|
| 1 | +# Date created and Last ran : 10-20-2023 |
| 2 | +# Queries to solve Steel Data Challenge |
| 3 | +# Challenge 6 - Marketing Analysis |
| 4 | + |
| 5 | +USE steel_data ; |
| 6 | +-- Lets create the Tables Required |
| 7 | +-- Create the table |
| 8 | +CREATE TABLE sustainable_clothing ( |
| 9 | +product_id INT PRIMARY KEY, |
| 10 | +product_name VARCHAR(100), |
| 11 | +category VARCHAR(50), |
| 12 | +size VARCHAR(10), |
| 13 | +price FLOAT |
| 14 | +); |
| 15 | +-- Insert data into the table |
| 16 | +INSERT INTO sustainable_clothing (product_id, product_name, category, size, price) |
| 17 | +VALUES |
| 18 | +(1, 'Organic Cotton T-Shirt', 'Tops', 'S', 29.99), |
| 19 | +(2, 'Recycled Denim Jeans', 'Bottoms', 'M', 79.99), |
| 20 | +(3, 'Hemp Crop Top', 'Tops', 'L', 24.99), |
| 21 | +(4, 'Bamboo Lounge Pants', 'Bottoms', 'XS', 49.99), |
| 22 | +(5, 'Eco-Friendly Hoodie', 'Outerwear', 'XL', 59.99), |
| 23 | +(6, 'Linen Button-Down Shirt', 'Tops', 'M', 39.99), |
| 24 | +(7, 'Organic Cotton Dress', 'Dresses', 'S', 69.99), |
| 25 | +(8, 'Sustainable Swim Shorts', 'Swimwear', 'L', 34.99), |
| 26 | +(9, 'Recycled Polyester Jacket', 'Outerwear', 'XL', 89.99), |
| 27 | +(10, 'Bamboo Yoga Leggings', 'Activewear', 'XS', 54.99), |
| 28 | +(11, 'Hemp Overalls', 'Bottoms', 'M', 74.99), |
| 29 | +(12, 'Organic Cotton Sweater', 'Tops', 'L', 49.99), |
| 30 | +(13, 'Cork Sandals', 'Footwear', 'S', 39.99), |
| 31 | +(14, 'Recycled Nylon Backpack', 'Accessories', 'One Size', 59.99), |
| 32 | +(15, 'Organic Cotton Skirt', 'Bottoms', 'XS', 34.99), |
| 33 | +(16, 'Hemp Baseball Cap', 'Accessories', 'One Size', 24.99), |
| 34 | +(17, 'Upcycled Denim Jacket', 'Outerwear', 'M', 79.99), |
| 35 | +(18, 'Linen Jumpsuit', 'Dresses', 'L', 69.99), |
| 36 | +(19, 'Organic Cotton Socks', 'Accessories', 'M', 9.99), |
| 37 | +(20, 'Bamboo Bathrobe', 'Loungewear', 'XL', 69.99); |
| 38 | +-- Create the table |
| 39 | +CREATE TABLE marketing_campaigns ( |
| 40 | +campaign_id INT PRIMARY KEY, |
| 41 | +campaign_name VARCHAR(100), |
| 42 | +product_id INT, |
| 43 | +start_date DATE, |
| 44 | +end_date DATE, |
| 45 | +FOREIGN KEY (product_id) REFERENCES sustainable_clothing (product_id) |
| 46 | +); |
| 47 | +-- Insert data into the table |
| 48 | +INSERT INTO marketing_campaigns (campaign_id, campaign_name, product_id, start_date, end_date) |
| 49 | +VALUES |
| 50 | +(1, 'Summer Sale', 2, '2023-06-01', '2023-06-30'), |
| 51 | +(2, 'New Collection Launch', 10, '2023-07-15', '2023-08-15'), |
| 52 | +(3, 'Super Save', 7, '2023-08-20', '2023-09-15'); |
| 53 | +-- Create the table |
| 54 | +CREATE TABLE transactions2 ( |
| 55 | +transaction_id INT PRIMARY KEY, |
| 56 | +product_id INT, |
| 57 | +quantity INT, |
| 58 | +purchase_date DATE, |
| 59 | +FOREIGN KEY (product_id) REFERENCES sustainable_clothing (product_id) |
| 60 | +); |
| 61 | +-- Insert data into the table |
