You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+9-9Lines changed: 9 additions & 9 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -34,13 +34,13 @@ DocArray is a library for nested, unstructured, multimodal data in transit, incl
34
34
35
35
🛸 **IDE integration**: pretty-print and visualization on Jupyter notebook and Google Colab; comprehensive autocomplete and type hints in PyCharm and VS Code.
36
36
37
-
Read more on [why should you use DocArray](https://docarray.jina.ai/get-started/what-is/) and [comparison to alternatives](https://docarray.jina.ai/get-started/what-is/#comparing-to-alternatives).
37
+
Read more on [why should you use DocArray](https://docs.docarray.org/get-started/what-is/) and [comparison to alternatives](https://docs.docarray.org/get-started/what-is/#comparing-to-alternatives).
38
38
39
39
<!-- end elevator-pitch -->
40
40
41
41
DocArray was released under the open-source [Apache License 2.0](https://github.com/docarray/docarray/blob/main/LICENSE) in January 2022. It is currently a sandbox project under [LF AI & Data Foundation](https://lfaidata.foundation/).
42
42
43
-
## [Documentation](https://docarray.jina.ai)
43
+
## [Documentation](https://docs.docarray.org)
44
44
45
45
## Install
46
46
@@ -52,7 +52,7 @@ or via Conda:
52
52
```shell
53
53
conda install -c conda-forge docarray
54
54
```
55
-
[Commonly used features](https://docarray.jina.ai/#install) can be enabled via `pip install "docarray[common]"`.
55
+
[Commonly used features](https://docs.docarray.org/#install) can be enabled via `pip install "docarray[common]"`.
56
56
57
57
58
58
## Get Started
@@ -141,7 +141,7 @@ Here the feature embedding is done by simple [feature hashing](https://en.wikipe
141
141
142
142
### Example 3: external storage for out-of-memory data
143
143
144
-
When your data is too big, storing in memory is not the best idea. DocArray supports [multiple storage backends](https://docarray.jina.ai/advanced/document-store/) such as SQLite, Weaviate, Qdrant and AnnLite. They're all unified under **the exact same user experience and API**. Take the above snippet: you only need to change one line to use SQLite:
144
+
When your data is too big, storing in memory is not the best idea. DocArray supports [multiple storage backends](https://docs.docarray.org/advanced/document-store/) such as SQLite, Weaviate, Qdrant and AnnLite. They're all unified under **the exact same user experience and API**. Take the above snippet: you only need to change one line to use SQLite:
145
145
146
146
```python
147
147
da = DocumentArray(
@@ -208,7 +208,7 @@ left_da.plot_image_sprites()
208
208
```
209
209
210
210
<palign="center">
211
-
<ahref="https://docarray.jina.ai"><imgsrc="https://github.com/docarray/docarray/blob/main/.github/README-img/sprite.png?raw=true"alt="Load totally looks like dataset with docarray API"width="60%"></a>
211
+
<ahref="https://docs.docarray.org"><imgsrc="https://github.com/docarray/docarray/blob/main/.github/README-img/sprite.png?raw=true"alt="Load totally looks like dataset with docarray API"width="60%"></a>
<ahref="https://docarray.jina.ai"><imgsrc="https://github.com/docarray/docarray/blob/main/.github/README-img/tsne.gif?raw=true"alt="Visualizing embedding via tSNE and embedding projector"width="90%"></a>
257
+
<ahref="https://docs.docarray.org"><imgsrc="https://github.com/docarray/docarray/blob/main/.github/README-img/tsne.gif?raw=true"alt="Visualizing embedding via tSNE and embedding projector"width="90%"></a>
258
258
</p>
259
259
260
260
Fun is fun, but our goal is to match left images against right images, and so far we have only handled the left. Let's repeat the same procedure for the right:
@@ -334,8 +334,8 @@ Better see it.
334
334
```
335
335
336
336
<palign="center">
337
-
<ahref="https://docarray.jina.ai"><imgsrc="https://github.com/jina-ai/docarray/blob/main/.github/README-img/9nn-left.jpeg?raw=true"alt="Visualizing top-9 matches using DocArray API"height="250px"></a>
338
-
<ahref="https://docarray.jina.ai"><imgsrc="https://github.com/jina-ai/docarray/blob/main/.github/README-img/9nn.png?raw=true"alt="Visualizing top-9 matches using DocArray API"height="250px"></a>
337
+
<ahref="https://docs.docarray.org"><imgsrc="https://github.com/jina-ai/docarray/blob/main/.github/README-img/9nn-left.jpeg?raw=true"alt="Visualizing top-9 matches using DocArray API"height="250px"></a>
338
+
<ahref="https://docs.docarray.org"><imgsrc="https://github.com/jina-ai/docarray/blob/main/.github/README-img/9nn.png?raw=true"alt="Visualizing top-9 matches using DocArray API"height="250px"></a>
339
339
</p>
340
340
341
341
Here we reversed the preprocessing steps (i.e. switching axis and normalizing) on the copied matches, so you can visualize them using image sprites.
@@ -400,7 +400,7 @@ Now anyone who knows the token `my_shared_da` can pull and work on it.
0 commit comments