
Developer Guide

AWS Database Encryption SDK

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Database Encryption SDK Developer Guide

AWS Database Encryption SDK: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Database Encryption SDK Developer Guide

Table of Contents

What is the AWS Database Encryption SDK? ... 1
Developed in open-source repositories ... 3
Support and maintenance .. 3
Sending feedback ... 3
Concepts ... 4

Envelope encryption ... 5
Data key .. 6
Wrapping key ... 7
Keyrings ... 8
Cryptographic actions .. 8
Material description .. 9
Encryption context .. 9
Cryptographic materials manager ... 10
Symmetric and asymmetric encryption ... 10
Key commitment ... 11
Digital signatures .. 12

How it works ... 13
Encrypt and sign ... 14
Decrypt and verify .. 15

Supported algorithm suites ... 16
Default algorithm suite ... 19
AES-GCM without ECDSA digital signatures ... 19

Interacting with AWS KMS .. 21
Configuring the SDK ... 23

Selecting a programming language ... 23
Selecting wrapping keys ... 23
Creating a discovery filter .. 25
Working with multitenant databases .. 26
Creating signed beacons ... 27

Key stores ... 34
Key store terminology and concepts ... 34
Implementing least privileged permissions .. 35
Create a key store .. 36
Configure key store actions ... 37

iii

AWS Database Encryption SDK Developer Guide

Configure your key store actions .. 38
Create branch keys .. 41
Rotate your active branch key .. 44

Keyrings .. 47
How keyrings work .. 48
AWS KMS keyrings ... 49

Required permissions for AWS KMS keyrings ... 50
Identifying AWS KMS keys in an AWS KMS keyring .. 50
Creating an AWS KMS keyring ... 51
Using multi-Region AWS KMS keys .. 54
Using an AWS KMS discovery keyring .. 56
Using an AWS KMS regional discovery keyring .. 59

AWS KMS Hierarchical keyrings .. 61
How it works .. 63
Prerequisites ... 65
Required permissions ... 65
Choose a cache .. 66
Create a Hierarchical keyring ... 75
Using the Hierarchical keyring for searchable encryption .. 81

AWS KMS ECDH keyrings ... 85
Required permissions for AWS KMS ECDH keyrings .. 86
Creating an AWS KMS ECDH keyring .. 87
Creating an AWS KMS ECDH discovery keyring .. 90

Raw AES keyrings ... 93
Raw RSA keyrings ... 95
Raw ECDH keyrings .. 98

Creating a Raw ECDH keyring .. 100
Multi-keyrings ... 109

Searchable encryption .. 113
Are beacons right for my dataset? ... 114
Searchable encryption scenario .. 117
Beacons .. 118

Standard beacons ... 119
Compound beacons .. 121

Planning beacons ... 122
Considerations for multitenant databases .. 123

iv

AWS Database Encryption SDK Developer Guide

Choosing a beacon type ... 123
Choosing a beacon length .. 130
Choosing a beacon name ... 136

Configuring beacons .. 137
Configuring standard beacons ... 137
Configuring compound beacons .. 147
Example configurations ... 157

Using beacons ... 162
Querying beacons ... 165

Searchable encryption for multitenant databases .. 166
Querying beacons in a multitenant database .. 169

Amazon DynamoDB ... 171
Client-side and server-side encryption .. 172
Which fields are encrypted and signed? ... 174

Encrypting attribute values .. 175
Signing the item ... 176

Searchable encryption in DynamoDB .. 176
Configuring secondary indexes with beacons .. 176
Testing beacon outputs ... 178

Updating your data model .. 184
Add new ENCRYPT_AND_SIGN, SIGN_ONLY, and
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributes .. 186
Remove existing attributes ... 186
Change an existing ENCRYPT_AND_SIGN attribute to SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ... 187
Change an existing SIGN_ONLY or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
attribute to ENCRYPT_AND_SIGN ... 188
Add a new DO_NOTHING attribute ... 188
Change an existing SIGN_ONLY attribute to
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ... 189
Change an existing SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute to
SIGN_ONLY .. 190

Programming languages .. 190
Java .. 191
.NET ... 225
Rust .. 241

v

AWS Database Encryption SDK Developer Guide

Legacy ... 247
AWS Database Encryption SDK for DynamoDB version support .. 248
How it works ... 248
Concepts ... 252
Cryptographic materials provider ... 257
Programming languages ... 286
Changing your data model ... 313
Troubleshooting .. 317

DynamoDB Encryption Client rename ... 321
Reference .. 323

Material description format ... 323
AWS KMS Hierarchical keyring technical details ... 326

Document history .. 328

vi

AWS Database Encryption SDK Developer Guide

What is the AWS Database Encryption SDK?

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK is a set of software libraries that enable you to include client-
side encryption in your database design. The AWS Database Encryption SDK provides record-level
encryption solutions. You specify which fields are encrypted and which fields are included in the
signatures that ensure the authenticity of your data. Encrypting your sensitive data in transit and at
rest helps ensure that your plaintext data isn’t available to any third party, including AWS. The AWS
Database Encryption SDK is provided free of charge under the Apache 2.0 license.

This developer guide provides a conceptual overview of the AWS Database Encryption SDK,
including an introduction to its architecture, details about how it protects your data, how it differs
from server-side encryption, and guidance on selecting critical components for your application to
help you get started.

The AWS Database Encryption SDK supports Amazon DynamoDB with attribute-level encryption.

The AWS Database Encryption SDK has the following benefits:

Designed especially for database applications

You don’t need to be a cryptography expert to use the AWS Database Encryption SDK.
The implementations include helper methods that are designed to work with your existing
applications.

After you create and configure the required components, the encryption client transparently
encrypts and signs your records when you add them to a database, and verifies and decrypts
them when you retrieve them.

Includes secure encryption and signing

The AWS Database Encryption SDK includes secure implementations that encrypt the field
values in each record using a unique data encryption key, and then sign the record to protect it
against unauthorized changes, such as adding or deleting fields, or swapping encrypted values.

1

AWS Database Encryption SDK Developer Guide

Uses cryptographic materials from any source

The AWS Database Encryption SDK uses keyrings to generate, encrypt, and decrypt the unique
data encryption key that protects your record. Keyrings determine the wrapping keys that
encrypt that data key.

You can use wrapping keys from any source, including cryptography services, such as AWS Key
Management Service (AWS KMS) or AWS CloudHSM. The AWS Database Encryption SDK doesn't
require an AWS account or any AWS service.

Support for cryptographic materials caching

The AWS KMS Hierarchical keyring is a cryptographic materials caching solution that reduces
the number of AWS KMS calls by using AWS KMS protected branch keys persisted in an Amazon
DynamoDB table, and then locally caching branch key materials used in encrypt and decrypt
operations. It allows you to protect your cryptographic materials under a symmetric encryption
KMS key without calling AWS KMS every time you encrypt or decrypt a record. The AWS KMS
Hierarchical keyring is a good choice for applications that need to minimize calls to AWS KMS.

Searchable encryption

You can design databases that can search encrypted records without decrypting the entire
database. Depending on your threat model and query requirements, you can use searchable
encryption to perform exact match searches or more customized complex queries on your
encrypted database.

Support for multitenant database schemas

The AWS Database Encryption SDK enables you to protect data stored in databases with a
shared schema by isolating each tenant with distinct encryption materials. If you have multiple
users performing encrypt operations within your database, use one of the AWS KMS keyrings
to provide each user with a distinct key to use in their cryptographic operations. For more
information, see Working with multitenant databases.

Support for seamless schema updates

When you configure the AWS Database Encryption SDK, you provide cryptographic actions that
tell the client which fields to encrypt and sign, which fields to sign (but not encrypt), and which
to ignore. After you have used the AWS Database Encryption SDK to protect your records, you
can still make changes to your data model. You can update your cryptographic actions, such as
adding or removing encrypted fields, in a single deployment.

2

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS Database Encryption SDK Developer Guide

Developed in open-source repositories

The AWS Database Encryption SDK is developed in open-source repositories on GitHub. You can
use these repositories to view the code, read and submit issues, and find information that is specific
to your implementation.

The AWS Database Encryption SDK for DynamoDB

• The aws-database-encryption-sdk-dynamodb repository on GitHub supports the latest versions
of the AWS Database Encryption SDK for DynamoDB in Java, .NET, and Rust.

The AWS Database Encryption SDK for DynamoDB is a product of Dafny, a verification-aware
language in which you write specifications, the code to implement them, and the proofs to test
them. The result is a library that implements the features of the AWS Database Encryption SDK
for DynamoDB in a framework that assures functional correctness.

Support and maintenance

The AWS Database Encryption SDK uses the same maintenance policy that the AWS SDK and
Tools use, including its versioning and lifecycle phases. As a best practice, we recommend that
you use the latest available version of the AWS Database Encryption SDK for your database
implementation, and upgrade as new versions are released.

For more information, see the AWS SDKs and Tools maintenance policy in the AWS SDKs and Tools
Reference Guide.

Sending feedback

We welcome your feedback! If you have a question or comment, or an issue to report, please use
the following resources.

If you discover a potential security vulnerability in the AWS Database Encryption SDK, please notify
AWS security. Do not create a public GitHub issue.

To provide feedback on this documentation, use the feedback link on any page.

Developed in open-source repositories 3

https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/security/vulnerability-reporting/

AWS Database Encryption SDK Developer Guide

AWS Database Encryption SDK concepts

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

This topic explains the concepts and terminology used in the AWS Database Encryption SDK.

To learn how the components of the AWS Database Encryption SDK interact, see How the AWS
Database Encryption SDK works.

To learn more about the AWS Database Encryption SDK, see the following topics.

• Learn how the AWS Database Encryption SDK uses envelope encryption to protect your data.

• Learn about the elements of envelope encryption: the data keys that protect your records and
the wrapping keys that protect your data keys.

• Learn about the keyrings that determine which wrapping keys you use.

• Learn about the encryption context that adds integrity to your encryption process.

• Learn about the material description that the encryption methods add to your record.

• Learn about the cryptographic actions that tell the AWS Database Encryption SDK what fields to
encrypt and sign.

Topics

• Envelope encryption

• Data key

• Wrapping key

• Keyrings

• Cryptographic actions

• Material description

• Encryption context

• Cryptographic materials manager

• Symmetric and asymmetric encryption

Concepts 4

AWS Database Encryption SDK Developer Guide

• Key commitment

• Digital signatures

Envelope encryption

The security of your encrypted data depends in part on protecting the data key that can decrypt it.
One accepted best practice for protecting the data key is to encrypt it. To do this, you need another
encryption key, known as a key-encryption key or wrapping key. The practice of using a wrapping
key to encrypt data keys is known as envelope encryption.

Protecting data keys

The AWS Database Encryption SDK encrypts each field with a unique data key. Then it encrypts
each data key under the wrapping key you specify. It stores the encrypted data keys in the
material description.

To specify your wrapping key, you use a keyring.

Encrypting the same data under multiple wrapping keys

You can encrypt the data key with multiple wrapping keys. You might want to provide different
wrapping keys for different users, or wrapping keys of different types, or in different locations.
Each of the wrapping keys encrypts the same data key. The AWS Database Encryption SDK
stores all of the encrypted data keys alongside the encrypted fields in the material description.

To decrypt the data, you need to provide at least one wrapping key that can decrypt the
encrypted data keys.

Envelope encryption 5

AWS Database Encryption SDK Developer Guide

Combining the strengths of multiple algorithms

To encrypt your data, by default, the AWS Database Encryption SDK uses an algorithm suite
with AES-GCM symmetric encryption, an HMAC-based key derivation function (HKDF), and
ECDSA signing. To encrypt the data key, you can specify a symmetric or asymmetric encryption
algorithm appropriate to your wrapping key.

In general, symmetric key encryption algorithms are faster and produce smaller ciphertexts
than asymmetric or public key encryption. But public key algorithms provide inherent separation
of roles. To combine the strengths of each, you can encrypt the data key with public key
encryption.

We recommend using one of the AWS KMS keyrings whenever possible. When you use the AWS
KMS keyring, you can choose to combine the strengths of multiple algorithms by specifying an
asymmetric RSA AWS KMS key as your wrapping key. You can also use a symmetric encryption
KMS key.

Data key

A data key is an encryption key that the AWS Database Encryption SDK uses to encrypt the fields in
a record that are marked ENCRYPT_AND_SIGN in the cryptographic actions. Each data key is a byte
array that conforms to the requirements for cryptographic keys. The AWS Database Encryption SDK
uses a unique data key to encrypt each attribute.

You don't need to specify, generate, implement, extend, protect, or use data keys. The AWS
Database Encryption SDK does that work for you when you call the encrypt and decrypt
operations.

To protect your data keys, the AWS Database Encryption SDK encrypts them under one or more
key-encryption keys known as wrapping keys. After the AWS Database Encryption SDK uses your
plaintext data keys to encrypt your data, it removes them from memory as soon as possible. Then
stores the encrypted data key in the material description. For details, see How the AWS Database
Encryption SDK works.

Tip

In the AWS Database Encryption SDK, we distinguish data keys from data encryption keys.
As a best practice, all of the supported algorithm suites use a key derivation function. The

Data key 6

https://en.wikipedia.org/wiki/Key_derivation_function

AWS Database Encryption SDK Developer Guide

key derivation function takes a data key as input and returns the data encryption keys
that are actually used to encrypt your records. For this reason, we often say that data is
encrypted "under" a data key rather than "by" the data key.

Each encrypted data key includes metadata, including the identifier of the wrapping key that
encrypted it. This metadata makes it possible for the AWS Database Encryption SDK to identify
valid wrapping keys when decrypting.

Wrapping key

A wrapping key is a key-encryption key that the AWS Database Encryption SDK uses to encrypt the
data key that encrypts your records. Each data key can be encrypted under one or more wrapping
keys. You determine which wrapping keys are used to protect your data when you configure a
keyring.

The AWS Database Encryption SDK supports several commonly used wrapping keys, such as AWS
Key Management Service (AWS KMS) symmetric encryption KMS keys (including multi-Region AWS
KMS keys) and asymmetric RSA KMS keys, raw AES-GCM (Advanced Encryption Standard/Galois
Counter Mode) keys, and raw RSA keys. We recommend using KMS keys whenever possible. To
decide which wrapping key you should use, see Selecting wrapping keys.

When you use envelope encryption, you need to protect your wrapping keys from unauthorized
access. You can do this in any of the following ways:

• Use a service designed for this purpose, such as AWS Key Management Service (AWS KMS).

• Use a hardware security module (HSM) such as those offered by AWS CloudHSM.

• Use other key management tools and services.

If you don't have a key management system, we recommend AWS KMS. The AWS Database
Encryption SDK integrates with AWS KMS to help you protect and use your wrapping keys.

Wrapping key 7

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html#key-spec-rsa
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS Database Encryption SDK Developer Guide

Keyrings

To specify the wrapping keys you use for encryption and decryption, you use a keyring. You can use
the keyrings that the AWS Database Encryption SDK provides or design your own implementations.

A keyring generates, encrypts, and decrypts data keys. It also generates the MAC keys used to
calculate the Hash-Based Message Authentication Codes (HMACs) in the signature. When you
define a keyring, you can specify the wrapping keys that encrypt your data keys. Most keyrings
specify at least one wrapping key or a service that provides and protects wrapping keys. When
encrypting, the AWS Database Encryption SDK uses all of the wrapping keys specified in the
keyring to encrypt the data key. For help with choosing and using the keyrings that the AWS
Database Encryption SDK defines, see Using keyrings.

Cryptographic actions

Cryptographic actions tell the encryptor which actions to perform on each field in a record.

The cryptographic action values can be one of the following:

• Encrypt and sign – Encrypt the field. Include the encrypted field in the signature.

• Sign only – Include the field in the signature.

• Sign and include in encryption context – Include the field in the signature and encryption
context.

By default, the partition and sort keys are the only attribute included in
the encryption context. You might consider defining additional fields as
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT so that the branch key ID supplier for your
AWS KMS Hierarchical keyring can identify which branch key is required for decryption from the
encryption context. For more information, see branch key ID supplier.

Note

To use the SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographic
action, you must use version 3.3 or later of the AWS Database Encryption SDK.
Deploy the new version to all readers before updating your data model to include
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

• Do nothing – Do not encrypt or include the field in the signature.

Keyrings 8

AWS Database Encryption SDK Developer Guide

For any field that can store sensitive data, use Encrypt and sign. For primary key values (for
example, a partition key and sort key in a DynamoDB table), use Sign only or Sign and include in
encryption context. If you specify any Sign and include in encryption context attributes, then
the partition and sort attributes must also be Sign and include in encryption context. You do not
need to specify cryptographic actions for the material description. The AWS Database Encryption
SDK automatically signs the field that the material description is stored in.

Choose your cryptographic actions carefully. When in doubt, use Encrypt and sign. After you have
used the AWS Database Encryption SDK to protect your records, you cannot change an existing
ENCRYPT_AND_SIGN, SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT field
to DO_NOTHING, or change the cryptographic action assigned to an existing DO_NOTHING field.
However, you can still make other changes to your data model. For example, you can add or
remove encrypted fields, in a single deployment.

Material description

The material description serves as the header for an encrypted record. When you encrypt and
sign fields with the AWS Database Encryption SDK, the encryptor records the material description
as it assembles the cryptographic materials and stores the material description in a new field
(aws_dbe_head) that the encryptor adds to your record.

The material description is a portable formatted data structure that contains encrypted copies
of the data keys and other information, such as encryption algorithms, encryption context,
and encryption and signing instructions. The encryptor records the material description as
it assembles the cryptographic materials for encryption and signing. Later, when it needs to
assemble cryptographic materials to verify and decrypt a field, it uses the material description as
its guide.

Storing the encrypted data keys alongside the encrypted field streamlines the decryption
operation and frees you from having to store and manage encrypted data keys independently of
the data that they encrypt.

For technical information about the material description, see Material description format.

Encryption context

To improve the security of your cryptographic operations, the AWS Database Encryption SDK
includes an encryption context in all requests to encrypt and sign a record.

Material description 9

AWS Database Encryption SDK Developer Guide

An encryption context is a set of name-value pairs that contain arbitrary, non-secret additional
authenticated data. The AWS Database Encryption SDK includes the logical name for your database
and primary key values (for example, a partition key and sort key in a DynamoDB table) in the
encryption context. When you encrypt and sign a field, the encryption context is cryptographically
bound to the encrypted record so that the same encryption context is required to decrypt the field.

If you use an AWS KMS keyring, the AWS Database Encryption SDK also uses the encryption
context to provide additional authenticated data (AAD) in the calls the keyring makes to AWS KMS.

Whenever you use the default algorithm suite, the cryptographic materials manager (CMM) adds
a name-value pair to the encryption context that consists of a reserved name, aws-crypto-
public-key, and a value that represents the public verification key. The public verification key is
stored in the material description.

Cryptographic materials manager

The cryptographic materials manager (CMM) assembles the cryptographic materials that are
used to encrypt, decrypt, and sign your data. Whenever you use the default algorithm suite, the
cryptographic materials include plaintext and encrypted data keys, symmetric signing keys, and an
asymmetric signing key. You never interact with the CMM directly. The encryption and decryption
methods handle it for you.

Because the CMM acts as a liaison between the AWS Database Encryption SDK and a keyring, it
is an ideal point for customization and extension, such as support for policy enforcement. You
can explicitly specify a CMM, but it's not required. When you specify a keyring, the AWS Database
Encryption SDK creates a default CMM for you. The default CMM gets the encryption or decryption
materials from the keyring that you specify. This might involve a call to a cryptographic service,
such as AWS Key Management Service (AWS KMS).

Symmetric and asymmetric encryption

Symmetric encryption uses the same key to encrypt and decrypt data.

Asymmetric encryption uses a mathematically related data key pair. One key in the pair encrypts
the data; only the other key in the pair can decrypt the data.

The AWS Database Encryption SDK uses envelope encryption. It encrypts your data with a
symmetric data key. It encrypts the symmetric data key with one or more symmetric or asymmetric
wrapping keys. It adds a material description to the record that includes at least one encrypted
copy of the data key.

Cryptographic materials manager 10

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Database Encryption SDK Developer Guide

Encrypting your data (symmetric encryption)

To encrypt your data, the AWS Database Encryption SDK uses a symmetric data key and an
algorithm suite that includes a symmetric encryption algorithm. To decrypt the data, the AWS
Database Encryption SDK uses the same data key and the same algorithm suite.

Encrypting your data key (symmetric or asymmetric encryption)

The keyring that you supply to an encrypt and decrypt operation determines how the
symmetric data key is encrypted and decrypted. You can choose a keyring that uses symmetric
encryption, such as an AWS KMS keyring with a symmetric encryption KMS key, or one that uses
asymmetric encryption, such as an AWS KMS keyring with an asymmetric RSA KMS key.

Key commitment

The AWS Database Encryption SDK supports key commitment (sometimes known as robustness),
a security property that ensures that each ciphertext can be decrypted only to a single plaintext.
To do this, key commitment ensures that only the data key that encrypted your record will be used
to decrypt it. The AWS Database Encryption SDK includes key commitment for all encryption and
decryption operations.

Most modern symmetric ciphers (including AES) encrypt plaintext under a single secret key, like
the unique data key that the AWS Database Encryption SDK uses to encrypt each plaintext field
marked ENCRYPT_AND_SIGN in a record. Decrypting this record with the same data key returns a
plaintext that is identical to the original. Decrypting with a different key will usually fail. Although
difficult, it's technically possible to decrypt a ciphertext under two different keys. In rare cases, it
is feasible to find a key that can partially decrypt ciphertext into a different, but still intelligible,
plaintext.

The AWS Database Encryption SDK always encrypts each attribute under one unique data key. It
might encrypt that data key under multiple wrapping keys, but the wrapping keys always encrypt
the same data key. Nonetheless, a sophisticated, manually crafted encrypted record might actually
contain different data keys, each encrypted by a different wrapping key. For example, if one
user decrypts the encrypted record it returns 0x0 (false) while another user decrypting the same
encrypted record gets 0x1 (true).