| 62 | +INSERT INTO transactions2 (transaction_id, product_id, quantity, purchase_date) |
| 63 | +VALUES |
| 64 | +(1, 2, 2, '2023-06-02'), |
| 65 | +(2, 14, 1, '2023-06-02'), |
| 66 | +(3, 5, 2, '2023-06-05'), |
| 67 | +(4, 2, 1, '2023-06-07'), |
| 68 | +(5, 19, 2, '2023-06-10'), |
| 69 | +(6, 2, 1, '2023-06-13'), |
| 70 | +(7, 16, 1, '2023-06-13'), |
| 71 | +(8, 10, 2, '2023-06-15'), |
| 72 | +(9, 2, 1, '2023-06-18'), |
| 73 | +(10, 4, 1, '2023-06-22'), |
| 74 | +(11, 18, 2, '2023-06-26'), |
| 75 | +(12, 2, 1, '2023-06-30'), |
| 76 | +(13, 13, 1, '2023-06-30'), |
| 77 | +(14, 4, 1, '2023-07-04'), |
| 78 | +(15, 6, 2, '2023-07-08'), |
| 79 | +(16, 15, 1, '2023-07-08'), |
| 80 | +(17, 9, 2, '2023-07-12'), |
| 81 | +(18, 20, 1, '2023-07-12'), |
| 82 | +(19, 11, 1, '2023-07-16'), |
| 83 | +(20, 10, 1, '2023-07-20'), |
| 84 | +(21, 12, 2, '2023-07-24'), |
| 85 | +(22, 5, 1, '2023-07-29'), |
| 86 | +(23, 10, 1, '2023-07-29'), |
| 87 | +(24, 10, 1, '2023-08-03'), |
| 88 | +(25, 19, 2, '2023-08-08'), |
| 89 | +(26, 3, 1, '2023-08-14'), |
| 90 | +(27, 10, 1, '2023-08-14'), |
| 91 | +(28, 16, 2, '2023-08-20'), |
| 92 | +(29, 18, 1, '2023-08-27'), |
| 93 | +(30, 12, 2, '2023-09-01'), |
| 94 | +(31, 13, 1, '2023-09-05'), |
| 95 | +(32, 7, 1, '2023-09-05'), |
| 96 | +(33, 6, 1, '2023-09-10'), |
| 97 | +(34, 15, 2, '2023-09-14'), |
| 98 | +(35, 9, 1, '2023-09-14'), |
| 99 | +(36, 11, 2, '2023-09-19'), |
| 100 | +(37, 17, 1, '2023-09-23'), |
| 101 | +(38, 2, 1, '2023-09-28'), |
| 102 | +(39, 14, 1, '2023-09-28'), |
| 103 | +(40, 5, 2, '2023-09-30'), |
| 104 | +(41, 16, 1, '2023-10-01'), |
| 105 | +(42, 12, 2, '2023-10-01'), |
| 106 | +(43, 1, 1, '2023-10-01'), |
| 107 | +(44, 7, 1, '2023-10-02'), |
| 108 | +(45, 18, 2, '2023-10-03'), |
| 109 | +(46, 12, 1, '2023-10-03'), |
| 110 | +(47, 13, 1, '2023-10-04'), |
| 111 | +(48, 4, 1, '2023-10-05'), |
| 112 | +(49, 12, 2, '2023-10-05'), |
| 113 | +(50, 7, 1, '2023-10-06'), |
| 114 | +(51, 4, 2, '2023-10-08'), |
| 115 | +(52, 8, 2, '2023-10-08'), |
| 116 | +(53, 16, 1, '2023-10-09'), |
| 117 | +(54, 19, 1, '2023-10-09'), |
| 118 | +(55, 1, 1, '2023-10-10'), |
| 119 | +(56, 18, 2, '2023-10-10'), |
| 120 | +(57, 2, 1, '2023-10-10'), |
| 121 | +(58, 15, 2, '2023-10-11'), |
| 122 | +(59, 17, 2, '2023-10-13'), |
| 123 | +(60, 13, 1, '2023-10-13'), |
| 124 | +(61, 10, 2, '2023-10-13'), |
| 125 | +(62, 9, 1, '2023-10-13'), |
| 126 | +(63, 19, 2, '2023-10-13'), |
| 127 | +(64, 20, 1, '2023-10-14'); |
| 128 | + |
| 129 | +-- Business Questions to Answer |
| 130 | + |
| 131 | +-- 1. How many transactions were completed during each marketing campaign? |
| 132 | + |
| 133 | +SELECT mc.campaign_name, |
| 134 | + COUNT(t.transaction_id) as transaction_count |
| 135 | +FROM |
| 136 | + marketing_campaigns mc |
| 137 | +JOIN |
| 138 | + transactions2 t ON mc.product_id = t.product_id |
