|
| 1 | +//Both solutions use same Idea |
| 2 | +//Time complexity O(Nlogk) |
| 3 | + |
| 4 | +class Solution { |
| 5 | + public int[][] kClosest(int[][] points, int k) { |
| 6 | + HashMap<int[], Double> map = new HashMap<>(); |
| 7 | + PriorityQueue<Map.Entry<int[], Double>> pq = new PriorityQueue<>((a,b)->Double.compare(a.getValue(),b.getValue())); |
| 8 | + for (int i = 0; i<points.length; i++) { |
| 9 | + map.put(points[i], Math.pow((Math.pow(points[i][0], 2)+Math.pow(points[i][1], 2)), 0.5));//We can also ignore this rooting as I did in the next solution |
| 10 | + } |
| 11 | + for (Map.Entry set: map.entrySet()) { |
| 12 | + pq.add(set); |
| 13 | + } |
| 14 | + int[][] ans = new int[k][2]; |
| 15 | + for (int i = 0; i<k; i++) { |
| 16 | + int[] temp = pq.poll().getKey(); |
| 17 | + ans[i][0] = temp[0]; |
| 18 | + ans[i][1] = temp[1]; |
| 19 | + } |
| 20 | + return ans; |
| 21 | + } |
| 22 | +} |
| 23 | + |
| 24 | +//Since, we need to find the minimum, it doens't matter if we square root them. As the minimum will remain the same after square rooting also. |
| 25 | +//Ex: 4.8<4.9 -> root(4.8)<root(4.9) |
| 26 | + |
| 27 | +class Solution { |
| 28 | + public int[][] kClosest(int[][] points, int k) { |
| 29 | + HashMap<int[], Integer> map = new HashMap<>(); |
| 30 | + PriorityQueue<Map.Entry<int[], Integer>> pq = new PriorityQueue<>((a,b)->a.getValue()-b.getValue()); |
| 31 | + for (int i = 0; i<points.length; i++) { |
| 32 | + map.put(points[i], (int)(Math.pow(points[i][0], 2)+Math.pow(points[i][1], 2))); |
| 33 | + } |
| 34 | + for (Map.Entry set: map.entrySet()) { |
| 35 | + pq.add(set); |
| 36 | + } |
| 37 | + int[][] ans = new int[k][2]; |
| 38 | + for (int i = 0; i<k; i++) { |
| 39 | + int[] temp = pq.poll().getKey(); |
| 40 | + ans[i][0] = temp[0]; |
| 41 | + ans[i][1] = temp[1]; |
| 42 | + } |
| 43 | + return ans; |
| 44 | + } |
| 45 | +} |
0 commit comments