To prevent this scenario, the AWS Database Encryption SDK includes key commitment when
encrypting and decrypting. The encrypt method cryptographically binds the unique data key that
produced the ciphertext to the key commitment, a Hash-Based Message Authentication Code

Key commitment 11

AWS Database Encryption SDK Developer Guide

(HMAC) calculated over the material description using a derivation of the data key. Then it stores
the key commitment in the material description. When it decrypts a record with key commitment,
the AWS Database Encryption SDK verifies that the data key is the only key for that encrypted
record. If data key verification fails, the decrypt operation fails.

Digital signatures

The AWS Database Encryption SDK encrypts your data using an authenticated encryption
algorithm, AES-GCM, and the decryption process verifies the integrity and authenticity of an
encrypted message without using a digital signature. But because AES-GCM uses symmetric
keys, anyone who can decrypt the data key used to decrypt the ciphertext could also manually
create a new encrypted ciphertext, causing a potential security concern. For instance, if you use an
AWS KMS key as a wrapping key, a user with kms:Decrypt permissions could create encrypted
ciphertexts without calling kms:Encrypt.

To avoid this issue, the default algorithm suite adds an Elliptic Curve Digital Signature Algorithm
(ECDSA) signature to encrypted records. The default algorithm suite encrypts the fields in your
record marked ENCRYPT_AND_SIGN using an authenticated encryption algorithm, AES-GCM.
Then, it calculates both Hash-Based Message Authentication Codes (HMACs) and asymmetric
ECDSA signatures over the fields in your record marked ENCRYPT_AND_SIGN, SIGN_ONLY, and
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. The decryption process uses the signatures to
verify that an authorized user encrypted the record.

When the default algorithm suite is used, the AWS Database Encryption SDK generates a
temporary private key and public key pair for each encrypted record. The AWS Database Encryption
SDK stores the public key in the material description and discards the private key. This ensures
that no one can create another signature that verifies with the public key. The algorithm binds the
public key to the encrypted data key as additional authenticated data in the material description,
preventing users who can only decrypt fields from altering the public key or affecting signature
verification.

The AWS Database Encryption SDK always includes HMAC verification. ECDSA digital signatures
are enabled by default, but not required. If the users encrypting data and the users decrypting
data are equally trusted, you might consider using an algorithm suite that does not include digital
signatures to improve your performance. For more information on selecting alternative algorithm
suites, see Choosing an algorithm suite.

Digital signatures 12

AWS Database Encryption SDK Developer Guide

Note

If a keyring doesn't delineate between encryptors and decryptors, digital signatures provide
no cryptographic value.

AWS KMS keyrings, including the asymmetric RSA AWS KMS keyring, can delineate between
encryptors and decryptors based on AWS KMS key policies and IAM policies.

Due to their cryptographic nature, the following keyrings cannot delineate between encryptors and
decryptors:

• AWS KMS Hierarchical keyring

• AWS KMS ECDH keyring

• Raw AES keyring

• Raw RSA keyring

• Raw ECDH keyring

How the AWS Database Encryption SDK works

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK provides client-side encryption libraries that are designed
specifically to protect the data that you store in databases. The libraries include secure
implementations that you can extend or use unchanged. For more information about defining and
using custom components, see the GitHub repository for your database implementation.

The workflows in this section explain how the AWS Database Encryption SDK encrypts and signs
and decrypts and verifies the data in your database. These workflows describe the basic process
using abstract elements and the default features. For details about how the AWS Database
Encryption SDK works with your database implementation, see the What is encrypted topic for your
database.

The AWS Database Encryption SDK uses envelope encryption to protect your data. Each record is
encrypted under a unique data key. The data key is used to derive a unique data encryption key for

How it works 13

AWS Database Encryption SDK Developer Guide

each field marked ENCRYPT_AND_SIGN in your cryptographic actions. Then, a copy of data key is
encrypted by the wrapping keys you specify. To decrypt the encrypted record, the AWS Database
Encryption SDK uses the wrapping keys you specify to decrypt at least one encrypted data key.
Then it can decrypt the ciphertext and return a plaintext entry.

For more information about the terms used in the AWS Database Encryption SDK, see AWS
Database Encryption SDK concepts.

Encrypt and sign

At its core, the AWS Database Encryption SDK is a record encryptor that encrypts, signs,
verifies, and decrypts the records in your database. It takes in information about your records
and instructions about which fields to encrypt and sign. It gets the encryption materials, and
instructions on how to use them, from a cryptographic materials manager configured from the
wrapping key you specify.

The following walkthrough describes how the AWS Database Encryption SDK encrypts and signs
your data entries.

1. The cryptographic materials manager provides the AWS Database Encryption SDK with unique
data encryption keys: one plaintext data key, a copy of the data key encrypted by the specified
wrapping key, and a MAC key.

Note

You can encrypt the data key under multiple wrapping keys. Each of the wrapping
keys encrypt a separate copy of the data key. The AWS Database Encryption SDK
stores all of the encrypted data keys in the material description. The AWS Database
Encryption SDK adds a new field (aws_dbe_head) to the record that stores the
material description.
A MAC key is derived for each encrypted copy of the data key. The MAC keys are not
stored in the material description. Instead, the decrypt method uses the wrapping keys
to derive the MAC keys again.

2. The encryption method encrypts each field marked as ENCRYPT_AND_SIGN in the
cryptographic actions you specified.

3. The encryption method derives a commitKey from the data key and uses it to generate a key
commitment value, and then discards the data key.

Encrypt and sign 14

AWS Database Encryption SDK Developer Guide

4. The encryption method adds a material description to the record. The material description
contains the encrypted data keys and the other information about the encrypted record. For a
complete list of the information included in the material description, see Material description
format.

5. The encryption method uses the MAC keys returned in Step 1 to calculate Hash-Based
Message Authentication Code (HMAC) values over the canonicalization of the material
description, encryption context, and each field marked ENCRYPT_AND_SIGN, SIGN_ONLY, or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in the cryptographic actions. The HMAC
values are stored in a new field (aws_dbe_foot) that the encryption method adds to the
record.

6. The encryption method calculates an ECDSA signature over the canonicalization of the
material description, encryption context, and each field marked ENCRYPT_AND_SIGN,
SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT and stores the ECDSA
signatures in the aws_dbe_foot field.

Note

ECDSA signatures are enabled by default, but are not required.

7. The encryption method stores the encrypted and signed record in your database

Decrypt and verify

1. The cryptographic materials manager (CMM) provides the decryption method with the
decryption materials stored in the material description, including the plaintext data key and
the associated MAC key.

• The CMM decrypts the encrypted data key with the wrapping keys in the specified keyring
and returns the plaintext data key.

2. The decryption method compares and verifies the key commitment value in the material
description.

3. The decryption method verifies the signatures in the signature field.

It identifies which fields are marked ENCRYPT_AND_SIGN, SIGN_ONLY, or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT from the list of allowed unauthenticated
fields that you defined. The decryption method uses the MAC key returned in Step 1

Decrypt and verify 15

AWS Database Encryption SDK Developer Guide

to recalculate and compare HMAC values for the fields marked ENCRYPT_AND_SIGN,
SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Then, it verifies the ECDSA
signatures using the public key stored in the encryption context.

4. The decryption method uses the plaintext data key to decrypt each value marked
ENCRYPT_AND_SIGN. The AWS Database Encryption SDK then discards the plaintext data key.

5. The decryption method returns the plaintext record.

Supported algorithm suites in the AWS Database Encryption
SDK

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

An algorithm suite is a collection of cryptographic algorithms and related values. Cryptographic
systems use the algorithm implementation to generate the ciphertext.

The AWS Database Encryption SDK uses an algorithm suite to encrypt and sign the fields in your
database. All supported algorithm suites use the Advanced Encryption Standard (AES) algorithm
with Galois/Counter Mode (GCM), known as AES-GCM, to encrypt raw data. The AWS Database
Encryption SDK supports 256-bit encryption keys. The length of the authentication tag is always
16 bytes.

AWS Database Encryption SDK Algorithm Suites

Algorithm Encryptio
n
algorithm

Data key
length (in
bits)

Key
derivation
algorithm

Symmetric
signature
algorithm

Asymmetri
c
signature
algorithm

Key
commitmen
t

Default AES-GCM 256 HKDF with
SHA-512

HMAC-
SHA-384

ECDSA
with
P-384 and
SHA-384

HKDF with
SHA-512

AES-GCM
without

AES-GCM 256 HKDF with
SHA-512

HMAC-
SHA-384

None HKDF with
SHA-512

Supported algorithm suites 16

AWS Database Encryption SDK Developer Guide

Algorithm Encryptio
n
algorithm

Data key
length (in
bits)

Key
derivation
algorithm

Symmetric
signature
algorithm

Asymmetri
c
signature
algorithm

Key
commitmen
t

ECDSA
digital
signatures

Encryption algorithm

The name and mode of the encryption algorithm used. Algorithm suites in the AWS Database
Encryption SDK use the Advanced Encryption Standard (AES) algorithm with Galois/Counter
Mode (GCM).

Data key length

The length of the data key in bits. The AWS Database Encryption SDK supports 256-bit data
keys. The data key is used as input to an HMAC-based extract-and-expand key derivation
function (HKDF). The output of the HKDF is used as the data encryption key in the encryption
algorithm.

Key derivation algorithm

The HMAC-based extract-and-expand key derivation function (HKDF) used to derive the data
encryption key. The AWS Database Encryption SDK uses the HKDF defined in RFC 5869.

• The hash function used is SHA-512

• For the extract step:

• No salt is used. Per the RFC, the salt is set to a string of zeros.

• The input keying material is the data key from the keyring.

• For the expand step:

• The input pseudorandom key is the output from the extract step.

• The key label is the UTF-8-encoded bytes of the DERIVEKEY string in big endian byte
order.

• The input info is a concatenation of the algorithm ID and the key label (in that order).

• The length of the output keying material is the Data key length. This output is used as the
data encryption key in the encryption algorithm.

Supported algorithm suites 17

https://tools.ietf.org/html/rfc5869

AWS Database Encryption SDK Developer Guide

Symmetric signature algorithm

The Hash-Based Message Authentication Code (HMAC) algorithm used to generate a symmetric
signature. All supported algorithm suites include HMAC verification.

The AWS Database Encryption SDK serializes the material description and all fields marked
ENCRYPT_AND_SIGN, SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.
Then, it uses HMAC with a cryptographic hash function algorithm (SHA-384) to sign the
canonicalization.

The symmetric HMAC signature is stored in a new field (aws_dbe_foot) that the AWS Database
Encryption SDK adds to the record.

Asymmetric signature algorithm

The signature algorithm used to generate an asymmetric digital signature.

The AWS Database Encryption SDK serializes the material description and all fields marked
ENCRYPT_AND_SIGN, SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Then,
it uses the Elliptic Curve Digital Signature Algorithm (ECDSA) with the following specifics to sign
the canonicalization:

• The elliptic curve used is the P-384, as defined in Digital Signature Standard (DSS) (FIPS PUB
186-4).

• The hash function used is SHA-384.

The asymmetric ECDSA signature is stored with the symmetric HMAC signature in the
aws_dbe_foot field.

ECDSA digital signatures are included by default, but not required.

Key commitment

The HMAC-based extract-and-expand key derivation function (HKDF) used to derive the commit
key.

• The hash function used is SHA-512

• For the extract step:

• No salt is used. Per the RFC, the salt is set to a string of zeros.

• The input keying material is the data key from the keyring.

• For the expand step:

• The input pseudorandom key is the output from the extract step.

Supported algorithm suites 18

http://doi.org/10.6028/NIST.FIPS.186-4
http://doi.org/10.6028/NIST.FIPS.186-4

AWS Database Encryption SDK Developer Guide

• The input info is the UTF-8-encoded bytes of the COMMITKEY string in big endian byte
order.

• The length of the output keying material is 256 bits. This output is used as the commit key.

The commit key calculates the record commitment, a distinct 256-bit Hash-Based Message
Authentication Code (HMAC) hash, over the material description. For a technical explanation of
adding key commitment to an algorithm suite, see Key Committing AEADs in Cryptology ePrint
Archive.

Default algorithm suite

By default, the AWS Database Encryption SDK uses an algorithm suite with AES-GCM, an HMAC-
based extract-and-expand key derivation function (HKDF), HMAC verification, ECDSA digital
signatures, key commitment, and a 256-bit encryption key.

The default algorithm suite includes HMAC verification (symmetric signatures) and ECDSA digital
signatures (asymmetric signatures). These signatures are stored in a new field (aws_dbe_foot)
that the AWS Database Encryption SDK adds to the record. ECDSA digital signatures are
particularly useful when the authorization policy allows one set of users to encrypt data and a
different set of users to decrypt data.

The default algorithm suite also derives a key commitment – an HMAC hash that ties the data key
to the record. The key commitment value is an HMAC calculated from the material description and
commit key. The key commitment value is then stored in the material description. Key commitment
ensures that each ciphertext decrypts to only one plaintext. They do this by validating the data
key used as input to the encryption algorithm. When encrypting, the algorithm suite derives a key
commitment HMAC. Before decrypting, they validate that the data key produces the same key
commitment HMAC. If it does not, the decrypt call fails.

AES-GCM without ECDSA digital signatures

Although the default algorithm suite is likely suitable for most applications, you can choose an
alternate algorithm suite. For example, some trust models would be satisfied by an algorithm suite
without ECDSA digital signatures. Use this suite only when the users who encrypt data and the
users who decrypt data are equally trusted.

All AWS Database Encryption SDK algorithm suites include HMAC verification (symmetric
signatures). The only difference, is that the AES-GCM algorithm suite without ECDSA digital

Default algorithm suite 19

https://eprint.iacr.org/2020/1153

AWS Database Encryption SDK Developer Guide

signature lacks the asymmetric signature that provides an additional layer of authenticity and non-
repudiation.

For example, if you have multiple wrapping keys in your keyring, wrappingKeyA, wrappingKeyB,
and wrappingKeyC, and you decrypt a record using wrappingKeyA, the HMAC symmetric
signature verifies that the record was encrypted by a user with access to wrappingKeyA. If you
used the default algorithm suite, the HMACs provide the same verification of wrappingKeyA, and
additionally use the ECDSA digital signature to ensure the record was encrypted by a user with
encrypt permissions for wrappingKeyA.

To select the AES-GCM algorithm suite without digital signatures, include the following snippet in
your encryption configuration.

Java

The following snippet specifies the AES-GCM algorithm suite without ECDSA digital signatures.
For more information, see the section called “Encryption configuration”.

.algorithmSuiteId(
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384)

C# / .NET

The following snippet specifies the AES-GCM algorithm suite without ECDSA digital signatures.
For more information, see the section called “Encryption configuration”.

AlgorithmSuiteId =
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384

Rust

The following snippet specifies the AES-GCM algorithm suite without ECDSA digital signatures.
For more information, see the section called “Encryption configuration”.

.algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)

AES-GCM without ECDSA digital signatures 20

AWS Database Encryption SDK Developer Guide

Using the AWS Database Encryption SDK with AWS KMS

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

To use the AWS Database Encryption SDK, you need to configure a keyring and specify one or more
wrapping keys. If you don't have a key infrastructure, we recommend using AWS Key Management
Service (AWS KMS).

The AWS Database Encryption SDK supports two types of AWS KMS keyrings. The traditional
AWS KMS keyring uses AWS KMS keys to generate, encrypt, and decrypt data keys. You can use
either symmetric encryption (SYMMETRIC_DEFAULT) or asymmetric RSA KMS keys. Since the AWS
Database Encryption SDK encrypts and signs every record with a unique data key, the AWS KMS
keyring must call AWS KMS for every encrypt and decrypt operation. For applications that need
to minimize the number of calls to AWS KMS, the AWS Database Encryption SDK also supports
the AWS KMS Hierarchical keyring. The Hierarchical keyring is a cryptographic materials caching
solution that reduces the number of AWS KMS calls by using AWS KMS protected branch keys
persisted in an Amazon DynamoDB table, and then locally caching branch key materials used in
encrypt and decrypt operations. We recommend using the AWS KMS keyrings whenever possible.

To interact with AWS KMS, the AWS Database Encryption SDK requires the AWS KMS module of the
AWS SDK for Java.

To prepare to use the AWS Database Encryption SDK with AWS KMS

1. Create an AWS account. To learn how, see How do I create and activate a new Amazon Web
Services account? in the AWS Knowledge Center.

2. Create a symmetric encryption AWS KMS key. For help, see Creating Keys in the AWS Key
Management Service Developer Guide.

Tip

To use the AWS KMS key programmatically, you will need the Amazon Resource Name
(ARN) of the AWS KMS key. For help finding the ARN of an AWS KMS key, see Finding
the Key ID and ARN in the AWS Key Management Service Developer Guide.

21

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS Database Encryption SDK Developer Guide

3. Generate an access key ID and security access key. You can use either the access key ID and
secret access key for an IAM user or you can use the AWS Security Token Service to create a
new session with temporary security credentials that include an access key ID, secret access
key, and session token. As a security best practice, we recommend that you use temporary
credentials instead of the long-term credentials associated with your IAM user or AWS (root)
user accounts.

To create an IAM user with an access key, see Creating IAM Users in the IAM User Guide.

To generate temporary security credentials, see Requesting temporary security credentials in
the IAM User Guide.

4. Set your AWS credentials using the instructions in the AWS SDK for Java and the access key
ID and secret access key that you generated in step 3. If you generated temporary credentials,
you will also need to specify the session token.

This procedure allows AWS SDKs to sign requests to AWS for you. Code samples in the AWS
Database Encryption SDK that interact with AWS KMS assume that you have completed this
step.

22

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

AWS Database Encryption SDK Developer Guide

Configuring the AWS Database Encryption SDK

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK is designed to be easy to use. Although the AWS Database
Encryption SDK has several configuration options, the default values are carefully chosen to be
practical and secure for most applications. However, you might need to adjust your configuration
to improve performance or include a custom feature in your design.

Topics

• Selecting a programming language

• Selecting wrapping keys

• Creating a discovery filter

• Working with multitenant databases

• Creating signed beacons

Selecting a programming language

The AWS Database Encryption SDK for DynamoDB is available in multiple programming languages.
The language implementations are designed to be fully interoperable and to offer the same
features, although they might be implemented in different ways. Typically, you use the library that
is compatible with your application.

Selecting wrapping keys

The AWS Database Encryption SDK generates a unique symmetric data key to encrypt each field.
You don't need to configure, manage, or use the data keys. The AWS Database Encryption SDK
does it for you.

However, you must select one or more wrapping keys to encrypt each data key. The AWS Database
Encryption SDK supports AWS Key Management Service (AWS KMS) symmetric encryption KMS
keys and asymmetric RSA KMS keys. It also supports AES symmetric keys and RSA asymmetric

Selecting a programming language 23

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Database Encryption SDK Developer Guide

keys that you provide in different sizes. You are responsible for the safety and durability of your
wrapping keys, so we recommend that you use an encryption key in a hardware security module or
a key infrastructure service, such as AWS KMS.

To specify your wrapping keys for encryption and decryption, you use a keyring. Depending on the
type of keyring you use, you can specify one wrapping key or multiple wrapping keys of the same
or different types. If you use multiple wrapping keys to wrap a data key, each wrapping key will
encrypt a copy of the same data key. The encrypted data keys (one per wrapping key) are stored
in the material description stored alongside the encrypted field. To decrypt the data, the AWS
Database Encryption SDK must first use one of your wrapping keys to decrypt an encrypted data
key.

We recommend using one of the AWS KMS keyrings whenever possible. The AWS Database
Encryption SDK provides the AWS KMS keyring and the AWS KMS Hierarchical keyring, which
reduces the number of calls made to AWS KMS. To specify an AWS KMS key in a keyring, use a
supported AWS KMS key identifier. If you use the AWS KMS Hierarchical keyring, you must specify
the key ARN. For details about the key identifiers for an AWS KMS key, see Key Identifiers in the
AWS Key Management Service Developer Guide.

• When you encrypt with an AWS KMS keyring, you can specify any valid key identifier (key ARN,
alias name, alias ARN, or key ID) for a symmetric encryption KMS key. If you use an asymmetric
RSA KMS key, you must specify the key ARN.

If you specify an alias name or alias ARN for a KMS key when encrypting, the AWS Database
Encryption SDK saves the key ARN currently associated with that alias; it does not save the alias.
Changes to the alias don't affect the KMS key used to decrypt your data keys.

• By default, the AWS KMS keyring decrypts records in strict mode (where you specify particular
KMS keys). You must use a key ARN to identify AWS KMS keys for decryption.

When you encrypt with an AWS KMS keyring, the AWS Database Encryption SDK stores the
key ARN of the AWS KMS key in the material description with the encrypted data key. When
decrypting in strict mode, the AWS Database Encryption SDK verifies that the same key ARN
appears in the keyring before it attempts to use the wrapping key to decrypt the encrypted data
key. If you use a different key identifier, the AWS Database Encryption SDK will not recognize or
use the AWS KMS key, even if the identifiers refer to the same key.

• When decrypting in discovery mode, you don't specify any wrapping keys. First, the AWS
Database Encryption SDK attempts to decrypt the record with the key ARN stored in the material
description. If that doesn't work, the AWS Database Encryption SDK asks AWS KMS to decrypt

Selecting wrapping keys 24

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Database Encryption SDK Developer Guide

the record using the KMS key that encrypted it, regardless of who owns or has access to that
KMS key.

To specify a raw AES key or a raw RSA key pair as a wrapping key in a keyring, you must specify a
namespace and a name. When decrypting, you must use the exact same namespace and name for
each raw wrapping key as you used when encrypting. If you use a different namespace or name, the
AWS Database Encryption SDK will not recognize or use the wrapping key, even if the key material
is the same.

Creating a discovery filter

When decrypting data encrypted with KMS keys, it's a best practice to decrypt in strict mode, that
is, to limit the wrapping keys used to only those that you specify. However, if necessary, you can
also decrypt in discovery mode, where you don't specify any wrapping keys. In this mode, AWS KMS
can decrypt the encrypted data key using the KMS key that encrypted it, regardless of who owns or
has access to that KMS key.

If you must decrypt in discovery mode, we recommend that you always use a discovery filter,
which limits the KMS keys that can be used to those in a specified AWS account and partition. The
discovery filter is optional, but it's a best practice.