| 139 | +GROUP BY |
| 140 | + mc.campaign_name; |
| 141 | + |
| 142 | +-- 2. Which product had the highest sales quantity? |
| 143 | + |
| 144 | +SELECT |
| 145 | + sc.product_name, |
| 146 | + SUM(t.quantity) as total_quantity_sold |
| 147 | +FROM |
| 148 | + sustainable_clothing sc |
| 149 | +JOIN |
| 150 | + transactions2 t ON sc.product_id = t.product_id |
| 151 | +GROUP BY |
| 152 | + sc.product_name |
| 153 | +ORDER BY |
| 154 | + total_quantity_sold DESC |
| 155 | +LIMIT 1; |
| 156 | + |
| 157 | +-- 3. What is the total revenue generated from each marketing campaign? |
| 158 | + |
| 159 | +SELECT |
| 160 | + mc.campaign_name, |
| 161 | + ROUND(SUM(t.quantity * sc.price),2) as total_revenue |
| 162 | +FROM |
| 163 | + marketing_campaigns mc |
| 164 | +JOIN |
| 165 | + transactions2 t ON mc.product_id = t.product_id |
| 166 | +JOIN |
| 167 | + sustainable_clothing sc ON mc.product_id = sc.product_id |
| 168 | +GROUP BY |
| 169 | + mc.campaign_name; |
| 170 | + |
| 171 | +-- 4. What is the top-selling product category based on the total revenue generated? |
| 172 | +SELECT |
| 173 | + sc.category, |
| 174 | + ROUND(SUM(t.quantity * sc.price),2) as total_revenue |
| 175 | +FROM |
| 176 | + sustainable_clothing sc |
| 177 | +JOIN |
| 178 | + transactions2 t ON sc.product_id = t.product_id |
| 179 | +GROUP BY |
| 180 | + sc.category |
| 181 | +ORDER BY |
| 182 | + total_revenue DESC |
| 183 | +LIMIT 1; |
| 184 | + |
| 185 | +-- 5. Which products had a higher quantity sold compared to the average quantity sold? |
| 186 | +SELECT |
| 187 | + sc.product_name, |
| 188 | + SUM(t.quantity) as total_quantity_sold |
| 189 | +FROM |
| 190 | + sustainable_clothing sc |
| 191 | +JOIN |
| 192 | + transactions2 t ON sc.product_id = t.product_id |
| 193 | +GROUP BY |
| 194 | + sc.product_name |
| 195 | +HAVING |
| 196 | + total_quantity_sold > (SELECT AVG(quantity) FROM transactions2) |
| 197 | +ORDER BY total_quantity_sold DESC; |
| 198 | + |
| 199 | +-- 6. What is the average revenue generated per day during the marketing campaigns? |
| 200 | +SELECT |
| 201 | + mc.campaign_name, |
| 202 | + ROUND(AVG(t.quantity * sc.price),2) as average_daily_revenue |
| 203 | +FROM |
| 204 | + marketing_campaigns mc |
| 205 | +JOIN |
| 206 | + transactions2 t ON mc.product_id = t.product_id |
| 207 | +JOIN |
| 208 | + sustainable_clothing sc ON mc.product_id = sc.product_id |
| 209 | +GROUP BY |
| 210 | + mc.campaign_name |
| 211 | +ORDER BY |
| 212 | + mc.campaign_name; |
| 213 | + |
| 214 | +-- 7. What is the percentage contribution of each product to the total revenue? |
| 215 | +WITH product_revenue AS ( |
| 216 | + SELECT |
| 217 | + sc.product_name, |
| 218 | + ROUND(SUM(t.quantity * sc.price),2) as total_revenue |
| 219 | + FROM |
| 220 | + sustainable_clothing sc |
| 221 | + JOIN |
| 222 | + transactions2 t ON sc.product_id = t.product_id |
