function in that the output

and the second input both point to the output. The difference is that the second

input points to memory one stride behind the current output pointer. Thus, the

operation performed is

o[0] = i[0]

o[k] = i[k] ¡op¿ o[k − 1] k = 1 . . .N.

The output has the same shape as the input and each 1-d loop operates over N

elements when the shape in the selected axis is N + 1. Again, buffered loops take

care to copy and cast the data before calling the underlying 1-d computational loop.

17.7.4.4 Reduceat

The reduceat function is a generalization of both the reduce and accumulate func-

tions. It implements a reduce over ranges of the input array specified by indices.

The extra indices argument is checked to be sure that every input is not too large

for the input array along the selected dimension before the loop calculations take

place. The loop implementation is handled using code that is very similar to the

reduce code repeated as many times as there are elements in the indices input. In

particular: the first input pointer passed to the underlying 1-d computational loop

points to the input array at the correct location indicated by the index array. In

addition, the output pointer and the second input pointer passed to the underlying

1-d loop point to the same position in memory. The size of the 1-d computational

loop is fixed to be the difference between the current index and the next index

(when the current index is the last index, then the next index is assumed to be the

length of the array along the selected dimension). In this way, the 1-d loop will

implement a reduce over the specified indices.

Mis-aligned or a loop data-type that does not match the input and/or output

data-type is handled using buffered code where-in data is copied to a temporary

buffer and cast to the correct data-type if necessary prior to calling the underlying

1-d function. The temporary buffers are created in (element) sizes no bigger than

the user settable buffer-size value. Thus, the loop must be flexible enough to call the

underlying 1-d computational loop enough times to complete the total calculation

in chunks no bigger than the buffer-size.
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tolist, 54

tostring, 55

trace, 67

transpose, 59

var, 68

view, 57

special methods, 71–78

abs, 78

add, 75

and, 76

array, 73

array wrap, 73

complex, 78

contains, 75

copy, 71

deepcopy, 71

div, 76

divmod, 76

eq, 73

float, 78

floordiv, 76

ge, 73

getitem, 75, 79

getslice, 75, 79

gt, 73

hex, 78

iadd, 77

iand, 77

idiv, 77

ifloordiv, 77

ilshift, 77

imod, 77

imul, 77

init, 73

int, 78

invert, 78

ior, 77

ipow, 77

irshift, 77

isub, 77

itruediv, 77

ixor, 77

le, 73

len, 74

long, 78

lshift, 76

lt, 73

mod, 76

mul, 75

ne, 73

neg, 78
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new, 72

nonzero, 74

oct, 78

or, 76

pos, 78

pow, 76

reduce, 71

repr, 73

rshift, 76

setitem, 75, 79

setslice, 75, 79

setstate, 71

str, 73

sub, 75

truediv, 76

xor, 76

subtyping, 138–139, 315–318

view, 80

ndindex, 116

negative, 165

newaxis, 79

nonzero, 94

not equal, 169

ones, 87

outer, 91

piecewise, 104

place, 106

poly, 109

poly1d, 109

polyadd, 110

polyder, 110

polydiv, 111

polyfit, 111

polyint, 109

polymul, 110

polynomials, 108

polysub, 110

polyval, 111

power, 165

product, 94

ptp, 94

put, 94

putmask, 89

PyArray Type, 209

PyArrayDescr Type, 210

PyArrayInterface, 225

PyArrayIter Type, 220

pyrex, 332–337

PyUFunc Type, 218

r , 113

random, 181–190

continuous, 184–190

discrete, 181–184

rank, 94

ravel, 94

real, 94

real if close, 119

record arrays, 144–148

reference counting, 297–298

remainder, 165

repeat, 94

require, 86

reshape, 94

resize, 98

right shift, 169

roll, 96

rollaxis, 96

roots, 109

rot90, 117

round , 108

row stack, 97

s , 115
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searchsorted, 94

select, 103

set operations, 111–112

set numeric ops, 124

set printoptions, 74, 93

set string function, 94

setbufsize, 155

setdiff1d, 112

seterr, 155

seterrcall, 156

setmember1d, 112

setxor1d, 112

shape, 94

signbit, 172

sin, 167

sinc, 121

single-segment, 28

sinh, 167

SIP, 348

size, 94

sometrue, 94

sort, 94

sort complex, 106

split, 98

sqrt, 166

squeeze, 94

std, 94

stride, 29

subtract, 164

sum, 94

swapaxes, 94

swig, 347

take, 94

tan, 167

tanh, 168

tensordot, 92

The, 131

tile, 99

trace, 94

transpose, 94

trapz, 105

tri, 117

tril, 118

trim zeros, 105

triu, 118

true divide, 164

ufunc, 30, 153–173, 357–363

adding new, 309–311

attributes, 157

C-API, 284–291

casting rules, 158

keyword arguments, 156

methods, 159–163

accumulate, 161, 363

outer, 163

reduce, 161, 362

reduceat, 162, 363

union1d, 111

unique, 106

unique1d, 111

universal function, 30

unravel index, 116

unwrap, 105

user array, 149

vander, 116

var, 94

vdot, 92

vectorize, 107

vsplit, 98

vstack, 97

weave, 328–332
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where, 89

zeros, 87

zeros like, 87
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