Use the following table to determine the partition value for your discovery filter.

Region Partition

AWS Regions aws

China Regions aws-cn

AWS GovCloud (US) Regions aws-us-gov

The following example shows how to create a discovery filter. Before using the code, replace the
example values with valid values for your AWS account and partition.

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()

Creating a discovery filter 25

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Database Encryption SDK Developer Guide

 .partition("aws")
 .accountIds(111122223333)
 .build();

C# / .NET

var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

Working with multitenant databases

With the AWS Database Encryption SDK, you can configure client-side encryption for databases
with a shared schema by isolating each tenant with distinct encryption materials. When
considering a multitenant database, take some time to review your security requirements and how
multitenancy might impact them. For example, using a multitenant database might impact your
ability to combine the AWS Database Encryption SDK with another server-side encryption solution.

If you have multiple users performing encrypt operations within your database, you can use one
of the AWS KMS keyrings to provide each user with a distinct key to use in their cryptographic
operations. Managing the data keys for a multitenant client-side encryption solution can be
complicated. We recommend organizing your data by tenant whenever possible. If the tenant
is identified by the primary key values (for example, the partition key in an Amazon DynamoDB
table), then managing your keys is easier.

You can use the AWS KMS keyring to isolate each tenant with a distinct AWS KMS keyring and
AWS KMS keys. Based on the volume of AWS KMS calls made per tenant, you might want to use
the AWS KMS Hierarchical keyring to minimize your calls to AWS KMS. The AWS KMS Hierarchical
keyring is a cryptographic materials caching solution that reduces the number of AWS KMS calls by

Working with multitenant databases 26

AWS Database Encryption SDK Developer Guide

using AWS KMS protected branch keys persisted in an Amazon DynamoDB table, and then locally
caching branch key materials used in encrypt and decrypt operations. You must use the AWS KMS
Hierarchical keyring to implement searchable encryption in your database.

Creating signed beacons

The AWS Database Encryption SDK uses standard beacons and compound beacons to provide
searchable encryption solutions that enable you to search encrypted records without decrypting
the entire database queried. However, the AWS Database Encryption SDK also supports signed
beacons that can be configured entirely from plaintext signed fields. Signed beacons are
a type of compound beacon that index and perform complex queries on SIGN_ONLY and
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT fields.

For example, if you have a multitenant database, you might want to create a signed beacon that
enables you to query your database for records encrypted by a specific tenant's key. For more
information, see Querying beacons in a multitenant database.

You must use the AWS KMS Hierarchical keyring to create signed beacons.

To configure a signed beacon, provide the following values.

Java

Compound beacon configuration

The following example defines the signed parts lists locally within the signed beacon
configuration.

List<CompoundBeacon> compoundBeaconList = new ArrayList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.builder()
 .name("compoundBeaconName")
 .split(".")
 .signed(signedPartList)
 .constructors(constructorList)
 .build();
compoundBeaconList.add(exampleCompoundBeacon);

Beacon version definition

The following example defines the signed parts lists globally in the beacon version. For more
information on defining the beacon version, see Using beacons.

Creating signed beacons 27

AWS Database Encryption SDK Developer Guide

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .signedParts(signedPartList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

See the complete code sample: BeaconConfig.cs

Signed beacon configuration

The following example defines the signed parts lists locally within the signed beacon
configuration.

var compoundBeaconList = new List<CompoundBeacon>();
var exampleCompoundBeacon = new CompoundBeacon
 {
 Name = "compoundBeaconName",
 Split = ".",
 Signed = signedPartList,
 Constructors = constructorList
 };
compoundBeaconList.Add(exampleCompoundBeacon);

Beacon version definition

The following example defines the signed parts lists globally in the beacon version. For more
information on defining the beacon version, see Using beacons.

var beaconVersions = new List<BeaconVersion>

Creating signed beacons 28

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS Database Encryption SDK Developer Guide

{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = keyStore,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branchKeyId,
 CacheTTL = 6000
 }
 }
 }
};

You can define your signed parts in locally or globally defined lists. We recommend defining your
signed parts in a global list in the beacon version whenever possible. By defining signed parts
globally, you can define each part once and then reuse the parts in multiple compound beacon
configurations. If you only intend to use a signed part once, you can define it in a local list in the
signed beacon configuration. You can reference both local and global parts in your constructor list.

If you define your signed parts lists globally, you must provide a list of constructor parts that
identify all of the possible ways the signed beacon can assemble the fields in your beacon
configuration.

Note

To define signed parts lists globally, you must use version 3.2 or later of the AWS Database
Encryption SDK. Deploy the new version to all readers before defining any new parts
globally.
You cannot update existing beacon configurations to define signed parts lists globally.

Beacon name

The name you use when querying the beacon.

Creating signed beacons 29

AWS Database Encryption SDK Developer Guide

A signed beacon name cannot be the same name as an unencrypted field. No two beacons can
have the same beacon name.

Split character

The character used to separate the parts that make up your signed beacon.

The split character cannot appear in the plaintext values of any of the fields that the signed
beacon is constructed from.

Signed parts list

Identifies the signed fields included in the signed beacon.

Each part must include a name, source, and prefix. The source is the SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT field that the part identifies. The source
must be a field name or an index referring to the value of a nested field. If your part name
identifies the source, you can omit the source and the AWS Database Encryption SDK will
automatically use the name as its source. We recommend specifying the source as the part
name whenever possible. The prefix can be any string, but it must be unique. No two signed
parts in a signed beacon can have the same prefix. We recommend using a short value that
distinguishes the part from other parts served by the compound beacon.

We recommend defining your signed parts globally whenever possible. You might consider
defining a signed part locally if you only intend on using it in one compound beacon. A locally
defined part cannot have the same prefix or name as a globally defined part.

Java

List<SignedPart> signedPartList = new ArrayList<>);
 SignedPart signedPartExample = SignedPart.builder()
 .name("signedFieldName")
 .prefix("S-")
 .build();
 signedPartList.add(signedPartExample);

C# / .NET

var signedPartsList = new List<SignedPart>
{
 new SignedPart { Name = "signedFieldName1", Prefix = "S-" },
 new SignedPart { Name = "signedFieldName2", Prefix = "SF-" }
};

Creating signed beacons 30

AWS Database Encryption SDK Developer Guide

Constructor list (Optional)

Identifies the constructors that define the different ways that the signed parts can be assembled
by the signed beacon.

If you do not specify a constructor list, the AWS Database Encryption SDK assembles the signed
beacon with the following default constructor.

• All signed parts in the order they were added to the signed parts list

• All parts are required

Constructors

Each constructor is an ordered list of constructor parts that defines one way that the signed
beacon can be assembled. The constructor parts are joined together in the order they are
added to the list, with each part separated by the specified split character.

Each constructor part names a signed part, and defines whether that part is required or
optional within the constructor. For example, if you want to query a signed beacon on
Field1, Field1.Field2, and Field1.Field2.Field3, mark Field2 and Field3 as
optional and create one constructor.

Each constructor must have at least one required part. We recommend making the first part
in each constructor required so that you can use the BEGINS_WITH operator in your queries.

A constructor succeeds if all its required parts are present in the record. When you write a
new record, the signed beacon uses the constructor list to determine if the beacon can be
assembled from the values provided. It attempts to assemble the beacon in the order that
the constructors were added to the constructor list, and it uses the first constructor that
succeeds. If no constructors succeed, the beacon is not written to the record.

All readers and writers should specify the same order of constructors to ensure that their
query results are correct.

Use the following procedures to specify your own constructor list.

1. Create a constructor part for each signed part to define whether or not that part is
required.

The constructor part name must be the name of the signed field.

The following example demonstrates how to create constructor part for one signed field.

Creating signed beacons 31

AWS Database Encryption SDK Developer Guide

Java

ConstructorPart field1ConstructorPart = ConstructorPart.builder()
 .name("Field1")
 .required(true)
 .build();

C# / .NET

var field1ConstructorPart = new ConstructorPart { Name = "Field1", Required
 = true };

2. Create a constructor for each possible way that the signed beacon can be assembled using
the constructor parts you created in Step 1.

For example, if you want to query on Field1.Field2.Field3 and
Field4.Field2.Field3, then you must create two constructors. Field1 and Field4
can both be required because they are defined in two separate constructors.

Java

// Create a list for Field1.Field2.Field3 queries
List<ConstructorPart> field123ConstructorPartList = new ArrayList<>();
field123ConstructorPartList.add(field1ConstructorPart);
field123ConstructorPartList.add(field2ConstructorPart);
field123ConstructorPartList.add(field3ConstructorPart);
Constructor field123Constructor = Constructor.builder()
 .parts(field123ConstructorPartList)
 .build();
// Create a list for Field4.Field2.Field1 queries
List<ConstructorPart> field421ConstructorPartList = new ArrayList<>();
field421ConstructorPartList.add(field4ConstructorPart);
field421ConstructorPartList.add(field2ConstructorPart);
field421ConstructorPartList.add(field1ConstructorPart);
Constructor field421Constructor = Constructor.builder()
 .parts(field421ConstructorPartList)
 .build();

C# / .NET

// Create a list for Field1.Field2.Field3 queries
 var field123ConstructorPartList = new Constructor

Creating signed beacons 32

AWS Database Encryption SDK Developer Guide

{
 Parts = new List<ConstructorPart> { field1ConstructorPart,
 field2ConstructorPart, field3ConstructorPart }
};
// Create a list for Field4.Field2.Field1 queries
var field421ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field4ConstructorPart,
 field2ConstructorPart, field1ConstructorPart }
};

3. Create a constructor list that includes all of the constructors that you created in Step 2.

Java

List<Constructor> constructorList = new ArrayList<>();
constructorList.add(field123Constructor)
constructorList.add(field421Constructor)

C# / .NET

var constructorList = new List<Constructor>
{
 field123Constructor,
 field421Constructor
};

4. Specify the constructorList when you create your signed beacon.

Creating signed beacons 33

AWS Database Encryption SDK Developer Guide

Key stores in the AWS Database Encryption SDK

In the AWS Database Encryption SDK, a key store is a Amazon DynamoDB table that persists
hierarchical data used by the AWS KMS Hierarchical keyring. The key store helps reduce the
number of calls that you need to make to AWS KMS to perform cryptographic operations with the
Hierarchical keyring.

The key store persists and manages the branch keys that the Hierarchical keyring uses to perform
envelope encryption and protect data encryption keys. The key store stores the active branch key
and all previous versions of the branch key. The active branch key is the most recent branch key
version. The Hierarchical keyring uses a unique data encryption key for each encrypt request and
encrypts each data encryption key with a unique wrapping key derived from the active branch key.
The Hierarchical keyring is dependent on the hierarchy established between active branch keys and
their derived wrapping keys.

Key store terminology and concepts

Key store

The DynamoDB table that persists hierarchical data, such as branch keys and beacon keys.

Root key

A symmetric encryption KMS key that generates and protects the branch keys and beacon keys
in your key store.

Branch key

A data key that is reused to derive unique wrapping key for envelope encryption. You can create
multiple branch keys in one key store, but each branch key can only have one active branch key
version at a time. The active branch key is the most recent branch key version.

Branch keys are derived from AWS KMS keys using the kms:GenerateDataKeyWithoutPlaintext
operation.

Wrapping key

A unique data key that is used to encrypt the data encryption key used in encrypt operations.

Wrapping keys are derived from branch keys. For more information on the key derivation
process, see AWS KMS Hierarchical keyring technical details.

Key store terminology and concepts 34

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Database Encryption SDK Developer Guide

Data encryption key

A data key that is used in encrypt operations. The Hierarchical keyring uses a unique data
encryption key for each encrypt request.

Beacon key

A data key that is used to generate beacons for searchable encryption. For more information,
see Searchable encryption.

Implementing least privileged permissions

When using a key store and AWS KMS Hierarchical keyrings, we recommend that you follow the
principle of least privilege by defining the following roles:

Key store administrator

Key store administrators are responsible for creating and managing the key store and the
branch keys that it that persists and protects. Key store administrators should be the only
users with write permissions to the Amazon DynamoDB table that serves as your key store.
They should be the only users with access to privileged, administrator operations, such as
CreateKey and VersionKey. You can only perform these operations when you statically
configure your key store actions.

CreateKey is a privileged operation that can add a new KMS key ARN to your key store
allowlist. This KMS key can create new active branch keys. We recommend limiting access to this
operation because once a KMS key is added to the branch key store, it cannot be deleted.

Key store user

In most use cases, the key store user only interacts with key store via the Hierarchical keyring
as they encrypt, decrypt, sign, and verify data. As a result, they only need read permissions
to the Amazon DynamoDB table that serves as your key store. Key store users should only
need access to the usage operations that make cryptographic operations possible, such as
GetActiveBranchKey, GetBranchKeyVersion, and GetBeaconKey. They don't need
permissions to create or manage the branch keys that they use.

You can perform usage operations when your key store actions are statically configured,
or when they're configured for discovery. You cannot perform administrator operations
(CreateKey and VersionKey) when your key store actions is configured for discovery.

Implementing least privileged permissions 35

AWS Database Encryption SDK Developer Guide

If your branch key store administrator allowlisted multiple KMS keys in your branch key store,
we recommend that your key store users configure their key store actions for discovery so that
their Hierarchical keyring can use multiple KMS keys.

Create a key store

Before you can create branch keys or use an AWS KMS Hierarchical keyring, you must create your
key store, a Amazon DynamoDB table that manages and protects your branch keys.

Important

Do not delete the DynamoDB table that persists your branch keys. If you delete this table,
you will be unable to decrypt any data encrypted using the Hierarchical keyring.

Follow the Create a table procedures in the Amazon DynamoDB Developer Guide, using the
following required string values for the partition key and sort key.

Partition key Sort key

Base table branch-key-id type

Logical key store name

When naming the DynamoDB table that serves as your key store, it's important to carefully
consider the logical key store name that you'll specify when configuring your key store actions. The
logical key store name acts as an identifier for your key store and cannot be changed after it is
initially defined by the first user. You must always specify the same logical key store name in your
key store actions.

There must be a one-to-one mapping between the DynamoDB table name and the logical key
store name. The logical key store name is cryptographically bound to all data stored in the table to
simplify DynamoDB restore operations. While the logical key store name can be different from your
DynamoDB table name, we strongly recommend specifying your DynamoDB table name as the
logical key store name. In the event that your table name changes after restoring your DynamoDB

Create a key store 36

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Database Encryption SDK Developer Guide

table from a backup, the logical key store name can be mapped to the new DynamoDB table name
to ensure that the Hierarchical keyring can still access your key store.

Do not include confidential or sensitive information in your logical key store name. The logical key
store name is displayed in plaintext in AWS KMS CloudTrail events as the tablename.

Next steps

1. the section called “Configure key store actions”

2. the section called “Create branch keys”

3. Create an AWS KMS Hierarchical keyring

Configure key store actions

Key store actions determine what operations your users can perform and how their AWS KMS
Hierarchical keyring uses the KMS keys allowlisted in your key store. The AWS Database Encryption
SDK supports the following key store action configurations.

Static

When you statically configure your key store, the key store can only use the KMS key associated
with the KMS key ARN you provide in the kmsConfiguration when you configure your key
store actions. An exception is thrown if a different KMS key ARN is encountered when creating,
versioning, or getting a branch key.

You can specify a multi-Region KMS key in your kmsConfiguration, but the key's entire ARN,
including the region, is persisted in the branch keys derived from the KMS key. You cannot
specify a key in a different region, you must provide the exact same multi-region key for the
values to match.

When you statically configure your key store actions, you can perform usage operations
(GetActiveBranchKey, GetBranchKeyVersion, GetBeaconKey) and administrative
operations (CreateKey and VersionKey). CreateKey is a privileged operation that can add a
new KMS key ARN to your key store allowlist. This KMS key can create new active branch keys.
We recommend limiting access to this operation because once a KMS key is added to the key
store, it cannot be deleted.

Configure key store actions 37

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Database Encryption SDK Developer Guide

Discovery

When you configure your key store actions for discovery, the key store can use any AWS KMS
key ARN that is allowlisted in your key store. However, an exception is thrown when a multi-
Region KMS key is encountered and the region in the key's ARN does not match the region of
the AWS KMS client being used.

When you configure your key store for discovery, you cannot perform administrative operations,
such as CreateKey and VersionKey. You can only perform the usage operations that enable
encrypt, decrypt, sign, and verify operations. For more information, see the section called
“Implementing least privileged permissions”.

Configure your key store actions

Before you configure your key store actions, ensure the following prerequisites are met.

• Determine what operations you need to perform. For more information, see the section called
“Implementing least privileged permissions”.

• Choose a logical key store name

There must be a one-to-one mapping between the DynamoDB table name and the logical key
store name. The logical key store name is cryptographically bound to all data stored in the table
to simplify DynamoDB restore operations, it cannot be changed after it is initially defined by the
first user. You must always specify the same logical key store name in your key store actions. For
more information, see logical key store name.

Static configuration

The following example statically configures key store actions. You must specify the name of the
DynamoDB table that serves as your key store, a logical name for the key store, and the KMS key
ARN that identifies a symmetric encryption KMS key.

Note

Carefully consider the KMS key ARN that you specify when statically configuring your key
store service. The CreateKey operation adds the KMS key ARN to your branch key store
allowlist. Once a KMS key is added to the branch key store, it cannot be deleted.

Configure your key store actions 38

AWS Database Encryption SDK Developer Guide

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .kmsKeyArn(kmsKeyArn)
 .build())
 .build()).build();

C# / .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
 var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = kmsConfig,
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Rust

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let key_store_config = KeyStoreConfig::builder()
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)
 .kms_configuration(KmsConfiguration::KmsKeyArn(kms_key_arn.to_string()))
 .build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Configure your key store actions 39

AWS Database Encryption SDK Developer Guide

Discovery configuration

The following example configures key store actions for discovery. You must specify the name of the
DynamoDB table that serves as your key store and a logical key store name.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .discovery(Discovery.builder().build())
 .build())
 .build()).build();

C# / .NET

var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Rust

let key_store_config = KeyStoreConfig::builder()
 .kms_client(kms_client)
 .ddb_client(ddb_client)
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)

 .kms_configuration(KmsConfiguration::Discovery(Discovery::builder().build()?))
 .build()?;

Configure your key store actions 40

AWS Database Encryption SDK Developer Guide

Create an active branch key

A branch key is a data key derived from an AWS KMS key that the AWS KMS Hierarchical keyring
uses to reduce the number of calls made to AWS KMS. The active branch key is the most recent
branch key version. The Hierarchical keyring generates a unique data key for every encrypt request
and encrypts each data key with a unique wrapping key derived from the active branch key.

To create a new active branch key, you must statically configure your key store actions.
CreateKey is a privileged operation that adds the KMS key ARN specified in your key store actions
configuration to your key store allowlist. Then, the KMS key is used to generate the new active
branch key. We recommend limiting access to this operation because once a KMS key is added to
the key store, it cannot be deleted.

We recommend using the CreateKey operation through the KeyStore Admin interface in your
application’s control plane. This approach aligns with best practices for key management.

Don’t create branch keys in the data plane. This practice can result in:

• Unnecessary calls to AWS KMS

• Multiple concurrent calls to AWS KMS in high-concurrency environments

• Multiple TransactWriteItems calls to the backing DynamoDB table.

The CreateKey operation includes a condition check in the TransactWriteItems call to
prevent overwriting existing branch keys. However, creating keys in the data plane can still lead to
inefficient resource usage and potential performance issues.

You can allowlist one KMS key in your key store, or you can allowlist multiple KMS keys by updating
the KMS key ARN that you specify in your key store actions configuration and calling CreateKey
again. If you allowlist multiple KMS keys, your key store users should configure their key store
actions for discovery so that they can use any of the allowlisted keys in the key store that they have
access to. For more information, see the section called “Configure key store actions”.

Required permissions

To create branch keys, you need kms:GenerateDataKeyWithoutPlaintext and kms:ReEncrypt
permissions on the KMS key specified in your key store actions.

Create a branch key

Create branch keys 41

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Database Encryption SDK Developer Guide

The following operation creates a new active branch key using the KMS key that youspecified in
your key store actions configuration, and adds the active branch key to the DynamoDB table that
serves as your key store.

When you call CreateKey, you can choose to specify the following optional values.

• branchKeyIdentifier: defines a custom branch-key-id.

To create a custom branch-key-id, you must also include an additional encryption context
with the encryptionContext parameter.

• encryptionContext: defines an optional set of non-secret key–value pairs that
provides additional authenticated data (AAD) in the encryption context included in the
kms:GenerateDataKeyWithoutPlaintext call.

This additional encryption context is displayed with the aws-crypto-ec: prefix.

Java

final Map<String, String> additionalEncryptionContext =
 Collections.singletonMap("Additional Encryption Context for",
 "custom branch key id");

 final String BranchKey = keystore.CreateKey(
 CreateKeyInput.builder()
 .branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
 .encryptionContext(additionalEncryptionContext) //OPTIONAL

 .build()).branchKeyIdentifier();

C# / .NET

var additionalEncryptionContext = new Dictionary<string, string>();
 additionalEncryptionContext.Add("Additional Encryption Context for", "custom
 branch key id");

 var branchKeyId = keystore.CreateKey(new CreateKeyInput
 {
 BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
 EncryptionContext = additionalEncryptionContext // OPTIONAL
 });

Create branch keys 42

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Database Encryption SDK Developer Guide

Rust

let additional_encryption_context = HashMap::from([
 ("Additional Encryption Context for".to_string(), "custom branch key
 id".to_string())
]);

let branch_key_id = keystore.create_key()
 .branch_key_identifier("custom-branch-key-id") // OPTIONAL
 .encryption_context(additional_encryption_context) // OPTIONAL
 .send()
 .await?
 .branch_key_identifier
 .unwrap();

First, the CreateKey operation generates the following values.

• A version 4 Universally Unique Identifier (UUID) for the branch-key-id (unless you specified a
custom branch-key-id).

• A version 4 UUID for the branch key version

• A timestamp in the ISO 8601 date and time format in Coordinated Universal Time (UTC).

