|
| 1 | +class UnionFind: |
| 2 | + def __init__(self, n): |
| 3 | + self.par = [i for i in range(n)] |
| 4 | + self.rank = [1] * n |
| 5 | + |
| 6 | + def find(self, v1): |
| 7 | + while v1 != self.par[v1]: |
| 8 | + self.par[v1] = self.par[self.par[v1]] |
| 9 | + v1 = self.par[v1] |
| 10 | + return v1 |
| 11 | + |
| 12 | + def union(self, v1, v2): |
| 13 | + p1, p2 = self.find(v1), self.find(v2) |
| 14 | + if p1 == p2: |
| 15 | + return False |
| 16 | + if self.rank[p1] > self.rank[p2]: |
| 17 | + self.par[p2] = p1 |
| 18 | + self.rank[p1] += self.rank[p2] |
| 19 | + else: |
| 20 | + self.par[p1] = p2 |
| 21 | + self.rank[p2] += self.rank[p1] |
| 22 | + return True |
| 23 | + |
| 24 | +class Solution: |
| 25 | + def findCriticalAndPseudoCriticalEdges(self, n: int, edges: List[List[int]]) -> List[List[int]]: |
| 26 | + # Time: O(E^2) - UF operations are assumed to be approx O(1) |
| 27 | + for i, e in enumerate(edges): |
| 28 | + e.append(i) # [v1, v2, weight, original_index] |
| 29 | + |
| 30 | + edges.sort(key=lambda e: e[2]) |
| 31 | + |
| 32 | + mst_weight = 0 |
| 33 | + uf = UnionFind(n) |
| 34 | + for v1, v2, w, i in edges: |
| 35 | + if uf.union(v1, v2): |
| 36 | + mst_weight += w |
| 37 | + |
| 38 | + critical, pseudo = [], [] |
| 39 | + for n1, n2, e_weight, i in edges: |
| 40 | + # Try without curr edge |
| 41 | + weight = 0 |
| 42 | + uf = UnionFind(n) |
| 43 | + for v1, v2, w, j in edges: |
| 44 | + if i != j and uf.union(v1, v2): |
| 45 | + weight += w |
| 46 | + if max(uf.rank) != n or weight > mst_weight: |
| 47 | + critical.append(i) |
| 48 | + continue |
| 49 | + |
| 50 | + # Try with curr edge |
| 51 | + uf = UnionFind(n) |
| 52 | + uf.union(n1, n2) |
| 53 | + weight = e_weight |
| 54 | + for v1, v2, w, j in edges: |
| 55 | + if uf.union(v1, v2): |
| 56 | + weight += w |
| 57 | + if weight == mst_weight: |
| 58 | + pseudo.append(i) |
| 59 | + return [critical, pseudo] |
0 commit comments