| 223 | + GROUP BY |
| 224 | + sc.product_name |
| 225 | +) |
| 226 | +SELECT |
| 227 | + product_name, |
| 228 | + total_revenue, |
| 229 | + ROUND((total_revenue / (SELECT SUM(total_revenue) FROM product_revenue)) * 100,2) as percentage_contribution |
| 230 | +FROM |
| 231 | + product_revenue |
| 232 | +ORDER BY |
| 233 | + total_revenue DESC; |
| 234 | + |
| 235 | +-- 8. Compare the average quantity sold during marketing campaigns to outside the marketing campaigns |
| 236 | +WITH campaign_quantity AS ( |
| 237 | + SELECT mc.campaign_name, |
| 238 | + AVG(t.quantity) as average_quantity_sold |
| 239 | + FROM |
| 240 | + marketing_campaigns mc |
| 241 | + JOIN |
| 242 | + transactions2 t ON mc.product_id = t.product_id |
| 243 | + GROUP BY |
| 244 | + mc.campaign_name |
| 245 | +), |
| 246 | +outside_campaign_quantity AS ( |
| 247 | + SELECT 'Outside Campaigns' as campaign_name, |
| 248 | + AVG(t.quantity) as average_quantity_sold |
| 249 | + FROM |
| 250 | + transactions2 t |
| 251 | + WHERE |
| 252 | + t.product_id NOT IN (SELECT product_id FROM marketing_campaigns) |
| 253 | +) |
| 254 | +SELECT * FROM campaign_quantity |
| 255 | +UNION ALL |
| 256 | +SELECT * FROM outside_campaign_quantity; |
| 257 | + |
| 258 | +-- 9. Compare the revenue generated by products inside the marketing campaigns to outside the campaigns |
| 259 | +WITH campaign_revenue AS ( |
| 260 | + SELECT |
| 261 | + mc.campaign_name, |
| 262 | + ROUND(SUM(t.quantity * sc.price),2) as total_revenue |
| 263 | + FROM |
| 264 | + marketing_campaigns mc |
| 265 | + JOIN |
| 266 | + transactions2 t ON mc.product_id = t.product_id |
| 267 | + JOIN |
| 268 | + sustainable_clothing sc ON mc.product_id = sc.product_id |
| 269 | + GROUP BY |
| 270 | + mc.campaign_name |
| 271 | +), |
| 272 | +outside_campaign_revenue AS ( |
| 273 | + SELECT |
| 274 | + 'Outside Campaigns' as campaign_name, |
| 275 | + ROUND(SUM(t.quantity * sc.price),2) as total_revenue |
| 276 | + FROM |
| 277 | + transactions2 t |
| 278 | + JOIN |
| 279 | + sustainable_clothing sc ON t.product_id = sc.product_id |
| 280 | + WHERE |
| 281 | + t.product_id NOT IN (SELECT product_id FROM marketing_campaigns) |
| 282 | +) |
| 283 | +SELECT * FROM campaign_revenue |
| 284 | +UNION ALL |
| 285 | +SELECT * FROM outside_campaign_revenue; |
| 286 | + |
| 287 | +-- 10. Rank the products by their average daily quantity sold |
| 288 | +WITH product_avg_quantity AS ( |
| 289 | + SELECT |
| 290 | + sc.product_name, |
| 291 | + ROUND(AVG(t.quantity),2) as average_daily_quantity_sold |
| 292 | + FROM |
| 293 | + transactions2 t |
| 294 | + JOIN |
| 295 | + sustainable_clothing sc ON t.product_id = sc.product_id |
| 296 | + GROUP BY |
| 297 | + sc.product_name |
| 298 | +) |
| 299 | +SELECT * |
| 300 | +FROM product_avg_quantity |
| 301 | +ORDER BY average_daily_quantity_sold DESC; |
1 | 302 |
|
0 commit comments