Then, the CreateKey operation calls kms:GenerateDataKeyWithoutPlaintext using the following
request.

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : "type",
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 },
 "KeyId": "the KMS key ARN you specified in your key store actions",
 "NumberOfBytes": "32"
 }

Create branch keys 43

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Database Encryption SDK Developer Guide

Note

The CreateKey operation creates an active branch key and a beacon key, even if you have
not configured your database for searchable encryption. Both keys are stored in your key
store. For more information, see Using the Hierarchical keyring for searchable encryption.

Next, the CreateKey operation calls kms:ReEncrypt to create an active record for the branch key
by updating the encryption context.

Last, the CreateKey operation calls ddb:TransactWriteItems to write a new item that will persist
the branch key in the table you created in Step 2. The item has the following attributes.

{
 "branch-key-id" : branch-key-id,
 "type" : "branch:ACTIVE",
 "enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
 "version": "branch:version:the branch key version UUID",
 "create-time" : "timestamp",
 "kms-arn" : "the KMS key ARN you specified in Step 1",
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 }

Rotate your active branch key

There can only be one active version for each branch key at a time. Typically, each active branch
key version is used to satisfy multiple requests. But you control the extent to which active branch
keys are reused and determine how often the active branch key is rotated.

Branch keys are not used to encrypt plaintext data keys. They are used to derive the unique
wrapping keys that encrypt plaintext data keys. The wrapping key derivation process produces
a unique 32 byte wrapping key with 28 bytes of randomness. This means that a branch key can
derive more than 79 octillion, or 296, unique wrapping keys before cryptographic wear-out occurs.
Despite this very low exhaustion risk, you might be required to rotate your active branch keys due
to business or contract rules or government regulations.

The active version of the branch key remains active until you rotate it. Previous versions of the
active branch key will not be used to perform encrypt operations and cannot be used to derive new

Rotate your active branch key 44

https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS Database Encryption SDK Developer Guide

wrapping keys, but they can still be queried and provide wrapping keys to decrypt the data keys
that they encrypted while active.

Warning

Deleting branch keys in test environments is irreversible. You cannot recover deleted
branch keys. When you delete and recreate branch keys with the same ID in test
environments, the following issues can occur:

• Materials from previous test runs might remain in the cache

• Some test hosts or threads might encrypt data using deleted branch keys

• Data encrypted with deleted branches can't be decrypted

To prevent encryption failures in integration tests:

• Reset the hierarchical keyring reference before creating new branch keys OR

• Use unique branch key IDs for each test

Required permissions

To rotate branch keys, you need kms:GenerateDataKeyWithoutPlaintext and kms:ReEncrypt
permissions on the KMS key specified in your key store actions.

Rotate an active branch key

Use the VersionKey operation to rotate your active branch key. When you rotate the active
branch key, a new branch key is created to replace the previous version. The branch-key-id does
not change when you rotate the active branch key. You must specify the branch-key-id that
identifies the current active branch key when you call VersionKey.

Java

keystore.VersionKey(
 VersionKeyInput.builder()
 .branchKeyIdentifier("branch-key-id")
 .build()
);

Rotate your active branch key 45

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Database Encryption SDK Developer Guide

C# / .NET

 keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});

Rust

keystore.version_key()
 .branch_key_identifier(branch_key_id)
 .send()
 .await?;

Rotate your active branch key 46

AWS Database Encryption SDK Developer Guide

Keyrings

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK uses keyrings to perform envelope encryption. Keyrings
generate, encrypt, and decrypt data keys. Keyrings determine the source of the unique data keys
that protect each encrypted record, and the wrapping keys that encrypt that data key. You specify
a keyring when encrypting and the same or a different keyring when decrypting.

You can use each keyring individually or combine keyrings into a multi-keyring. Although most
keyrings can generate, encrypt, and decrypt data keys, you might create a keyring that performs
only one particular operation, such as a keyring that only generates data keys, and use that keyring
in combination with others.

We recommend that you use a keyring that protects your wrapping keys and performs
cryptographic operations within a secure boundary, such as the AWS KMS keyring, which uses AWS
KMS keys that never leave AWS Key Management Service (AWS KMS) unencrypted. You can also
write a keyring that uses wrapping keys that are stored in your hardware security modules (HSMs)
or protected by other master key services.

Your keyring determines the wrapping keys that protect your data keys, and ultimately, your
data. Use the most secure wrapping keys that are practical for your task. Whenever possible use
wrapping keys that are protected by a hardware security module (HSM) or a key management
infrastructure, such as KMS keys in AWS Key Management Service (AWS KMS) or encryption keys in
AWS CloudHSM.

The AWS Database Encryption SDK provides several keyrings and keyring configurations, and you
can create your own custom keyrings. You can also create a multi-keyring that includes one or
more keyrings of the same or a different type.

Topics

• How keyrings work

• AWS KMS keyrings

• AWS KMS Hierarchical keyrings

47

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS Database Encryption SDK Developer Guide

• AWS KMS ECDH keyrings

• Raw AES keyrings

• Raw RSA keyrings

• Raw ECDH keyrings

• Multi-keyrings

How keyrings work

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

When you encrypt and sign a field in your database, the AWS Database Encryption SDK asks the
keyring for encryption materials. The keyring returns a plaintext data key, a copy of the data key
that's encrypted by each of the wrapping keys in the keyring, and a MAC key that is associated
with the data key. The AWS Database Encryption SDK uses the plaintext key to encrypt the
data, and then removes the plaintext data key from memory as soon as possible. Then, the AWS
Database Encryption SDK adds a material description that includes the encrypted data keys and
other information, such as encryption and signing instructions. The AWS Database Encryption
SDK uses the MAC key to calculate Hash-Based Message Authentication Codes (HMACs) over
the canonicalization of the material description and all fields marked ENCRYPT_AND_SIGN or
SIGN_ONLY.

When you decrypt data, you can use the same keyring that you used to encrypt the data, or a
different one. To decrypt the data, a decryption keyring must have access to at least one wrapping
key in the encryption keyring.

The AWS Database Encryption SDK passes the encrypted data keys from the material description
to the keyring, and asks the keyring to decrypt any one of them. The keyring uses its wrapping
keys to decrypt one of the encrypted data keys and returns a plaintext data key. The AWS Database
Encryption SDK uses the plaintext data key to decrypt the data. If none of the wrapping keys in the
keyring can decrypt any of the encrypted data keys, the decrypt operation fails.

You can use a single keyring or also combine keyrings of the same type or a different type into a
multi-keyring. When you encrypt data, the multi-keyring returns a copy of the data key encrypted
by all of the wrapping keys in all of the keyrings that comprise the multi-keyring and a MAC key

How keyrings work 48

AWS Database Encryption SDK Developer Guide

that is associated with the data key. You can decrypt the data using a keyring with any one of the
wrapping keys in the multi-keyring.

AWS KMS keyrings

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

An AWS KMS keyring uses symmetric encryption or asymmetric RSA AWS KMS keys to generate,
encrypt, and decrypt data keys. AWS Key Management Service (AWS KMS) protects your KMS keys
and performs cryptographic operations within the FIPS boundary. We recommend that you use a
AWS KMS keyring, or a keyring with similar security properties, whenever possible.

You can also use a symmetric multi-Region KMS key in an AWS KMS keyring. For more details
and examples using multi-Region AWS KMS keys, see Using multi-Region AWS KMS keys. For
information about multi-Region keys, see Using multi-Region keys in the AWS Key Management
Service Developer Guide.

AWS KMS keyrings can include two types of wrapping keys:

• Generator key: Generates a plaintext data key and encrypts it. A keyring that encrypts data must
have one generator key.

• Additional keys: Encrypts the plaintext data key that the generator key generated. AWS KMS
keyrings can have zero or more additional keys.

You must have a generator key to encrypt records. When an AWS KMS keyring has just one AWS
KMS key, that key is used to generate and encrypt the data key.

Like all keyrings, AWS KMS keyrings can be used independently or in a multi-keyring with other
keyrings of the same or a different type.

Topics

• Required permissions for AWS KMS keyrings

• Identifying AWS KMS keys in an AWS KMS keyring

• Creating an AWS KMS keyring

• Using multi-Region AWS KMS keys

AWS KMS keyrings 49

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Database Encryption SDK Developer Guide

• Using an AWS KMS discovery keyring

• Using an AWS KMS regional discovery keyring

Required permissions for AWS KMS keyrings

The AWS Database Encryption SDK doesn't require an AWS account and it doesn't depend on any
AWS service. However, to use an AWS KMS keyring, you need an AWS account and the following
minimum permissions on the AWS KMS keys in your keyring.

• To encrypt with an AWS KMS keyring, you need kms:GenerateDataKey permission on the
generator key. You need kms:Encrypt permission on all additional keys in the AWS KMS keyring.

• To decrypt with an AWS KMS keyring, you need kms:Decrypt permission on at least one key in
the AWS KMS keyring.

• To encrypt with a multi-keyring comprised of AWS KMS keyrings, you need
kms:GenerateDataKey permission on the generator key in the generator keyring. You need
kms:Encrypt permission on all other keys in all other AWS KMS keyrings.

• To encrypt with an asymmetric RSA AWS KMS keyring, you do not need kms:GenerateDataKey
or kms:Encrypt because you must specify the public key material that you want to use for
encryption when you create the keyring. No AWS KMS calls are made when encrypting with
this keyring. To decrypt with an asymmetric RSA AWS KMS keyring, you need kms:Decrypt
permission.

For detailed information about permissions for AWS KMS keys, see Authentication and access
control in the AWS Key Management Service Developer Guide.

Identifying AWS KMS keys in an AWS KMS keyring

An AWS KMS keyring can include one or more AWS KMS keys. To specify an AWS KMS key in an
AWS KMS keyring, use a supported AWS KMS key identifier. The key identifiers you can use to
identify an AWS KMS key in a keyring vary with the operation and the language implementation.
For details about the key identifiers for an AWS KMS key, see Key Identifiers in the AWS Key
Management Service Developer Guide.

As a best practice, use the most specific key identifier that is practical for your task.

• To encrypt with an AWS KMS keyring, you can use a key ID, key ARN, alias name, or alias ARN to
encrypt data.

Required permissions for AWS KMS keyrings 50

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS Database Encryption SDK Developer Guide

Note

If you specify an alias name or alias ARN for a KMS key in an encryption keyring, the
encrypt operation saves the key ARN currently associated with the alias in the metadata
of the encrypted data key. It does not save the alias. Changes to the alias don't affect the
KMS key used to decrypt your encrypted data keys.

• To decrypt with an AWS KMS keyring, you must use a key ARN to identify AWS KMS keys. For
details, see Selecting wrapping keys.

• In a keyring used for encryption and decryption, you must use a key ARN to identify AWS KMS
keys.

When decrypting, the AWS Database Encryption SDK searches the AWS KMS keyring for an
AWS KMS key that can decrypt one of the encrypted data keys. Specifically, the AWS Database
Encryption SDK uses the following pattern for each encrypted data key in the material description.

• The AWS Database Encryption SDK gets the key ARN of the AWS KMS key that encrypted the
data key from the metadata of the material description.

• The AWS Database Encryption SDK searches the decryption keyring for an AWS KMS key with a
matching key ARN.

• If it finds an AWS KMS key with a matching key ARN in the keyring, the AWS Database Encryption
SDK asks AWS KMS to use the KMS key to decrypt the encrypted data key.

• Otherwise, it skips to the next encrypted data key, if any.

Creating an AWS KMS keyring

You can configure each AWS KMS keyring with a single AWS KMS key or multiple AWS KMS
keys in the same or different AWS accounts and AWS Regions. The AWS KMS key must be a
symmetric encryption key (SYMMETRIC_DEFAULT) or an asymmetric RSA KMS key. You can also use
a symmetric encryption multi-Region KMS key. You can use one or more AWS KMS keyrings in a
multi-keyring.

You can create an AWS KMS keyring that encrypts and decrypts data, or you can create AWS
KMS keyrings specifically for encrypting or decrypting. When you create an AWS KMS keyring to
encrypt data, you must specify a generator key, which is an AWS KMS key that is used to generate a

Creating an AWS KMS keyring 51

AWS Database Encryption SDK Developer Guide

plaintext data key and encrypt it. The data key is mathematically unrelated to the KMS key. Then,
if you choose, you can specify additional AWS KMS keys that encrypt the same plaintext data key.
To decrypt an encrypted field protected by this keyring, the decryption keyring that you use must
include at least one of the AWS KMS keys defined in the keyring, or no AWS KMS keys. (An AWS
KMS keyring with no AWS KMS keys is known as an AWS KMS discovery keyring.)

All wrapping keys in an encryption keyring or multi-keyring must be able to encrypt the data key.
If any wrapping key fails to encrypt, the encrypt method fails. As a result, the caller must have
the required permissions for all keys in the keyring. If you use a discovery keyring to encrypt data,
alone or in a multi-keyring, the encrypt operation fails.

The following examples use the CreateAwsKmsMrkMultiKeyring method to create an AWS KMS
keyring with a symmetric encryption KMS key. The CreateAwsKmsMrkMultiKeyring method
automatically creates the AWS KMS client and ensures that the keyring will correctly handle both
single-Region and multi-Region keys. These examples use a key ARNs to identify the KMS keys. For
details, see Identifying AWS KMS keys in an AWS KMS keyring

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = kmsKeyArn
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

let provider_config = MaterialProvidersConfig::builder().build()?;

Creating an AWS KMS keyring 52

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Database Encryption SDK Developer Guide

let mat_prov = client::Client::from_conf(provider_config)?;
let kms_keyring = mat_prov
 .create_aws_kms_mrk_multi_keyring()
 .generator(kms_key_id)
 .send()
 .await?;

The following examples use the CreateAwsKmsRsaKeyring method to create an AWS KMS
keyring with an asymmetric RSA KMS key. To create an asymmetric RSA AWS KMS keyring, provide
the following values.

• kmsClient: create a new AWS KMS client

• kmsKeyID: the key ARN that identifies your asymmetric RSA KMS key

• publicKey: a ByteBuffer of a UTF-8 encoded PEM file that represents the public key of the key
you passed to kmsKeyID

• encryptionAlgorithm: the encryption algorithm must be RSAES_OAEP_SHA_256 or
RSAES_OAEP_SHA_1

Java

 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
 CreateAwsKmsRsaKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .kmsKeyId(rsaKMSKeyArn)
 .publicKey(publicKey)
 .encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
 .build();
IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsRsaKeyringInput = new CreateAwsKmsRsaKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),

Creating an AWS KMS keyring 53

AWS Database Encryption SDK Developer Guide

 KmsKeyId = rsaKMSKeyArn,
 PublicKey = publicKey,
 EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};
IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_rsa_keyring = mpl
 .create_aws_kms_rsa_keyring()
 .kms_key_id(rsa_kms_key_arn)
 .public_key(public_key)

 .encryption_algorithm(aws_sdk_kms::types::EncryptionAlgorithmSpec::RsaesOaepSha256)
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .send()
 .await?;

Using multi-Region AWS KMS keys

You can use multi-Region AWS KMS keys as wrapping keys in the AWS Database Encryption SDK.
If you encrypt with a multi-Region key in one AWS Region, you can decrypt using a related multi-
Region key in a different AWS Region.

Multi-Region KMS keys are a set of AWS KMS keys in different AWS Regions that have the same key
material and key ID. You can use these related keys as though they were the same key in different
Regions. Multi-Region keys support common disaster recovery and backup scenarios that require
encrypting in one Region and decrypting in a different Region without making a cross-Region call
to AWS KMS. For information about multi-Region keys, see Using multi-Region keys in the AWS Key
Management Service Developer Guide.

To support multi-Region keys, the AWS Database Encryption SDK includes AWS KMS multi-Region-
aware keyrings. The CreateAwsKmsMrkMultiKeyring method supports both single-Region and
multi-Region keys.

Using multi-Region AWS KMS keys 54

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Database Encryption SDK Developer Guide

• For single-Region keys, the multi-Region-aware symbol behaves just like the single-Region
AWS KMS keyring. It attempts to decrypt ciphertext only with the single-Region key that
encrypted the data. To simplify your AWS KMS keyring experience, we recommend using the
CreateAwsKmsMrkMultiKeyring method whenever you use a symmetric encryption KMS key.

• For multi-Region keys, the multi-Region-aware symbol attempts to decrypt ciphertext with
the same multi-Region key that encrypted the data or with the related multi-Region key in the
Region you specify.

In the multi-Region-aware keyrings that take more than one KMS key, you can specify multiple
single-Region and multi-Region keys. However, you can specify only one key from each set of
related multi-Region keys. If you specify more than one key identifier with the same key ID, the
constructor call fails.

The following examples create an AWS KMS keyring with a multi-Region KMS key. The examples
specify a multi-Region key as the generator key and a single-Region key as the child key.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(multiRegionKeyArn)
 .kmsKeyIds(Collections.singletonList(kmsKeyArn))
 .build();
IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = multiRegionKeyArn,
 KmsKeyIds = new List<String> { kmsKeyArn }
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Using multi-Region AWS KMS keys 55

AWS Database Encryption SDK Developer Guide

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let aws_kms_mrk_multi_keyring = mpl
 .create_aws_kms_mrk_multi_keyring()
 .generator(multiRegion_key_arn)
 .kms_key_ids(vec![key_arn.to_string()])
 .send()
 .await?;

When you use multi-Region AWS KMS keyrings, you can decrypt ciphertext in strict mode or
discover mode. To decrypt the ciphertext in strict mode, instantiate the multi-Region-aware symbol
with the key ARN of the related multi-Region key in the region you are decrypting the ciphertext.
If you specify the key ARN of a related multi-Region key in a different Region (for example, the
region where the record was encrypted), the multi-Region-aware symbol will make a cross-Region
call for that AWS KMS key.

When decrypting in strict mode, the multi-Region-aware symbol requires a key ARN. It accepts only
one key ARN from each set of related multi-Region keys.

You can also decrypt in discovery mode with AWS KMS multi-Region keys. When decrypting in
discovery mode, you don't specify any AWS KMS keys. (For information about single-Region AWS
KMS discovery keyrings, see Using an AWS KMS discovery keyring.)

If you encrypted with a multi-Region key, the multi-Region-aware symbol in discovery mode will
try to decrypt by using a related multi-Region key in the local Region. If none exists; the call fails.
In discovery mode, the AWS Database Encryption SDK will not attempt a cross-Region call for the
multi-Region key used for encryption.

Using an AWS KMS discovery keyring

When decrypting, it's a best practice to specify the wrapping keys that the AWS Database
Encryption SDK can use. To follow this best practice, use an AWS KMS decryption keyring that
limits the AWS KMS wrapping keys to those that you specify. However, you can also create an AWS
KMS discovery keyring, that is, an AWS KMS keyring that doesn't specify any wrapping keys.

Using an AWS KMS discovery keyring 56

AWS Database Encryption SDK Developer Guide

The AWS Database Encryption SDK provides a standard AWS KMS discovery keyring and a
discovery keyring for AWS KMS multi-Region keys. For information about using multi-Region keys
with the AWS Database Encryption SDK, see Using multi-Region AWS KMS keys.

Because it doesn't specify any wrapping keys, a discovery keyring can't encrypt data. If you use a
discovery keyring to encrypt data, alone or in a multi-keyring, the encrypt operation fails.

When decrypting, a discovery keyring allows the AWS Database Encryption SDK to ask AWS KMS
to decrypt any encrypted data key by using the AWS KMS key that encrypted it, regardless of who
owns or has access to that AWS KMS key. The call succeeds only when the caller has kms:Decrypt
permission on the AWS KMS key.

Important

If you include an AWS KMS discovery keyring in a decryption multi-keyring, the discovery
keyring overrides all KMS key restrictions specified by other keyrings in the multi-keyring.
The multi-keyring behaves like its least restrictive keyring. If you use a discovery keyring to
encrypt data, alone or in a multi-keyring, the encrypt operation fails

The AWS Database Encryption SDK provides an AWS KMS discovery keyring for convenience.
However, we recommend that you use a more limited keyring whenever possible for the following
reasons.

• Authenticity – An AWS KMS discovery keyring can use any AWS KMS key that was used to
encrypt a data key in the material description, so long as the caller has permission to use that
AWS KMS key to decrypt. This might not be the AWS KMS key that the caller intends to use. For
example, one of the encrypted data keys might have been encrypted under a less secure AWS
KMS key that anyone can use.

• Latency and performance – An AWS KMS discovery keyring might be perceptibly slower than
other keyrings because the AWS Database Encryption SDK tries to decrypt all of the encrypted
data keys, including those encrypted by AWS KMS keys in other AWS accounts and Regions, and
AWS KMS keys that the caller doesn't have permission to use for decryption.

If you use a discovery keyring, we recommend that you use a discovery filter to limit the KMS keys
that can be used to those in specified AWS accounts and partitions. For help finding your account
ID and partition, see Your AWS account identifiers and ARN format in the AWS General Reference.

Using an AWS KMS discovery keyring 57

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS Database Encryption SDK Developer Guide

The following code examples instantiate an AWS KMS discovery keyring with a discovery filter that
limits the KMS keys that the AWS Database Encryption SDK can use to those in the aws partition
and 111122223333 example account.

Before using this code, replace the example AWS account and partition values with valid values for
your AWS account and partition. If your KMS keys are in China Regions, use the aws-cn partition
value. If your KMS keys are in AWS GovCloud (US) Regions, use the aws-us-gov partition value.
For all other AWS Regions, use the aws partition value.

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

C# / .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
 CreateAwsKmsMrkDiscoveryMultiKeyringInput
{
 DiscoveryFilter = discoveryFilter
};
var decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Using an AWS KMS discovery keyring 58

AWS Database Encryption SDK Developer Guide

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

// Create the discovery keyring
let decrypt_keyring = mpl
 .create_aws_kms_mrk_discovery_multi_keyring()
 .discovery_filter(discovery_filter)
 .send()
 .await?;

Using an AWS KMS regional discovery keyring

An AWS KMS regional discovery keyring is a keyring that doesn't specify the ARNs of KMS keys.
Instead, it allows the AWS Database Encryption SDK to decrypt using only the KMS keys in
particular AWS Regions.

