Skip to content

Commit 63375e3

Browse files
authored
Merge pull request #1 from HarshVR1947/HarshVR1947-patch-1
Create Artificial_NeuralNet.py
2 parents 1969259 + 04086ca commit 63375e3

File tree

1 file changed

+42
-0
lines changed

1 file changed

+42
-0
lines changed
Lines changed: 42 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,42 @@
1+
import numpy as np
2+
import pandas as pd
3+
from sklearn.model_selection import train_test_split
4+
from sklearn.preprocessing import StandardScaler
5+
import tensorflow as tf
6+
from tensorflow import keras
7+
from tensorflow.keras import layers
8+
9+
# Load the Pima Indians Diabetes dataset
10+
file_path = "pimaindiandiabetes.csv" # Replace with the actual file path
11+
columns = ["Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI", "DiabetesPedigreeFunction", "Age", "Outcome"]
12+
data = pd.read_csv(file_path, names=columns)
13+
14+
# Split the data into features and target
15+
X = data.drop("Outcome", axis=1)
16+
y = data["Outcome"]
17+
18+
# Split the data into training and testing sets
19+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
20+
21+
# Standardize the features (mean=0, std=1)
22+
scaler = StandardScaler()
23+
X_train = scaler.fit_transform(X_train)
24+
X_test = scaler.transform(X_test)
25+
26+
# Create an ANN model with backpropagation
27+
model = keras.Sequential([
28+
layers.Input(shape=(X_train.shape[1],)),
29+
layers.Dense(64, activation='relu'),
30+
layers.Dense(32, activation='relu'),
31+
layers.Dense(1, activation='sigmoid')
32+
])
33+
34+
# Compile the model
35+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
36+
37+
# Train the model
38+
model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2)
39+
40+
# Evaluate the model on the test data
41+
_, accuracy = model.evaluate(X_test, y_test)
42+
print(f"Accuracy on Pima Indians Diabetes dataset: {accuracy * 100:.2f}%")

0 commit comments

Comments
 (0)