When decrypting with an AWS KMS regional discovery keyring, the AWS Database Encryption SDK
decrypts any encrypted data key that was encrypted under an AWS KMS key in the specified AWS
Region. To succeed, the caller must have kms:Decrypt permission on at least one of the AWS KMS
keys in the specified AWS Region that encrypted a data key.

Like other discovery keyrings, the regional discovery keyring has no effect on encryption. It works
only when decrypting encrypted fields. If you use a regional discovery keyring in a multi-keyring
that is used for encrypting and decrypting, it is effective only when decrypting. If you use a multi-
Region discovery keyring to encrypt data, alone or in a multi-keyring, the encrypt operation fails.

Important

If you include an AWS KMS regional discovery keyring in a decryption multi-keyring, the
regional discovery keyring overrides all KMS key restrictions specified by other keyrings in
the multi-keyring. The multi-keyring behaves like its least restrictive keyring. An AWS KMS
discovery keyring has no effect on encryption when used by itself or in a multi-keyring.

Using an AWS KMS regional discovery keyring 59

AWS Database Encryption SDK Developer Guide

The regional discovery keyring in the AWS Database Encryption SDK attempts to decrypt only with
KMS keys in the specified Region. When you use a discovery keyring, you configure the Region on
the AWS KMS client. These AWS Database Encryption SDK implementations don't filter KMS keys
by Region, but AWS KMS will fail a decrypt request for KMS keys outside of the specified Region.

If you use a discovery keyring, we recommend that you use a discovery filter to limit the KMS keys
used in decryption to those in specified AWS accounts and partitions.

For example, the following code creates an AWS KMS regional discovery keyring with a discovery
filter. This keyring limits the AWS Database Encryption SDK to KMS keys in account 111122223333
in the US West (Oregon) Region (us-west-2).

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .regions("us-west-2")
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

C# / .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
 CreateAwsKmsMrkDiscoveryMultiKeyringInput
{
 DiscoveryFilter = discoveryFilter,
 Regions = us-west-2

Using an AWS KMS regional discovery keyring 60

AWS Database Encryption SDK Developer Guide

};
var decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

// Create the discovery keyring
let decrypt_keyring = mpl
 .create_aws_kms_mrk_discovery_multi_keyring()
 .discovery_filter(discovery_filter)
 .regions(us-west-2)
 .send()
 .await?;

AWS KMS Hierarchical keyrings

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

Note

As of July 24, 2023, branch keys created during the developer preview are not supported.
Create new branch keys to continue using the key store that you created during the
developer preview.

With the AWS KMS Hierarchical keyring, you can protect your cryptographic materials under
a symmetric encryption KMS key without calling AWS KMS every time you encrypt or decrypt
a record. It is a good choice for applications that need to minimize calls to AWS KMS, and
applications that can reuse some cryptographic materials without violating their security
requirements.

AWS KMS Hierarchical keyrings 61

AWS Database Encryption SDK Developer Guide

The Hierarchical keyring is a cryptographic materials caching solution that reduces the number
of AWS KMS calls by using AWS KMS protected branch keys persisted in an Amazon DynamoDB
table, and then locally caching branch key materials used in encrypt and decrypt operations. The
DynamoDB table serves as the key store that manages and protects branch keys. It stores the
active branch key and all previous versions of the branch key. The active branch key is the most
recent branch key version. The Hierarchical keyring uses a unique data encryption key for each
encrypt request and encrypts each data encryption key with a unique wrapping key derived from
the active branch key. The Hierarchical keyring is dependent on the hierarchy established between
active branch keys and their derived wrapping keys.

The Hierarchical keyring typically uses each branch key version to satisfy multiple requests. But
you control the extent to which active branch keys are reused and determine how often the active
branch key is rotated. The active version of the branch key remains active until you rotate it.
Previous versions of the active branch key will not be used to perform encrypt operations, but they
can still be queried and used in decrypt operations.

When you instantiate the Hierarchical keyring, it creates a local cache. You specify a cache limit
that defines the maximum amount of time that the branch key materials are stored within the
local cache before they expire and are evicted from the cache. The Hierarchical keyring makes one
AWS KMS call to decrypt the branch key and assemble the branch key materials the first time a
branch-key-id is specified in an operation. Then, the branch key materials are stored in the local
cache and reused for all encrypt and decrypt operations that specify that branch-key-id until
the cache limit expires. Storing branch key materials in the local cache reduces AWS KMS calls. For
example, consider a cache limit of 15 minutes. If you perform 10,000 encrypt operations within
that cache limit, the traditional AWS KMS keyring would need to make 10,000 AWS KMS calls to
satisfy 10,000 encrypt operations. If you have one active branch-key-id, the Hierarchical keyring
only needs to make one AWS KMS call to satisfy 10,000 encrypt operations.

The local cache separates encryption materials from decryption materials. The encryption
materials are assembled from the active branch key and reused for all encrypt operations until the
cache limit expires. The decryption materials are assembled from the branch key ID and version
that is identified in the encrypted field's metadata, and they are reused for all decrypt operations
related to the branch key ID and version until the cache limit expires. The local cache can store
multiple versions of the same branch key at a time. When the local cache is configured to use a
branch key ID supplier, it can also store branch key materials from multiple active branch keys at a
time.

AWS KMS Hierarchical keyrings 62

AWS Database Encryption SDK Developer Guide

Note

All mentions of Hierarchical keyring in the AWS Database Encryption SDK refer to the AWS
KMS Hierarchical keyring.

Topics

• How it works

• Prerequisites

• Required permissions

• Choose a cache

• Create a Hierarchical keyring

• Using the Hierarchical keyring for searchable encryption

How it works

The following walkthroughs describe how the Hierarchical keyring assembles encryption and
decryption materials, and the different calls that the keyring makes for encrypt and decrypt
operations. For technical details on the wrapping key derivation and plaintext data key encryption
processes, see AWS KMS Hierarchical keyring technical details.

Encrypt and sign

The following walkthrough describes how the Hierarchical keyring assembles encryption materials
and derives a unique wrapping key.

1. The encryption method asks the Hierarchical keyring for encryption materials. The keyring
generates a plaintext data key, then checks to see if there are valid branch key materials in the
local cache to generate the wrapping key. If there are valid branch key materials, the keyring
proceeds to Step 4.

2. If there are no valid branch key materials, the Hierarchical keyring queries the key store for the
active branch key.

a. The key store calls AWS KMS to decrypt the active branch key and returns the plaintext
active branch key. Data identifying the active branch key is serialized to provide additional
authenticated data (AAD) in the decrypt call to AWS KMS.

How it works 63

AWS Database Encryption SDK Developer Guide

b. The key store returns the plaintext branch key and data that identifies it, such as the
branch key version.

3. The Hierarchical keyring assembles branch key materials (the plaintext branch key and branch
key version) and stores a copy of them in the local cache.

4. The Hierarchical keyring derives a unique wrapping key from the plaintext branch key and a
16-byte random salt. It uses the derived wrapping key to encrypt a copy of the plaintext data
key.

The encryption method uses the encryption materials to encrypt and sign the record. For more
information on how records are encrypted and signed in the AWS Database Encryption SDK, see
Encrypt and sign.

Decrypt and verify

The following walkthrough describes how the Hierarchical keyring assembles decryption materials
and decrypts the encrypted data key.

1. The decryption method identifies the encrypted data key from the material description field of
the encrypted record, and passes it to the Hierarchical keyring.

2. The Hierarchical keyring deserializes data identifying the encrypted data key, including the
branch key version, the 16-byte salt, and other information describing how the data key was
encrypted.

For more information, see AWS KMS Hierarchical keyring technical details.

3. The Hierarchical keyring checks to see if there are valid branch key materials in the local cache
that match the branch key version identified in Step 2. If there are valid branch key materials,
the keyring proceeds to Step 6.

4. If there are no valid branch key materials, the Hierarchical keyring queries the key store for the
branch key that matches the branch key version identified in Step 2.

a. The key store calls AWS KMS to decrypt the branch key and returns the plaintext active
branch key. Data identifying the active branch key is serialized to provide additional
authenticated data (AAD) in the decrypt call to AWS KMS.

b. The key store returns the plaintext branch key and data that identifies it, such as the
branch key version.

How it works 64

AWS Database Encryption SDK Developer Guide

5. The Hierarchical keyring assembles branch key materials (the plaintext branch key and branch
key version) and stores a copy of them in the local cache.

6. The Hierarchical keyring uses the assembled branch key materials and the 16-byte salt
identified in Step 2 to reproduce the unique wrapping key that encrypted the data key.

7. The Hierarchical keyring uses the reproduced wrapping key to decrypt the data key and returns
the plaintext data key.

The decryption method uses the decryption materials and plaintext data key to decrypt and verify
the record. For more information on how records are decrypted and verified in the AWS Database
Encryption SDK, see Decrypt and verify.

Prerequisites

Before you create and use a Hierarchical keyring, ensure the following prerequisites are met.

• You, or your key store administrator, have created a key store and created at least one active
branch key.

• You have configured your key store actions.

Note

How you configure your key store actions determines what operations you can perform
and what KMS keys the Hierarchical keyring can use. For more information, see Key store
actions.

• You have the required AWS KMS permissions to access and use the key store and branch keys. For
more information, see the section called “Required permissions”.

• You have reviewed the supported cache types and configured the cache type that best fits your
needs. For more information, see the section called “Choose a cache”

Required permissions

The AWS Database Encryption SDK doesn't require an AWS account and it doesn't depend on any
AWS service. However, to use an Hierarchical keyring, you need an AWS account and the following
minimum permissions on the symmetric encryption AWS KMS key(s) in your key store.

• To encrypt and decrypt data with the Hierarchical keyring, you need kms:Decrypt.

Prerequisites 65

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Database Encryption SDK Developer Guide

• To create and rotate branch keys, you need kms:GenerateDataKeyWithoutPlaintext and
kms:ReEncrypt.

For more information on controlling access to your branch keys and key store, see the section
called “Implementing least privileged permissions”.

Choose a cache

The Hierarchical keyring reduces the number of calls made to AWS KMS by locally caching the
branch key materials used in encrypt and decrypt operations. Before you create your Hierarchical
keyring, you need to decide what type of cache you want to use. You can use the default cache or
customize the cache to best fits your needs.

The Hierarchical keyring supports the following cache types:

• the section called “Default cache”

• the section called “MultiThreaded cache”

• the section called “StormTracking cache”

• the section called “Shared cache”

Default cache

For most users, the Default cache fulfills their threading requirements. The Default cache is
designed to support heavily multithreaded environments. When a branch key materials entry
expires, the Default cache prevents multiple threads from calling AWS KMS by notifying one thread
that the branch key materials entry is going to expire 10 seconds in advance. This ensures that only
one thread sends a request to AWS KMS to refresh the cache.

The Default and StormTracking caches support the same threading model, but you only need to
specify the entry capacity to use the Default cache. For more granular cache customizations, use
the the section called “StormTracking cache”.

Unless you want to customize the number of branch key materials entries that can be stored in the
local cache, you do not need to specify a cache type when you create the Hierarchical keyring. If
you do not specify a cache type, the Hierarchical keyring uses the Default cache type and sets the
entry capacity to 1000.

To customize the Default cache, specify the following values:

Choose a cache 66

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Database Encryption SDK Developer Guide

• Entry capacity: limits the number of branch key materials entries that can be stored in the local
cache.

Java

.cache(CacheType.builder()
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())

C# / .NET

CacheType defaultCache = new CacheType
{
 Default = new DefaultCache{EntryCapacity = 100}
};

Rust

let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

MultiThreaded cache

The MultiThreaded cache is safe to use in multithreaded environments, but it does not provide any
functionality to minimize AWS KMS or Amazon DynamoDB calls. As a result, when a branch key
materials entry expires, all threads will be notified at the same time. This can result in multiple
AWS KMS calls to refresh the cache.

To use the MultiThreaded cache, specify the following values:

• Entry capacity: limits the number of branch key materials entries that can be stored in the local
cache.

• Entry pruning tail size: defines the number of entries to prune if the entry capacity is reached.

Choose a cache 67

AWS Database Encryption SDK Developer Guide

Java

.cache(CacheType.builder()
 .MultiThreaded(MultiThreadedCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .build())

C# / .NET

CacheType multithreadedCache = new CacheType
{
 MultiThreaded = new MultiThreadedCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1
 }
};

Rust

CacheType::MultiThreaded(
 MultiThreadedCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .build()?)

StormTracking cache

The StormTracking cache is designed to support heavily multithreaded environments. When a
branch key materials entry expires, the StormTracking cache prevents multiple threads from calling
AWS KMS by notifying one thread that the branch key materials entry is going to expire in advance.
This ensures that only one thread sends a request to AWS KMS to refresh the cache.

To use the StormTracking cache, specify the following values:

• Entry capacity: limits the number of branch key materials entries that can be stored in the local
cache.

Default value: 1000 entries

Choose a cache 68

AWS Database Encryption SDK Developer Guide

• Entry pruning tail size: defines the number of branch key materials entries to prune at a time.

Default value: 1 entry

• Grace period: defines the number of seconds before expiration that an attempt to refresh
branch key materials is made.

Default value: 10 seconds

• Grace interval: defines the number of seconds between attempts to refresh the branch key
materials.

Default value: 1 seconds

• Fan out: defines the number of simultaneous attempts that can be made to refresh the branch
key materials.

Default value: 20 attempts

• In flight time to live (TTL): defines the number of seconds until an attempt to refresh the
branch key materials times out. Any time the cache returns NoSuchEntry in response to a
GetCacheEntry, that branch key is considered to be in flight until the same key is written with a
PutCache entry.

Default value: 10 seconds

• Sleep: defines the number of seconds that a thread should sleep if the fanOut is exceeded.

Default value: 20 milliseconds

Java

.cache(CacheType.builder()
 .StormTracking(StormTrackingCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .gracePeriod(10)
 .graceInterval(1)
 .fanOut(20)
 .inFlightTTL(10)
 .sleepMilli(20)
 .build())

Choose a cache 69

AWS Database Encryption SDK Developer Guide

C# / .NET

CacheType stormTrackingCache = new CacheType
{
 StormTracking = new StormTrackingCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1,
 FanOut = 20,
 GraceInterval = 1,
 GracePeriod = 10,
 InFlightTTL = 10,
 SleepMilli = 20
 }
};

Rust

CacheType::StormTracking(
 StormTrackingCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .grace_period(10)
 .grace_interval(1)
 .fan_out(20)
 .in_flight_ttl(10)
 .sleep_milli(20)
 .build()?)

Shared cache

By default, the Hierarchical keyring creates a new local cache every time you instantiate the
keyring. However, the Shared cache can help conserve memory by enabling you to share a cache
across multiple Hierarchical keyrings. Rather than creating a new cryptographic materials cache for
each Hierarchical keyring you instantiate, the Shared cache stores only one cache in memory, which
can be used by all the Hierarchical keyrings that reference it. The Shared cache helps optimize
memory usage by avoiding the duplication of cryptographic materials across keyrings. Instead, the
Hierarchical keyrings can access the same underlying cache, reducing the overall memory footprint.

Choose a cache 70

AWS Database Encryption SDK Developer Guide

When you create your Shared cache, you still define the cache type. You can specify a the
section called “Default cache”, the section called “MultiThreaded cache”, or the section called
“StormTracking cache” as the cache type, or substitute any compatible custom cache.

Partitions

Multiple Hierarchical keyrings can use a single Shared cache. When you create a Hierarchical
keyring with a Shared cache you can define an optional partition ID. The partition ID distinguishes
which Hierarchical keyring is writing to the cache. If two Hierarchical keyrings reference the same
partition ID, logical key store name, and branch key ID the two keyrings will share the same cache
entries in the cache. If you create two Hierarchical keyrings with the same Shared cache, but
different partition IDs, each keyring will only access the cache entries from its own designated
partition within the Shared cache. The partitions act as logical divisions within the shared cache,
allowing each Hierarchical keyring to operate independently on its own designated partition,
without interfering with the data stored in the other partition.

If you intend to reuse or share the cache entries in a partition, you must define your own partition
ID. When you pass the partition ID to your Hierarchical keyring, the keyring can reuse the cache
entries that are already present in the Shared cache, rather than having to retrieve and re-authorize
the branch key materials again. If you do not specify a partition ID, a unique partition ID is
automatically assigned to the keyring each time you instantiate the Hierarchical keyring.

The following procedures demonstrate how to create a Shared cache with the Default cache type
and pass it to a Hierarchical keyring.

1. Create a CryptographicMaterialsCache (CMC) using the Material Providers Library (MPL).

Java

// Instantiate the MPL
final MaterialProviders matProv =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

// Create a CacheType object for the Default cache
final CacheType cache =
 CacheType.builder()
 .Default(DefaultCache.builder().entryCapacity(100).build())

Choose a cache 71

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Database Encryption SDK Developer Guide

 .build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCacheInput cryptographicMaterialsCacheInput =
 CreateCryptographicMaterialsCacheInput.builder()
 .cache(cache)
 .build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
 matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

C# / .NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
var cache = new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

// Create a CMC using the default cache
var cryptographicMaterialsCacheInput = new
 CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
 materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Rust

// Instantiate the MPL
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.
 create_cryptographic_materials_cache()
 .cache(cache)

Choose a cache 72

AWS Database Encryption SDK Developer Guide

 .send()
 .await?;

2. Create a CacheType object for the Shared cache.

Pass the sharedCryptographicMaterialsCache you created in Step 1 to the new
CacheType object.

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
 CacheType.builder()
 .Shared(sharedCryptographicMaterialsCache)
 .build();

C# / .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
 CacheType::Shared(shared_cryptographic_materials_cache);

3. Pass the sharedCache object from Step 2 to your Hierarchical keyring.

When you create a Hierarchical keyring with a Shared cache, you can optionally define a
partitionID to share cache entries across multiple Hierarchical keyrings. If you do not
specify a partition ID, the Hierarchical keyring automatically assigns the keyring a unique
partition ID.

Note

Your Hierarchical keyrings will share the same cache entries in a Shared cache if you
create two or more keyrings that reference the same partition ID, logical key store

Choose a cache 73

AWS Database Encryption SDK Developer Guide

name, and branch key ID. If you do not want multiple keyrings to share the same cache
entries, you must use a unique partition ID for each Hierarchical keyring.

The following example creates a Hierarchical keyring with a branch key ID supplier, and
a cache limit of 600 seconds. For more information on the values defined in following
Hierarchical keyring configuration, see the section called “Create a Hierarchical keyring”.

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(sharedCache)
 .partitionID(partitionID)
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 Cache = sharedCache,
 TtlSeconds = 600,
 PartitionId = partitionID
};
var keyring =
 materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Rust

// Create the Hierarchical keyring
let keyring1 = mpl
 .create_aws_kms_hierarchical_keyring()

Choose a cache 74

AWS Database Encryption SDK Developer Guide

 .key_store(key_store1)
 .branch_key_id(branch_key_id.clone())
 // CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
 clone it to
 // pass it to different Hierarchical Keyrings, it will still point to the
 same
 // underlying cache, and increment the reference count accordingly.
 .cache(shared_cache.clone())
 .ttl_seconds(600)
 .partition_id(partition_id.clone())
 .send()
 .await?;

Create a Hierarchical keyring

To create a Hierarchical keyring, you must provide the following values:

• A key store name

The name of the DynamoDB table you, or your key store administrator, created to serve as your
key store.

•

A cache limit time to live (TTL)

The amount of time in seconds that a branch key materials entry within the local cache can
be used before it expires. The cache limit TTL dictates how often the client calls AWS KMS to
authorize use of the branch keys. This value must be greater than zero. After the cache limit TTL
expires, the entry is never served, and will be evicted from the local cache.

• A branch key identifier

You can either statically configure the branch-key-id that identifies a single active branch key
in your key store, or provide a branch key ID supplier.

The branch key ID supplier uses the fields stored in the encryption context to determine
which branch key is required to decrypt a record. By default, only the partition
and sort keys are included in the encryption context. However, you can use the

Create a Hierarchical keyring 75

AWS Database Encryption SDK Developer Guide

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographic action to include additional
fields in the encryption context.

We strongly recommend using a branch key ID supplier for multitenant databases where each
tenant has their own branch key. You can use the branch key ID supplier to create a friendly
name for your branch key IDs to make it easy to recognize the correct branch key ID for a specific
tenant. For example, the friendly name lets you refer to a branch key as tenant1 instead of
b3f61619-4d35-48ad-a275-050f87e15122.

For decrypt operations, you can either statically configure a single Hierarchical keyring to restrict
decryption to a single tenant, or you can use the branch key ID supplier to identify which tenant
is responsible for decrypting a record.

• (Optional) A cache

If you want to customize your cache type or the number of branch key materials entries that can
be stored in the local cache, specify the cache type and entry capacity when you initialize the
keyring.

The Hierarchical keyring supports the following cache types: Default, MultiThreaded,
StormTracking, and Shared. For more information and examples demonstrating how to define
each cache type, see the section called “Choose a cache”.

If you do not specify a cache, the Hierarchical keyring automatically uses the Default cache type
and sets the entry capacity to 1000.

• (Optional) A partition ID

If you specify the the section called “Shared cache”, you can optionally define a partition ID.
The partition ID distinguishes which Hierarchical keyring is writing to the cache. If you intend to
reuse or share the cache entries in a partition, you must define your own partition ID. You can
specify any string for the partition ID. If you do not specify a partition ID, a unique partition ID is
automatically assigned to the keyring at creation.

For more information, see Partitions.

Note

Your Hierarchical keyrings will share the same cache entries in a Shared cache if you
create two or more keyrings that reference the same partition ID, logical key store name,

Create a Hierarchical keyring 76

AWS Database Encryption SDK Developer Guide

and branch key ID. If you do not want multiple keyrings to share the same cache entries,
you must use a unique partition ID for each Hierarchical keyring.

• (Optional) A list of Grant Tokens

If you control access to the KMS key in your Hierarchical keyring with grants, you must provide all
necessary grant tokens when you initialize the keyring.

Create a Hierarchical keyring with a static branch key ID

The following examples demonstrate how to create a Hierarchical keyring with a static branch key
ID, the the section called “Default cache”, and a cache limit TTL of 600 seconds.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyId(branch-key-id)
 .ttlSeconds(600)
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;

Create a Hierarchical keyring 77

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Database Encryption SDK Developer Guide

let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id(branch_key_id)
 .key_store(branch_key_store_name)
 .ttl_seconds(600)
 .send()
 .await?;

Create a Hierarchical keyring with a branch key ID supplier

The following procedures demonstrate how to create a Hierarchical keyring with a branch key ID
supplier.

1. Create a branch key ID supplier

The following example creates friendly names for the two branch keys created in Step 1,
and calls CreateDynamoDbEncryptionBranchKeyIdSupplier to create a branch key ID
supplier with the AWS Database Encryption SDK for DynamoDB client.

Java

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
 private static String branchKeyIdForTenant1;
 private static String branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this.branchKeyIdForTenant1 = tenant1Id;
 this.branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()
 .DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.builder().build())
 .build();
final BranchKeyIdSupplier branchKeyIdSupplier =
 ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()
 .ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenant1, branch-key-ID-tenant2))

Create a Hierarchical keyring 78

AWS Database Encryption SDK Developer Guide

 .build()).branchKeyIdSupplier();

C# / .NET

// Create friendly names for each branch-key-id
 class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
 private String _branchKeyIdForTenant1;
 private String _branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this._branchKeyIdForTenant1 = tenant1Id;
 this._branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
 {
 DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenant1, branch-key-ID-tenant2)
 }).BranchKeyIdSupplier;

Rust

// Create friendly names for each branch_key_id
pub struct ExampleBranchKeyIdSupplier {
 branch_key_id_for_tenant1: String,
 branch_key_id_for_tenant2: String,
}

impl ExampleBranchKeyIdSupplier {
 pub fn new(tenant1_id: &str, tenant2_id: &str) -> Self {
 Self {
 branch_key_id_for_tenant1: tenant1_id.to_string(),
 branch_key_id_for_tenant2: tenant2_id.to_string(),
 }
 }
}

// Create the branch key ID supplier
let dbesdk_config = DynamoDbEncryptionConfig::builder().build()?;
let dbesdk = dbesdk_client::Client::from_conf(dbesdk_config)?;

Create a Hierarchical keyring 79

AWS Database Encryption SDK Developer Guide

let supplier = ExampleBranchKeyIdSupplier::new(tenant1_branch_key_id,
 tenant2_branch_key_id);

let branch_key_id_supplier = dbesdk
 .create_dynamo_db_encryption_branch_key_id_supplier()
 .ddb_key_branch_key_id_supplier(supplier)
 .send()
 .await?
 .branch_key_id_supplier
 .unwrap();

2. Create a Hierarchical keyring

The following examples initialize a Hierarchical keyring with the branch key ID supplier created
in Step 1, a cache limit TLL of 600 seconds, and a maximum cache size of 1000.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,
 Cache = new CacheType

Create a Hierarchical keyring 80

AWS Database Encryption SDK Developer Guide

 {
 Default = new DefaultCache { EntryCapacity = 100 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id_supplier(branch_key_id_supplier)
 .key_store(key_store)
 .ttl_seconds(600)
 .send()
 .await?;

Using the Hierarchical keyring for searchable encryption

Searchable encryption enables you to search encrypted records without decrypting the entire
database. This is accomplished by indexing the plaintext value of an encrypted field with a beacon.
To implement searchable encryption, you must use a Hierarchical keyring.

The key store CreateKey operation generates both a branch key and beacon key. The branch key is
used in record encryption and decryption operations. The beacon key is used to generate beacons.

The branch key and beacon key are protected by the same AWS KMS key that you specify when
creating your key store service. After the CreateKey operation calls AWS KMS to generate the
branch key, it calls kms:GenerateDataKeyWithoutPlaintext a second time to generate the beacon
key using the following request.

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : type,
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,

Using the Hierarchical keyring for searchable encryption 81

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Database Encryption SDK Developer Guide

 "hierarchy-version" : 1
 },
 "KeyId": "the KMS key ARN",
 "NumberOfBytes": "32"
}

After generating both keys, the CreateKey operation calls ddb:TransactWriteItems to write two
new items that will persist the branch key and beacon key in your branch key store.

When you configure a standard beacon, the AWS Database Encryption SDK queries the key store
for the beacon key. Then, it uses an HMAC-based extract-and-expand key derivation function
(HKDF) to combine the beacon key with the name of the standard beacon to create the HMAC key
for a given beacon.

Unlike branch keys, there is only one beacon key version per branch-key-id in a key store. The
beacon key is never rotated.

Defining your beacon key source

When you define the beacon version for your standard and compound beacons, you must identify
the beacon key and define a cache limit time to live (TTL) for the beacon key materials. Beacon
key materials are stored in a separate local cache from the branch keys. The following snippet
demonstrates how to define the keySource for a single-tenant database. Identify your beacon key
by the branch-key-id it is associated with.

Java

keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branch-key-id)
 .cacheTTL(6000)
 .build())
 .build())

C# / .NET

KeySource = new BeaconKeySource
{
 Single = new SingleKeyStore
 {

Using the Hierarchical keyring for searchable encryption 82

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://en.wikipedia.org/wiki/HKDF

AWS Database Encryption SDK Developer Guide

 KeyId = branch-key-id,
 CacheTTL = 6000
 }
}

Rust

 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))

Defining beacon source in a multitenant database

If you have a multitenant database, you must specify the following values when configuring the
keySource.

•

keyFieldName

Defines the name of the field that stores the branch-key-id associated with the beacon
key used to generated beacons for a given tenant. The keyFieldName can be any string, but
it must be unique to all other fields in your database. When you write new records to your
database, the branch-key-id that identifies the beacon key used to generate any beacons
for that record is stored in this field. You must include this field in your beacon queries and
identify the appropriate beacon key materials required to recalculate the beacon. For more
information, see Querying beacons in a multitenant database.

• cacheTTL

The amount of time in seconds that a beacon key materials entry within the local beacon
cache can be used before it expires. This value must be greater than zero. When the cache
limit TTL expires, the entry is evicted from the local cache.

Using the Hierarchical keyring for searchable encryption 83

AWS Database Encryption SDK Developer Guide

• (Optional) A cache

If you want to customize your cache type or the number of branch key materials entries that
can be stored in the local cache, specify the cache type and entry capacity when you initialize
the keyring.

The Hierarchical keyring supports the following cache types: Default, MultiThreaded,
StormTracking, and Shared. For more information and examples demonstrating how to
define each cache type, see the section called “Choose a cache”.

If you do not specify a cache, the Hierarchical keyring automatically uses the Default cache
type and sets the entry capacity to 1000.

The following example creates a Hierarchical keyring with a branch key ID supplier a cache limit
TLL of 600 seconds, and an entry capacity of 1000.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(1000)
 .build())
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,

Using the Hierarchical keyring for searchable encryption 84

AWS Database Encryption SDK Developer Guide

 Cache = new CacheType
 {
 Default = new DefaultCache { EntryCapacity = 1000 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let provider_config = MaterialProvidersConfig::builder().build()?;
 let mat_prov = client::Client::from_conf(provider_config)?;
 let kms_keyring = mat_prov
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id(branch_key_id)
 .key_store(key_store)
 .ttl_seconds(600)
 .send()
 .await?;

AWS KMS ECDH keyrings

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

Important

The AWS KMS ECDH keyring is only available with version 1.5.0 or later of the Material
Providers Library.

An AWS KMS ECDH keyring uses asymmetric key agreement AWS KMS keys to derive a shared
symmetric wrapping key between two parties. First, the keyring uses the Elliptic Curve Diffie-
Hellman (ECDH) key agreement algorithm to derive a shared secret from the private key in the
sender's KMS key pair and the recipient's public key. Then, the keyring uses the shared secret
to derive the shared wrapping key that protects your data encryption keys. The key derivation
function that the AWS Database Encryption SDK uses (KDF_CTR_HMAC_SHA384) to derive the
shared wrapping key conforms to NIST recommendations for key derivation.

AWS KMS ECDH keyrings 85

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Database Encryption SDK Developer Guide

The key derivation function returns 64 bytes of keying material. To ensure that both parties use the
correct keying material, the AWS Database Encryption SDK uses the first 32 bytes as a commitment
key and the last 32 bytes as the shared wrapping key. On decrypt, if the keyring cannot reproduce
the same commitment key and shared wrapping key that is stored in the material description field
of the encrypted record, the operation fails. For example, if you encrypt a record with a keyring
configured with Alice's private key and Bob's public key, a keyring configured with Bob's private
key and Alice's public key will reproduce the same commitment key and shared wrapping key and
be able to decrypt the record. If Bob's public key is not from a KMS key pair, then Bob can create a
Raw ECDH keyring to decrypt the record.

The AWS KMS ECDH keyring encrypts records with a symmetric key using AES-GCM. The data key
is then envelope encrypted with the derived shared wrapping key using AES-GCM. Each AWS KMS
ECDH keyring can have only one shared wrapping key, but you can include multiple AWS KMS
ECDH keyrings, alone or with other keyrings, in a multi-keyring.

Topics

• Required permissions for AWS KMS ECDH keyrings

• Creating an AWS KMS ECDH keyring

• Creating an AWS KMS ECDH discovery keyring

Required permissions for AWS KMS ECDH keyrings

The AWS Database Encryption SDK doesn't require an AWS account and it doesn't depend on
any AWS service. However, to use an AWS KMS ECDH keyring, you need an AWS account and the
following minimum permissions on the AWS KMS keys in your keyring. The permissions vary based
on which key agreement schema you use.

• To encrypt and decrypt records using the KmsPrivateKeyToStaticPublicKey key agreement
schema, you need kms:GetPublicKey and kms:DeriveSharedSecret on the sender's asymmetric
KMS key pair. If you directly provide the sender's DER-encoded public key when you instantiate
your keyring, you only need kms:DeriveSharedSecret permission on the sender's asymmetric KMS
key pair.

• To decrypt records using the KmsPublicKeyDiscovery key agreement schema, you need
kms:DeriveSharedSecret and kms:GetPublicKey permissions on the specified asymmetric KMS
key pair.

Required permissions for AWS KMS ECDH keyrings 86

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS Database Encryption SDK Developer Guide

Creating an AWS KMS ECDH keyring

To create an AWS KMS ECDH keyring that encrypts and decrypts data, you must use the
KmsPrivateKeyToStaticPublicKey key agreement schema. To initialize an AWS KMS ECDH
keyring with the KmsPrivateKeyToStaticPublicKey key agreement schema, provide the
following values:

• Sender's AWS KMS key ID

Must identify an asymmetric NIST-recommended elliptic curve (ECC)KMS key pair with a
KeyUsage value of KEY_AGREEMENT. The sender's private key is used to derive the shared secret.

• (Optional) Sender's public key

Must be a DER-encoded X.509 public key, also known as SubjectPublicKeyInfo (SPKI), as
defined in RFC 5280.

The AWS KMS GetPublicKey operation returns the public key of an asymmetric KMS key pair in
the required DER-encoded format.

To reduce the number of AWS KMS calls that your keyring makes, you can directly provide the
sender's public key. If no value is provided for the sender's public key, the keyring calls AWS KMS
to retrieve the sender's public key.

• Recipient's public key

You must provide the recipient's DER-encoded X.509 public key, also known as
SubjectPublicKeyInfo (SPKI), as defined in RFC 5280.

The AWS KMS GetPublicKey operation returns the public key of an asymmetric KMS key pair in
the required DER-encoded format.

• Curve specification

Identifies the elliptic curve specification in the specified key pairs. Both the sender and recipient's
key pairs must have the same curve specification.

Valid values: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Optional) A list of Grant Tokens

If you control access to the KMS key in your AWS KMS ECDH keyring with grants, you must
provide all necessary grant tokens when you initialize the keyring.

Creating an AWS KMS ECDH keyring 87

https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Database Encryption SDK Developer Guide

C# / .NET

The following example creates an AWS KMS ECDH keyring with the with the sender's KMS
key, the sender's public key, and the recipient's public key. This example uses the optional
senderPublicKey parameter to provide the sender's public key. If you do not provide the
sender's public key, the keyring calls AWS KMS to retrieve the sender's public key. Both the
sender and recipient's key pairs are on the ECC_NIST_P256 curve.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
 {
 SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 SenderPublicKey = BobPublicKey,
 RecipientPublicKey = AlicePublicKey
 }
};

var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

The following example creates an AWS KMS ECDH keyring with the with the sender's KMS
key, the sender's public key, and the recipient's public key. This example uses the optional
senderPublicKey parameter to provide the sender's public key. If you do not provide the

Creating an AWS KMS ECDH keyring 88

AWS Database Encryption SDK Developer Guide

sender's public key, the keyring calls AWS KMS to retrieve the sender's public key. Both the
sender and recipient's key pairs are on the ECC_NIST_P256 curve.

// Retrieve public keys
// Must be DER-encoded X.509 public keys
ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab");
 ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
 final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPrivateKeyToStaticPublicKey(
 KmsPrivateKeyToStaticPublicKeyInput.builder()
 .senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
 .senderPublicKey(BobPublicKey)
 .recipientPublicKey(AlicePublicKey)
 .build()).build()).build();

Rust

The following example creates an AWS KMS ECDH keyring with the with the sender's KMS
key, the sender's public key, and the recipient's public key. This example uses the optional
sender_public_key parameter to provide the sender's public key. If you do not provide the
sender's public key, the keyring calls AWS KMS to retrieve the sender's public key.

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content_recipient =
 parse(public_key_file_content_recipient)?;

Creating an AWS KMS ECDH keyring 89

AWS Database Encryption SDK Developer Guide

let public_key_recipient_utf8_bytes =
 parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
 KmsPrivateKeyToStaticPublicKeyInput::builder()
 .sender_kms_identifier(arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
 // Must be a UTF8 DER-encoded X.509 public key
 .sender_public_key(public_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let kms_ecdh_static_configuration =
 KmsEcdhStaticConfigurations::KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring
let kms_ecdh_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client)
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_static_configuration)
 .send()
 .await?;

Creating an AWS KMS ECDH discovery keyring

When decrypting, it's a best practice to specify the keys that the AWS Database Encryption
SDK can use. To follow this best practice, use an AWS KMS ECDH keyring with the
KmsPrivateKeyToStaticPublicKey key agreement schema. However, you can also create an
AWS KMS ECDH discovery keyring, that is, an AWS KMS ECDH keyring that can decrypt any record
where the public key of the specified KMS key pair matches the recipient's public key stored in the
material description field of the encrypted record.

Creating an AWS KMS ECDH discovery keyring 90

AWS Database Encryption SDK Developer Guide

Important

When you decrypt records using the KmsPublicKeyDiscovery key agreement schema,
you accept all public keys, regardless of who owns it.

To initialize an AWS KMS ECDH keyring with the KmsPublicKeyDiscovery key agreement
schema, provide the following values:

• Recipient's AWS KMS key ID

Must identify an asymmetric NIST-recommended elliptic curve (ECC)KMS key pair with a
KeyUsage value of KEY_AGREEMENT.

• Curve specification

Identifies the elliptic curve specification in the recipient's KMS key pair.

Valid values: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Optional) A list of Grant Tokens

If you control access to the KMS key in your AWS KMS ECDH keyring with grants, you must
provide all necessary grant tokens when you initialize the keyring.

C# / .NET

The following example creates an AWS KMS ECDH discovery keyring with a KMS key pair on
the ECC_NIST_P256 curve. You must have kms:GetPublicKey and kms:DeriveSharedSecret
permissions on the specified KMS key pair. This keyring can decrypt any record where the public
key of the specified KMS key pair matches the recipient's public key stored in the material
description field of the encrypted record.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
 {

Creating an AWS KMS ECDH discovery keyring 91

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Database Encryption SDK Developer Guide

 RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
 }

};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = discoveryConfiguration
};
var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

The following example creates an AWS KMS ECDH discovery keyring with a KMS key pair on
the ECC_NIST_P256 curve. You must have kms:GetPublicKey and kms:DeriveSharedSecret
permissions on the specified KMS key pair. This keyring can decrypt any record where the public
key of the specified KMS key pair matches the recipient's public key stored in the material
description field of the encrypted record.

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPublicKeyDiscovery(
 KmsPublicKeyDiscoveryInput.builder()
 .recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321").build()
).build())
 .build();

Rust

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
 KmsPublicKeyDiscoveryInput::builder()
 .recipient_kms_identifier(ecc_recipient_key_arn)
 .build()?;

Creating an AWS KMS ECDH discovery keyring 92

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Database Encryption SDK Developer Guide

let kms_ecdh_discovery_static_configuration =
 KmsEcdhStaticConfigurations::KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring
let kms_ecdh_discovery_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client.clone())
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_discovery_static_configuration)
 .send()
 .await?;

Raw AES keyrings

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK lets you use an AES symmetric key that you provide as a
wrapping key that protects your data key. You need to generate, store, and protect the key
material, preferably in a hardware security module (HSM) or key management system. Use a Raw
AES keyring when you need to provide the wrapping key and encrypt the data keys locally or
offline.

The Raw AES keyring encrypts data by using the AES-GCM algorithm and a wrapping key that you
specify as a byte array. You can specify only one wrapping key in each Raw AES keyring, but you
can include multiple Raw AES keyrings, alone or with other keyrings, in a multi-keyring.

Key namespaces and names

To identify the AES key in a keyring, the Raw AES keyring uses a key namespace and key name that
you provide. These values are not secret. They appear in plain text in the material description that
the AWS Database Encryption SDK adds to the record. We recommend using a key namespace your
HSM or key management system and a key name that identifies the AES key in that system.

Raw AES keyrings 93

AWS Database Encryption SDK Developer Guide

Note

The key namespace and key name are equivalent to the Provider ID (or Provider) and Key ID
fields in the JceMasterKey.

If you construct different keyrings to encrypt and decrypt a given field, the namespace and
name values are critical. If the key namespace and key name in the decryption keyring isn't an
exact, case-sensitive match for the key namespace and key name in the encryption keyring, the
decryption keyring isn't used, even if the key material bytes are identical.

For example, you might define a Raw AES keyring with key namespace HSM_01 and key name
AES_256_012. Then, you use that keyring to encrypt some data. To decrypt that data, construct a
Raw AES keyring with the same key namespace, key name, and key material.

The following examples show how to create a Raw AES keyring. The AESWrappingKey variable
represents the key material you provide.

Java

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

C# / .NET

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

// This example uses the key generator in Bouncy Castle to generate the key
 material.
// In production, use key material from a secure source.
var aesWrappingKey = new
 MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

Raw AES keyrings 94

AWS Database Encryption SDK Developer Guide

// Create the keyring
var keyringInput = new CreateRawAesKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 WrappingKey = AESWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};

var matProv = new MaterialProviders(new MaterialProvidersConfig());
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name("AES_256_012")
 .key_namespace("HSM_01")
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

Raw RSA keyrings

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The Raw RSA keyring performs asymmetric encryption and decryption of data keys in local
memory with an RSA public and private keys that you provide. You need to generate, store, and
protect the private key, preferably in a hardware security module (HSM) or key management
system. The encryption function encrypts the data key under the RSA public key. The decryption
function decrypts the data key using the private key. You can select from among the several RSA
padding modes.

Raw RSA keyrings 95

AWS Database Encryption SDK Developer Guide

A Raw RSA keyring that encrypts and decrypts must include an asymmetric public key and private
key pair. However, you can encrypt data with a Raw RSA keyring that has only a public key, and you
can decrypt data with a Raw RSA keyring that has only a private key. You can include any Raw RSA
keyring in a multi-keyring. If you configure a Raw RSA keyring with a public and private key, be sure
that they are part of the same key pair.

The Raw RSA keyring is equivalent to and interoperates with the JceMasterKey in the AWS
Encryption SDK for Java when they are used with RSA asymmetric encryption keys.

Note

The Raw RSA keyring does not support asymmetric KMS keys. To use asymmetric RSA KMS
keys, construct an AWS KMS keyring.

Namespaces and names

To identify the RSA key material in a keyring, the Raw RSA keyring uses a key namespace and
key name that you provide. These values are not secret. They appear in plain text in the material
description that the AWS Database Encryption SDK adds to the record. We recommend using the
key namespace and key name that identifies the RSA key pair (or its private key) in your HSM or key
management system.

Note

The key namespace and key name are equivalent to the Provider ID (or Provider) and Key ID
fields in the JceMasterKey.

If you construct different keyrings to encrypt and decrypt a given record, the namespace and
name values are critical. If the key namespace and key name in the decryption keyring isn't an
exact, case-sensitive match for the key namespace and key name in the encryption keyring, the
decryption keyring isn't used, even if the keys are from the same key pair.

The key namespace and key name of the key material in the encryption and decryption keyrings
must be same whether the keyring contains the RSA public key, the RSA private key, or both keys in
the key pair. For example, suppose you encrypt data with a Raw RSA keyring for an RSA public key
with key namespace HSM_01 and key name RSA_2048_06. To decrypt that data, construct a Raw
RSA keyring with the private key (or key pair), and the same key namespace and name.

Raw RSA keyrings 96

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html

AWS Database Encryption SDK Developer Guide

Padding mode

You must specify a padding mode for Raw RSA keyrings used for encryption and decryption, or use
features of your language implementation that specify it for you.

The AWS Encryption SDK supports the following padding modes, subjects to the constraints
of each language. We recommend an OAEP padding mode, particularly OAEP with SHA-256
and MGF1 with SHA-256 Padding. The PKCS1 padding mode is supported only for backward
compatibility.

• OAEP with SHA-1 and MGF1 with SHA-1 Padding

• OAEP with SHA-256 and MGF1 with SHA-256 Padding

• OAEP with SHA-384 and MGF1 with SHA-384 Padding

• OAEP with SHA-512 and MGF1 with SHA-512 Padding

• PKCS1 v1.5 Padding

The following Java example shows how to create a Raw RSA keyring with the public and private
key of an RSA key pair and the OAEP with SHA-256 and MGF1 with SHA-256 padding mode. The
RSAPublicKey and RSAPrivateKey variables represent the key material you provide.

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
 .keyName("RSA_2048_06")
 .keyNamespace("HSM_01")
 .paddingScheme(PaddingScheme.OAEP_SHA256_MGF1)
 .publicKey(RSAPublicKey)
 .privateKey(RSAPrivateKey)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

C# / .NET

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

Raw RSA keyrings 97

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2

AWS Database Encryption SDK Developer Guide

// Get public and private keys from PEM files
var publicKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));
var privateKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

// Create the keyring input
var keyringInput = new CreateRawRsaKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
 PublicKey = publicKey,
 PrivateKey = privateKey
};

// Create the keyring
var matProv = new MaterialProviders(new MaterialProvidersConfig());
var rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let raw_rsa_keyring = mpl
 .create_raw_rsa_keyring()
 .key_name("RSA_2048_06")
 .key_namespace("HSM_01")
 .padding_scheme(PaddingScheme::OaepSha256Mgf1)
 .public_key(RSA_public_key)
 .private_key(RSA_private_key)
 .send()
 .await?;

Raw ECDH keyrings

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

Raw ECDH keyrings 98

AWS Database Encryption SDK Developer Guide

Important

The Raw ECDH keyring is only available with version 1.5.0 of the Material Providers Library.

The Raw ECDH keyring uses the elliptic curve public-private key pairs that you provide to derive
a shared wrapping key between two parties. First, the keyring derives a shared secret using the
sender's private key, the recipient's public key, and the Elliptic Curve Diffie-Hellman (ECDH) key
agreement algorithm. Then, the keyring uses the shared secret to derive the shared wrapping
key that protects your data encryption keys. The key derivation function that the AWS Database
Encryption SDK uses (KDF_CTR_HMAC_SHA384) to derive the shared wrapping key conforms to
NIST recommendations for key derivation.

The key derivation function returns 64 bytes of keying material. To ensure that both parties use the
correct keying material, the AWS Database Encryption SDK uses the first 32 bytes as a commitment
key and the last 32 bytes as the shared wrapping key. On decrypt, if the keyring cannot reproduce
the same commitment key and shared wrapping key that is stored in the material description field
of the encrypted record, the operation fails. For example, if you encrypt a record with a keyring
configured with Alice's private key and Bob's public key, a keyring configured with Bob's private
key and Alice's public key will reproduce the same commitment key and shared wrapping key and
be able to decrypt the record. If Bob's public key is from an AWS KMS key pair, then Bob can create
an AWS KMS ECDH keyring to decrypt the record.

The Raw ECDH keyring encrypts records with a symmetric key using AES-GCM. The data key is then
envelope encrypted with the derived shared wrapping key using AES-GCM. Each Raw ECDH keyring
can have only one shared wrapping key, but you can include multiple Raw ECDH keyrings, alone or
with other keyrings, in a multi-keyring.

You are responsible for generating, storing, and protecting your private keys, preferably in a
hardware security module (HSM) or key management system. The sender and recipient's key pairs
much be on the same elliptic curve. The AWS Database Encryption SDK supports the following
elliptic cuve specifications:

• ECC_NIST_P256

• ECC_NIST_P384

• ECC_NIST_P512

Raw ECDH keyrings 99

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Database Encryption SDK Developer Guide

Creating a Raw ECDH keyring

The Raw ECDH keyring supports three key agreement schemas:
RawPrivateKeyToStaticPublicKey, EphemeralPrivateKeyToStaticPublicKey,
and PublicKeyDiscovery. The key agreement schema that you select determines which
cryptographic operations you can perform and how the keying materials are assembled.

Topics

• RawPrivateKeyToStaticPublicKey

• EphemeralPrivateKeyToStaticPublicKey

• PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

Use the RawPrivateKeyToStaticPublicKey key agreement schema to statically configure the
sender's private key and the recipient's public key in the keyring. This key agreement schema can
encrypt and decrypt records.

To initialize a Raw ECDH keyring with the RawPrivateKeyToStaticPublicKey key agreement
schema, provide the following values:

• Sender's private key

You must provide the sender's PEM-encoded private key (PKCS #8 PrivateKeyInfo structures), as
defined in RFC 5958.

• Recipient's public key

You must provide the recipient's DER-encoded X.509 public key, also known as
SubjectPublicKeyInfo (SPKI), as defined in RFC 5280.

You can specify the public key of an asymmetric key agreement KMS key pair or the public key
from a key pair generated outside of AWS.

• Curve specification

Identifies the elliptic curve specification in the specified key pairs. Both the sender and recipient's
key pairs must have the same curve specification.

Valid values: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

Creating a Raw ECDH keyring 100

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280

AWS Database Encryption SDK Developer Guide

C# / .NET

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var BobPrivateKey = new MemoryStream(new byte[] { });
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH static keyring
 var staticConfiguration = new RawEcdhStaticConfigurations()
 {
 RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput
 {
 SenderStaticPrivateKey = BobPrivateKey,
 RecipientPublicKey = AlicePublicKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = staticConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

The following Java example uses the RawPrivateKeyToStaticPublicKey key agreement
schema to statically configure the sender's private key and the recipient's public key. Both key
pairs are on the ECC_NIST_P256 curve.

private static void StaticRawKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair senderKeys = GetRawEccKey();
 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH static keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =

Creating a Raw ECDH keyring 101

AWS Database Encryption SDK Developer Guide

 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .RawPrivateKeyToStaticPublicKey(
 RawPrivateKeyToStaticPublicKeyInput.builder()
 // Must be a PEM-encoded private key

 .senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
 // Must be a DER-encoded X.509 public key

 .recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring staticKeyring =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Rust

The following Python example uses the raw_ecdh_static_configuration key agreement
schema to statically configure the sender's private key and the recipient's public key. Both key
pairs must be on the same curve.

// Create keyring input
let raw_ecdh_static_configuration_input =
 RawPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .sender_static_private_key(private_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let raw_ecdh_static_configuration =
 RawEcdhStaticConfigurations::RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Creating a Raw ECDH keyring 102

AWS Database Encryption SDK Developer Guide

// Create raw ECDH static keyring
let raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(raw_ecdh_static_configuration)
 .send()
 .await?;

EphemeralPrivateKeyToStaticPublicKey

Keyrings configured with the EphemeralPrivateKeyToStaticPublicKey key agreement
schema create a new key pair locally and derive a unique shared wrapping key for each encrypt call.

This key agreement schema can only encrypt records. To decrypt records encrypted with the
EphemeralPrivateKeyToStaticPublicKey key agreement schema, you must use a discovery
key agreement schema configured with the same recipient's public key. To decrypt, you can use a
Raw ECDH keyring with the PublicKeyDiscovery key agreement algorithm, or, if the recipient's
public key is from an asymmetric key agreement KMS key pair, you can use an AWS KMS ECDH
keyring with the KmsPublicKeyDiscovery key agreement schema.

To initialize a Raw ECDH keyring with the EphemeralPrivateKeyToStaticPublicKey key
agreement schema, provide the following values:

• Recipient's public key

You must provide the recipient's DER-encoded X.509 public key, also known as
SubjectPublicKeyInfo (SPKI), as defined in RFC 5280.

You can specify the public key of an asymmetric key agreement KMS key pair or the public key
from a key pair generated outside of AWS.

• Curve specification

Identifies the elliptic curve specification in the specified public key.

On encrypt, the keyring creates a new key pair on the specified curve and uses the new private
key and specified public key to derive a shared wrapping key.

Valid values: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

Creating a Raw ECDH keyring 103

https://tools.ietf.org/html/rfc5280

AWS Database Encryption SDK Developer Guide

C# / .NET

The following example creates a Raw ECDH keyring with the
EphemeralPrivateKeyToStaticPublicKey key agreement schema. On encrypt, the keyring
will create a new key pair locally on the specified ECC_NIST_P256 curve.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH ephemeral keyring
 var ephemeralConfiguration = new RawEcdhStaticConfigurations()
 {
 EphemeralPrivateKeyToStaticPublicKey = new
 EphemeralPrivateKeyToStaticPublicKeyInput
 {
 RecipientPublicKey = AlicePublicKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = ephemeralConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

The following example creates a Raw ECDH keyring with the
EphemeralPrivateKeyToStaticPublicKey key agreement schema. On encrypt, the keyring
will create a new key pair locally on the specified ECC_NIST_P256 curve.

private static void EphemeralRawEcdhKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 ByteBuffer recipientPublicKey = getPublicKeyBytes();

Creating a Raw ECDH keyring 104

AWS Database Encryption SDK Developer Guide

 // Create the Raw ECDH ephemeral keyring
 final CreateRawEcdhKeyringInput ephemeralInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .EphemeralPrivateKeyToStaticPublicKey(
 EphemeralPrivateKeyToStaticPublicKeyInput.builder()
 .recipientPublicKey(recipientPublicKey)
 .build()
)
 .build()
).build();

 final IKeyring ephemeralKeyring =
 materialProviders.CreateRawEcdhKeyring(ephemeralInput);
}

Rust

The following example creates a Raw ECDH keyring with the
ephemeral_raw_ecdh_static_configuration key agreement schema. On encrypt, the
keyring will create a new key pair locally on the specified curve.

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
 EphemeralPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let ephemeral_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring
let ephemeral_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()

Creating a Raw ECDH keyring 105

AWS Database Encryption SDK Developer Guide

 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
 .send()
 .await?;

PublicKeyDiscovery

When decrypting, it's a best practice to specify the wrapping keys that the AWS Database
Encryption SDK can use. To follow this best practice, use an ECDH keyring that specifies both a
sender's private key and recipient's public key. However, you can also create a Raw ECDH discovery
keyring, that is, a Raw ECDH keyring that can decrypt any record where the specified key's public
key matches the recipient's public key stored in the material description field of the encrypted
record. This key agreement schema can only decrypt records.

Important

When you decrypt records using the PublicKeyDiscovery key agreement schema, you
accept all public keys, regardless of who owns it.

To initialize a Raw ECDH keyring with the PublicKeyDiscovery key agreement schema, provide
the following values:

• Recipient's static private key

You must provide the recipient's PEM-encoded private key (PKCS #8 PrivateKeyInfo structures),
as defined in RFC 5958.

• Curve specification

Identifies the elliptic curve specification in the specified private key. Both the sender and
recipient's key pairs must have the same curve specification.

Valid values: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

The following example creates a Raw ECDH keyring with the PublicKeyDiscovery key
agreement schema. This keyring can decrypt any record where the public key of the specified

Creating a Raw ECDH keyring 106

https://tools.ietf.org/html/rfc5958#section-2

AWS Database Encryption SDK Developer Guide

private key matches the recipient's public key stored in the material description field of the
encrypted record.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePrivateKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH discovery keyring
 var discoveryConfiguration = new RawEcdhStaticConfigurations()
 {
 PublicKeyDiscovery = new PublicKeyDiscoveryInput
 {
 RecipientStaticPrivateKey = AlicePrivateKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = discoveryConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

The following example creates a Raw ECDH keyring with the PublicKeyDiscovery key
agreement schema. This keyring can decrypt any record where the public key of the specified
private key matches the recipient's public key stored in the material description field of the
encrypted record.

private static void RawEcdhDiscovery() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH discovery keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()

Creating a Raw ECDH keyring 107

AWS Database Encryption SDK Developer Guide

 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .PublicKeyDiscovery(
 PublicKeyDiscoveryInput.builder()
 // Must be a PEM-encoded private key

 .recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring publicKeyDiscovery =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Rust

The following example creates a Raw ECDH keyring with the
discovery_raw_ecdh_static_configuration key agreement schema. This keyring can
decrypt any message where the public key of the specified private key matches the recipient's
public key stored on the message ciphertext.

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
 PublicKeyDiscoveryInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .recipient_static_private_key(private_key_recipient_utf8_bytes)
 .build()?;

let discovery_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_input);

// Create raw ECDH discovery private key keyring
let discovery_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(discovery_raw_ecdh_static_configuration)
 .send()
 .await?;

Creating a Raw ECDH keyring 108

AWS Database Encryption SDK Developer Guide

Multi-keyrings

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

You can combine keyrings into a multi-keyring. A multi-keyring is a keyring that consists of one or
more individual keyrings of the same or a different type. The effect is like using several keyrings
in a series. When you use a multi-keyring to encrypt data, any of the wrapping keys in any of its
keyrings can decrypt that data.

When you create a multi-keyring to encrypt data, you designate one of the keyrings as the
generator keyring. All other keyrings are known as child keyrings. The generator keyring generates
and encrypts the plaintext data key. Then, all of the wrapping keys in all of the child keyrings
encrypt the same plaintext data key. The multi-keyring returns the plaintext key and one encrypted
data key for each wrapping key in the multi-keyring. If the generator keyring is a KMS keyring,
the generator key in the AWS KMS keyring generates and encrypts the plaintext key. Then, all
additional AWS KMS keys in the AWS KMS keyring, and all wrapping keys in all child keyrings in the
multi-keyring, encrypt the same plaintext key.

When decrypting, the AWS Database Encryption SDK uses the keyrings to try to decrypt one of
the encrypted data keys. The keyrings are called in the order that they are specified in the multi-
keyring. Processing stops as soon as any key in any keyring can decrypt an encrypted data key.

To create a multi-keyring, first instantiate the child keyrings. In this example, we use an AWS KMS
keyring and a Raw AES keyring, but you can combine any supported keyrings in a multi-keyring.

Java

// 1. Create the raw AES keyring.
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateRawAesKeyringInput createRawAesKeyringInput =
 CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)

Multi-keyrings 109

AWS Database Encryption SDK Developer Guide

 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// 2. Create the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

C# / .NET

// 1. Create the raw AES keyring.
var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createRawAesKeyringInput = new CreateRawAesKeyringInput
{
 KeyName = "keyName",
 KeyNamespace = "myNamespaces",
 WrappingKey = AESWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};
var rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// 2. Create the AWS KMS keyring.
// We create a MRK multi keyring, as this interface also supports
// single-region KMS keys,
// and creates the KMS client for us automatically.
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = keyArn
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

// 1. Create the raw AES keyring
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Multi-keyrings 110

AWS Database Encryption SDK Developer Guide

let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name("AES_256_012")
 .key_namespace("HSM_01")
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

// 2. Create the AWS KMS keyring
let aws_kms_mrk_multi_keyring = mpl
 .create_aws_kms_mrk_multi_keyring()
 .generator(key_arn)
 .send()
 .await?;

Next, create the multi-keyring and specify its generator keyring, if any. In this example, we create
a multi-keyring in which the AWS KMS keyring is the generator keyring and the AES keyring is the
child keyring.

Java

The Java CreateMultiKeyringInput constructor lets you define a generator keyring and
child keyrings. The resulting createMultiKeyringInput object is immutable.

final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(awsKmsMrkMultiKeyring)
 .childKeyrings(Collections.singletonList(rawAesKeyring))
 .build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

C# / .NET

The .NET CreateMultiKeyringInput constructor lets you define a generator keyring and
child keyrings. The resulting CreateMultiKeyringInput object is immutable.

var createMultiKeyringInput = new CreateMultiKeyringInput
{
 Generator = awsKmsMrkMultiKeyring,

Multi-keyrings 111

AWS Database Encryption SDK Developer Guide

 ChildKeyrings = new List<IKeyring> { rawAesKeyring }
};
var multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Rust

let multi_keyring = mpl
 .create_multi_keyring()
 .generator(aws_kms_mrk_multi_keyring)
 .child_keyrings(vec![raw_aes_keyring.clone()])
 .send()
 .await?;

Now, you can use the multi-keyring to encrypt and decrypt data.

Multi-keyrings 112

AWS Database Encryption SDK Developer Guide

Searchable encryption

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

Searchable encryption enables you to search encrypted records without decrypting the entire
database. This is accomplished using beacons, which create a map between the plaintext value
written to a field and the encrypted value that is actually stored in your database. The AWS
Database Encryption SDK stores the beacon in a new field that it adds to the record. Depending on
the type of beacon you use, you can perform exact match searches or more customized complex
queries on your encrypted data.

Note

Searchable encryption in the AWS Database Encryption SDK differs from the searchable
symmetric encryption defined in academic research, such as searchable symmetric
encryption.

A beacon is a truncated Hash-Based Message Authentication Code (HMAC) tag that creates a map
between the plaintext and encrypted values of a field. When you write a new value to an encrypted
field that's configured for searchable encryption, the AWS Database Encryption SDK calculates an
HMAC over the plaintext value. This HMAC output is a one‐to‐one (1:1) match for the plaintext
value of that field. The HMAC output is truncated so that multiple, distinct plaintext values map to
the same truncated HMAC tag. These false positives limit an unauthorized user's ability to identify
distinguishing information about the plaintext value. When you query a beacon, the AWS Database
Encryption SDK automatically filters out these false positives and returns the plaintext result of
your query.

The average number of false positives generated for each beacon is determined by the beacon
length remaining after truncation. For help determining the appropriate beacon length for your
implementation, see Determining beacon length.

113

https://dl.acm.org/doi/10.1145/1180405.1180417
https://dl.acm.org/doi/10.1145/1180405.1180417

AWS Database Encryption SDK Developer Guide

Note

Searchable encryption is designed to be implemented in new, unpopulated databases.
Any beacon configured in an existing database will only map new records uploaded to the
database, there is no way for a beacon to map existing data.

Topics

• Are beacons right for my dataset?

• Searchable encryption scenario

Are beacons right for my dataset?

Using beacons to perform queries on encrypted data reduces the performance costs associated
with client-side encrypted databases. When you use beacons, there is an inherent tradeoff between
how efficient your queries are and how much information is revealed about the distribution of your
data. The beacon does not alter the encrypted state of the field. When you encrypt and sign a field
with the AWS Database Encryption SDK, the plaintext value of the field is never exposed to the
database. The database stores the randomized, encrypted value of the field.

Beacons are stored alongside the encrypted fields they are calculated from. This means that even
if an unauthorized user cannot view the plaintext values of an encrypted field, they might be able
to perform statistical analysis on the beacons to learn more about the distribution of your dataset,
and, in extreme cases, identify the plaintext values that a beacon maps to. The way you configure
your beacons can mitigate these risks. In particular, choosing the right beacon length can help you
preserve the confidentiality of your dataset.

Security vs. Performance

• The shorter the beacon length, the more security is preserved.

• The longer the beacon length, the more performance is preserved.

Searchable encryption might not be able to provide the desired levels of both performance and
security for all datasets. Review your threat model, security requirements, and performance needs
before configuring any beacons.

Are beacons right for my dataset? 114

AWS Database Encryption SDK Developer Guide

Consider the following dataset uniqueness requirements as you determine whether searchable
encryption is right for your dataset.

Distribution

The amount of security preserved by a beacon depends on the distribution of your dataset.
When you configure an encrypted field for searchable encryption, the AWS Database Encryption
SDK calculates an HMAC over the plaintext values written to that field. All of the beacons
calculated for a given field are calculated using the same key, with the exception of multitenant
databases that use a distinct key for each tenant. This means that if the same plaintext value
is written to the field multiple times, the same HMAC tag is created for every instance of that
plaintext value.

You should avoid constructing beacons from fields that contain very common values. For
example, consider a database that stores the address of every resident of the state of Illinois.
If you construct a beacon from the encrypted City field, the beacon calculated over "Chicago"
will be overrepresented due to the large percentage of the Illinois population that lives in
Chicago. Even if an unauthorized user can only read the encrypted values and beacon values,
they might be able to identify which records contain data for residents of Chicago if the beacon
preserves this distribution. To minimize the amount of distinguishing information revealed
about your distribution, you must sufficiently truncate your beacon. The beacon length required
to hide this uneven distribution has significant performance costs that might not meet the
needs of your application.

You must carefully analyze the distribution of your dataset to determine how much your
beacons need to be truncated. The beacon length remaining after truncation directly correlates
to the amount of statistical information that can be identified about your distribution.
You might need to choose shorter beacon lengths to sufficiently minimize the amount of
distinguishing information revealed about your dataset.

In extreme cases, you cannot calculate a beacon length for an unevenly distributed dataset that
effectively balances performance and security. For example, you should not construct a beacon
from a field that stores the result of a medical test for a rare disease. Since NEGATIVE results
are expected to be significantly more prevalent within the dataset, POSITIVE results can be
easily identified by how rare they are. It is very challenging to hide the distribution when the
field only has two possible values. If you use a beacon length that is short enough to hide the
distribution, all plaintext values map to the same HMAC tag. If you use a longer beacon length,
it is obvious which beacons map to plaintext POSITIVE values.

Are beacons right for my dataset? 115

AWS Database Encryption SDK Developer Guide

Correlation

We strongly recommend that you avoid constructing distinct beacons from fields with
correlated values. Beacons constructed from correlated fields require shorter beacon lengths
to sufficiently minimize the amount of information revealed about the distribution of each
dataset to an unauthorized user. You must carefully analyze your dataset, including its entropy
and the joint distribution of correlated values, to determine how much your beacons need to be
truncated. If the resulting beacon length does not meet your performance needs, then beacons
might not be a good fit for your dataset.

For example, you should not construct two separate beacons from City and ZIPCode fields
because the ZIP code will likely be associated with just one city. Typically, the false positives
generated by a beacon limit an unauthorized user's ability to identify distinguishing information
about your dataset. But the correlation between the City and ZIPCode fields means that
an unauthorized user can easily identify which results are false positives and distinguish the
different ZIP codes.

You should also avoid constructing beacons from fields that contain the same plaintext values.
For example, you should not construct a beacon from mobilePhone and preferredPhone
fields because they likely hold the same values. If you construct distinct beacons from both
fields, the AWS Database Encryption SDK creates the beacons for each field under different
keys. This results in two different HMAC tags for the same plaintext value. The two distinct
beacons are unlikely to have the same false positives and an unauthorized user might be able to
distinguish different phone numbers.

Even if your dataset contains correlated fields or has an uneven distribution, you might be able
to construct beacons that preserve the confidentiality of your dataset by using shorter beacon
lengths. However, beacon length does not guarantee that every unique value in your dataset
will produce a number of false positives that effectively minimizes the amount of distinguishing
information revealed about your dataset. Beacon length only estimates the average number of
false positives produced. The more unevenly distributed your dataset, the less effective beacon
length is at determining the average number of false positives produced.

Carefully consider the distribution of the fields you construct beacons from and consider how much
you will need to truncate the beacon length to meet your security requirements. The following
topics in this chapter assume that your beacons are uniformly distributed and do not contain
correlated data.

Are beacons right for my dataset? 116

AWS Database Encryption SDK Developer Guide

Searchable encryption scenario

The following example demonstrates a simple searchable encryption solution. In application, the
example fields used in this example might not meet the distribution and correlation uniqueness
recommendations for beacons. You can use this example for reference as you read about the
searchable encryption concepts in this chapter.

Consider a database named Employees that tracks employee data for a company. Each record in
the database contains fields called EmployeeID, LastName, FirstName, and Address. Each field in the
Employees database is identified by the primary key EmployeeID.

The following is an example plaintext record in the database.

{
 "EmployeeID": 101,
 "LastName": "Jones",
 "FirstName": "Mary",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

If you marked the LastName and FirstName fields as ENCRYPT_AND_SIGN in your cryptographic
actions, the values in these fields are encrypted locally before they're uploaded to the database.
The encrypted data that is uploaded is fully randomized, the database doesn't recognize this data
as being protected. It just detects typical data entries. This means that the record that is actually
stored in the database might look like the following.

{
 "PersonID": 101,
 "LastName": "1d76e94a2063578637d51371b363c9682bad926cbd",
 "FirstName": "21d6d54b0aaabc411e9f9b34b6d53aa4ef3b0a35",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }

Searchable encryption scenario 117

AWS Database Encryption SDK Developer Guide

}

If you need to query the database for exact matches in the LastName field, configure a standard
beacon named LastName to map the plaintext values written to the LastName field to the
encrypted values stored in the database.

This beacon calculates HMACs from the plaintext values in the LastName field. Each HMAC
output is truncated so that it is no longer an exact match for the plaintext value. For example, the
complete hash and the truncated hash for Jones might look like the following.

Complete hash

2aa4e9b404c68182562b6ec761fcca5306de527826a69468885e59dc36d0c3f824bdd44cab45526f70a2a18322000264f5451acf75f9f817e2b35099d408c833

Truncated hash

b35099d408c833

After the standard beacon is configured, you can perform equality searches on the LastName field.
For example, if you want to search for Jones, use the LastName beacon to perform the following
query.

LastName = Jones

The AWS Database Encryption SDK automatically filters out the false positives and returns the
plaintext result of your query.

Beacons

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

A beacon is a truncated Hash-Based Message Authentication Code (HMAC) tag that creates a map
between the plaintext value written to a field and the encrypted value that is actually stored in
your database. The beacon does not alter the encrypted state of the field. The beacon calculates
an HMAC over the field's plaintext value and stores it alongside the encrypted value. This HMAC
output is a one‐to‐one (1:1) match for the plaintext value of that field. The HMAC output is

Beacons 118

AWS Database Encryption SDK Developer Guide

truncated so that multiple, distinct plaintext values map to the same truncated HMAC tag. These
false positives limit an unauthorized user's ability to identify distinguishing information about the
plaintext value.

Beacons can only be constructed from fields that are marked ENCRYPT_AND_SIGN, SIGN_ONLY,
or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in your cryptographic actions. The beacon
itself is not signed or encrypted. You cannot construct a beacon with fields that are marked
DO_NOTHING.

The type of beacon you configure determines the type of queries you are able to perform. There
are two types of beacons that support searchable encryption. Standard beacons perform equality
searches. Compound beacons combine literal plaintext strings and standard beacons to perform
complex database operations. After you configure your beacons, you must configure a secondary
index for each beacon before you can search on the encrypted fields. For more information, see
Configuring secondary indexes with beacons.

Topics

• Standard beacons

• Compound beacons

Standard beacons

Standard beacons are the simplest way to implement searchable encryption in your database. They
can only perform equality searches for a single encrypted or virtual field. To learn how to configure
standard beacons, see Configuring standard beacons.

The field that a standard beacon is constructed from is called the beacon source. It identifies the
location of the data that the beacon needs to map. The beacon source can be either an encrypted
field or a virtual field. The beacon source in each standard beacon must be unique. You cannot
configure two beacons with the same beacon source.

Standard beacons can be used to perform equality searches for an encrypted or virtual field. Or,
they can be used to construct compound beacons to perform more complex database operations.
To help you organize and manage standard beacons, the AWS Database Encryption SDK provides
the following optional beacon styles that define the intended use of a standard beacon. For more
information see, Defining beacon styles.

Standard beacons 119

AWS Database Encryption SDK Developer Guide

You can create a standard beacon that performs equality searches for a single encrypted field, or
you can create a standard beacon that performs equality searches on the concatenation of multiple
ENCRYPT_AND_SIGN, SIGN_ONLY, and SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT fields by
creating a virtual field.

Virtual fields

A virtual field is a conceptual field constructed from one or more source fields. Creating a virtual
field does not write a new field to your record. The virtual field is not explicitly stored in your
database. It is used in standard beacon configuration to give the beacon instructions on how to
identify a specific segment of a field or concatenate multiple fields within a record to perform a
specific query. A virtual field requires at least one encrypted field.

Note

The following example demonstrates the types of transformations and queries you
can perform with a virtual field. In application, the example fields used in this example
might not meet the distribution and correlation uniqueness recommendations for
beacons.

For example, if you want to perform equality searches on the concatenation of FirstName and
LastName fields, you might create one of the following virtual fields.

• A virtual NameTag field, constructed from the first letter of the FirstName field,
followed by the LastName field, all in lowercase. This virtual field enables you to query
NameTag=mjones.

• A virtual LastFirst field, which is constructed from the LastName field, followed by the
FirstName field. This virtual field enables you to query LastFirst=JonesMary.

Or, if you want to perform equality searches on a specific segment of an encrypted field, create
a virtual field that identifies the segment you want to query.

For example, if you want to query an encrypted IPAddress field using the first three segments
of the IP address, create the following virtual field.

• A virtual IPSegment field, constructed from Segments(‘.’, 0, 3). This virtual
field enables you to query IPSegment=192.0.2. The query returns all records with an
IPAddress value that starts with "192.0.2".

Standard beacons 120

AWS Database Encryption SDK Developer Guide

Virtual fields must be unique. Two virtual fields cannot be constructed from the exact same
source fields.

For help configuring virtual fields and the beacons that use them, see Creating a virtual field.

Compound beacons

Compound beacons create indexes that improve query performance and enable you to perform
more complex database operations. You can use compound beacons to combine literal plaintext
strings and standard beacons to perform complex queries on encrypted records, such as querying
two different record types from a single index or querying a combination of fields with a sort key.
For more compound beacon solution examples, see Choose a beacon type.

Compound beacons can be constructed from standard beacons or a combination of standard
beacons and signed fields. They are constructed from a list of parts. All compound beacons
should include a list of encrypted parts that identifies the ENCRYPT_AND_SIGN fields included
in the beacon. Every ENCRYPT_AND_SIGN field must be identified by a standard beacon. More
complex compound beacons might also include a list of signed parts that identifies the plaintext
SIGN_ONLY or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT fields included in the beacon,
and a list of constructor parts that identify all of the possible ways the compound beacon can
assemble the fields.

Note

The AWS Database Encryption SDK also supports signed beacons that can be configured
entirely from plaintext SIGN_ONLY and SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
fields. Signed beacons are a type of compound beacon that index and perform complex
queries on signed, but not encrypted, fields. For more information, see Creating signed
beacons.

For help configuring compound beacons, see Configuring compound beacons.

The way you configure your compound beacon determines the types of queries it can perform. For
example, you can make some encrypted and signed parts optional to allow for more flexibility in
your queries. For more information on the types of queries compound beacons can perform, see
Querying beacons.

Compound beacons 121

AWS Database Encryption SDK Developer Guide

Planning beacons

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

Beacons are designed to be implemented in new, unpopulated databases. Any beacon configured
in an existing database will only map new records written to the database. Beacons are calculated
from the plaintext value of a field, once the field is encrypted there is no way for the beacon to
map existing data. After you have written new records with a beacon, you cannot update the
beacon's configuration. However, you can add new beacons for new fields that you add to your
record.

To implement searchable encryption, you must use the AWS KMS Hierarchical keyring to generate,
encrypt, and decrypt the data keys used to protect your records. For more information, see Using
the Hierarchical keyring for searchable encryption.

Before you can configure beacons for searchable encryption, you need to review your encryption
requirements, database access patterns, and threat model to determine the best solution for your
database.

The type of beacon that you configure determines the type of queries that you can perform. The
beacon length that you specify in standard beacon configuration determines the expected number
of false positives produced for a given beacon. We strongly recommend identifying and planning
the types of queries that you need to perform before you configure your beacons. Once you have
used a beacon, the configuration cannot be updated.

We strongly recommend that you review and complete the following tasks before you configure
any beacons.

• Determine if beacons are right for your dataset

• Choose a beacon type

• Choose a beacon length

• Choose a beacon name

Remember the following beacon uniqueness requirements as you plan the searchable encryption
solution for your database.

Planning beacons 122

AWS Database Encryption SDK Developer Guide

• Every standard beacon must have a unique beacon source

Multiple standard beacons cannot be constructed from the same encrypted or virtual field.

However, a single standard beacon can be used to construct multiple compound beacons.

• Avoid creating a virtual field with source fields that overlap with existing standard beacons

Constructing a standard beacon from a virtual field that contains a source field that was used to
create another standard beacon can reduce the security of both beacons.

For more information, see Security considerations for virtual fields.

Considerations for multitenant databases

To query beacons configured in a multitenant database, you must include the field that stores the
branch-key-id associated with the tenant that encrypted the record in your query. You define
this field when you define the beacon key source. For the query to succeed, the value in this field
must identify the appropriate beacon key materials required to recalculate the beacon.

Before you configure your beacons, you must decide how you plan to include the branch-key-id
in your queries. For more information on the different ways you can include the branch-key-id
in your queries, see Querying beacons in a multitenant database.

Choosing a beacon type

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

With searchable encryption, you can search encrypted records by mapping the plaintext values in
an encrypted field with a beacon. The type of beacon you configure determines the type of queries
that you can perform.

We strongly recommend identifying and planning the types of queries that you need to perform
before you configure your beacons. After you configure your beacons, you must configure
a secondary index for each beacon before you can search on the encrypted fields. For more
information, see Configuring secondary indexes with beacons.

Considerations for multitenant databases 123

AWS Database Encryption SDK Developer Guide

Beacons create a map between the plaintext value written to a field and the encrypted value
that is actually stored in your database. You cannot compare the values of two standard beacons,
even if they contain the same underlying plaintext. The two standard beacons will produce two
different HMAC tags for the same plaintext values. As a result, standard beacons cannot perform
the following queries.

• beacon1 = beacon2

• beacon1 IN (beacon2)

• value IN (beacon1, beacon2, ...)

• CONTAINS(beacon1, beacon2)

You can only perform the above queries if you compare the signed parts of compound beacons,
with the exception of the CONTAINS operator, which you can use with compound beacons to
identify the entire value of an encrypted or signed field that the assembled beacon contains. When
you compare signed parts, you can optionally include the prefix of an encrypted part, but you
cannot include the encrypted value of a field. For more information about the types of queries that
standard and compound beacons can perform, see Querying beacons.

Consider the following searchable encryption solutions as you review your database access
patterns. The following examples define which beacon to configure to satisfy different encryption
and querying requirements.

Standard beacons

Standard beacons can only perform equality searches. You can use standard beacons to perform
the following queries.

Query a single encrypted field

If you want to identify records that contain a specific value for an encrypted field, create a standard
beacon.

Examples

For the following example, consider a database named UnitInspection that tracks inspection
data for a production facility. Each record in the database contains fields called work_id,
inspection_date, inspector_id_last4, and unit. The full inspector ID is a number
between 0—99,999,999. However, to ensure that the dataset is uniformly distributed, the

Choosing a beacon type 124

AWS Database Encryption SDK Developer Guide

inspector_id_last4 only stores the last four digits of the inspector's ID. Each field in the
database is identified by the primary key work_id. The inspector_id_last4 and unit fields
are marked ENCRYPT_AND_SIGN in the cryptographic actions.

The following is an example of a plaintext entry in the UnitInspection database.

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

Query a single encrypted field in a record

If the inspector_id_last4 field needs to be encrypted, but you still need query it for exact
matches, construct a standard beacon from the inspector_id_last4 field. Then, use the
standard beacon to create a secondary index. You can use this secondary index to query on the
encrypted inspector_id_last4 field.

For help configuring standard beacons, see Configuring standard beacons.

Query a virtual field

A virtual field is a conceptual field constructed from one or more source fields. If you want to
perform equality searches for a specific segment of an encrypted field, or perform equality
searches on the concatenation of multiple fields, construct a standard beacon from a virtual field.
All virtual fields must include at least one encrypted source field.

Examples

The following examples create virtual fields for the Employees database. The following is an
example plaintext record in the Employees database.

{
 "EmployeeID": 101,
 "SSN": 000-00-0000,
 "LastName": "Jones",
 "FirstName": "Mary",
 "Address": {

Choosing a beacon type 125

AWS Database Encryption SDK Developer Guide

 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

Query a segment of an encrypted field

For this example, the SSN field is encrypted.

If you want to query the SSN field using the last four digits of a social security number, create a
virtual field that identifies the segment you plan to query.

A virtual Last4SSN field, constructed from Suffix(4) enables you to query Last4SSN=0000.
Use this virtual field to construct a standard beacon. Then, use the standard beacon to create
a secondary index. You can use this secondary index to query on the virtual field. This query
returns all records with an SSN value that ends with the last four digits you specified.

Query the concatenation of multiple fields

Note

The following example demonstrates the types of transformations and queries you
can perform with a virtual field. In application, the example fields used in this example
might not meet the distribution and correlation uniqueness recommendations for
beacons.

If you want to perform equality searches on a concatenation of FirstName and LastName
fields, you might create a virtual NameTag field, constructed from the first letter of the
FirstName field, followed by the LastName field, all in lowercase. Use this virtual field to
construct a standard beacon. Then, use the standard beacon to create a secondary index. You
can use this secondary index to query NameTag=mjones on the virtual field.

At least one of the source fields must be encrypted. Either FirstName or LastName could be
encrypted, or they could both be encrypted. Any plaintext source fields must be marked as
SIGN_ONLY or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in your cryptographic actions.

For help configuring virtual fields and the beacons that use them, see Creating a virtual field.

Choosing a beacon type 126

AWS Database Encryption SDK Developer Guide

Compound beacons

Compound beacons create an index from literal plaintext strings and standard beacons to perform
complex database operations. You can use compound beacons to perform the following queries.

Query a combination of encrypted fields on a single index

If you need to query a combination of encrypted fields on a single index, create a compound
beacon that combines the individual standard beacons constructed for each encrypted field to
form a single index.

After you configure the compound beacon, you can create a secondary index that specifies the
compound beacon as the partition key to perform exact match queries or with a sort key to
perform more complex queries. Secondary indexes that specify the compound beacon as the sort
key can perform exact match queries and more customized complex queries.

Examples

For the following examples, consider a database named UnitInspection that tracks inspection
data for a production facility. Each record in the database contains fields called work_id,
inspection_date, inspector_id_last4, and unit. The full inspector ID is a number
between 0—99,999,999. However, to ensure that the dataset is uniformly distributed, the
inspector_id_last4 only stores the last four digits of the inspector's ID. Each field in the
database is identified by the primary key work_id. The inspector_id_last4 and unit fields
are marked ENCRYPT_AND_SIGN in the cryptographic actions.

The following is an example of a plaintext entry in the UnitInspection database.

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

Perform equality searches on a combination of encrypted fields

If you want to query the UnitInspection database for exact matches on
inspector_id_last4.unit, first create distinct standard beacons for the
inspector_id_last4 and unit fields. Then, create a compound beacon from the two
standard beacons.

Choosing a beacon type 127

AWS Database Encryption SDK Developer Guide

After you configure the compound beacon, create a secondary index that specifies the
compound beacon as the partition key. Use this secondary index to query for exact matches
on inspector_id_last4.unit. For example, you could query this beacon to find a list of
inspections that an inspector performed for a given unit.

Perform complex queries on a combination of encrypted fields

If you want to query the UnitInspection database on inspector_id_last4
and inspector_id_last4.unit, first create distinct standard beacons for the
inspector_id_last4 and unit fields. Then, create a compound beacon from the two
standard beacons.

After you configure the compound beacon, create a secondary index that specifies the
compound beacon as the sort key. Use this secondary index to query the UnitInspection
database for entries that start with a certain inspector or query the database for a list of all of
the units within a specific unit ID range that were inspected by a certain inspector. You can also
perform exact match searches on inspector_id_last4.unit.

For help configuring compound beacons, see Configuring compound beacons.

Query a combination of encrypted and plaintext fields on a single index

If you need to query a combination of encrypted and plaintext fields on a single index, create a
compound beacon that combines individual standard beacons and plaintext fields to form a single
index. The plaintext fields used to construct the compound beacon must be marked SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in your cryptographic actions.

After you configure the compound beacon, you can create a secondary index that specifies the
compound beacon as the partition key to perform exact match queries or with a sort key to
perform more complex queries. Secondary indexes that specify the compound beacon as the sort
key can perform exact match queries and more customized complex queries.

Examples

For the following examples, consider a database named UnitInspection that tracks inspection
data for a production facility. Each record in the database contains fields called work_id,
inspection_date, inspector_id_last4, and unit. The full inspector ID is a number
between 0—99,999,999. However, to ensure that the dataset is uniformly distributed, the
inspector_id_last4 only stores the last four digits of the inspector's ID. Each field in the

Choosing a beacon type 128

AWS Database Encryption SDK Developer Guide

database is identified by the primary key work_id. The inspector_id_last4 and unit fields
are marked ENCRYPT_AND_SIGN in the cryptographic actions.

The following is an example of a plaintext entry in the UnitInspection database.

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

Perform equality searches on a combination of fields

If you want to query the UnitInspection database for inspections conducted by a specific
inspector on a specific date, first create a standard beacon for the inspector_id_last4 field.
The inspector_id_last4 field is marked ENCRYPT_AND_SIGN in the cryptographic actions.
All encrypted parts require their own standard beacon. The inspection_date field is marked
SIGN_ONLY and does not require a standard beacon. Next, create a compound beacon from the
inspection_date field and the inspector_id_last4 standard beacon.

After you configure the compound beacon, create a secondary index that specifies the
compound beacon as the partition key. Use this secondary index to query the databases for
records with exact matches to a certain inspector and inspection date. For example, you can
query the database for a list of all inspections that the inspector whose ID ends with 8744
conducted on a specific date.

Perform complex queries on a combination of fields

If you want to query the database for inspections conducted within an inspection_date
range, or query the database for inspections conducted on a particular inspection_date
constrained by inspector_id_last4 or inspector_id_last4.unit, first create distinct
standard beacons for the inspector_id_last4 and unit fields. Then, create a compound
beacon from the plaintext inspection_date field and the two standard beacons.

After you configure the compound beacon, create a secondary index that specifies the
compound beacon as the sort key. Use this secondary index to perform queries for inspections
conducted on specific dates by a specific inspector. For example, you can query the database
for a list of all units inspected on the same date. Or, you can query the database for a list of all
inspections performed on a specific unit between a given range of inspection dates.

Choosing a beacon type 129

AWS Database Encryption SDK Developer Guide

For help configuring compound beacons, see Configuring compound beacons.

Choosing a beacon length

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

When you write a new value to an encrypted field that's configured for searchable encryption, the
AWS Database Encryption SDK calculates an HMAC over the plaintext value. This HMAC output is
a one‐to‐one (1:1) match for the plaintext value of that field. The HMAC output is truncated so
that multiple, distinct plaintext values map to the same truncated HMAC tag. These collisions, or
false positives, limit an unauthorized user's ability to identify distinguishing information about the
plaintext value.

The average number of false positives generated for each beacon is determined by the beacon
length remaining after truncation. You only need to define beacon length when configuring
standard beacons. Compound beacons use the beacon lengths of the standard beacons they're
constructed from.

The beacon does not alter the encrypted state of the field. However, when you use beacons,
there is an inherent tradeoff between how efficient your queries are and how much information is
revealed about the distribution of your data.

The goal of searchable encryption is to reduce the performance costs associated with client-
side encrypted databases by using beacons to perform queries on encrypted data. Beacons
are stored alongside the encrypted fields they are calculated from. This means that they can
reveal distinguishing information about the distribution of your dataset. In extreme cases, an
unauthorized user might be able to analyze the information revealed about your distribution and
use it to identify a field's plaintext value. Choosing the right beacon length can help mitigate these
risks and preserve the confidentiality of your distribution.

Review your threat model to determine the level of security that you need. For example, the more
individuals who have access to your database, but should not have access to the plaintext data,
the more you might want to protect the confidentiality of your dataset distribution. To increase
confidentiality, a beacon needs to generate more false positives. Increased confidentiality results in
reduced query performance.

Choosing a beacon length 130

AWS Database Encryption SDK Developer Guide

Security vs. Performance

• A beacon length that is too long produces too few false positives and might reveal distinguishing
information about the distribution of your dataset.

• A beacon length that is too short produces too many false positives and increases the
performance cost of queries because it requires a broader scan of the database.

When determining the appropriate beacon length for your solution, you must find a length that
adequately preserves the security of your data without impacting the performance of your queries
more than absolutely necessary. The amount of security preserved by a beacon depends on the
distribution of your dataset and the correlation of the fields that your beacons are constructed
from. The following topics assume that your beacons are uniformly distributed and do not contain
correlated data.

Topics

• Calculating beacon length

• Example

Calculating beacon length

Beacon length is defined in bits and refers to the number of bits of the HMAC tag that are kept
after truncation. The recommended beacon length varies depending on the dataset distribution,
presence of correlated values, and your specific security and performance requirements. If your
dataset is uniformly distributed, you can use the following equations and procedures to help
identify the best beacon length for your implementation. These equations only estimate the
average number of false positives that the beacon will produce, they do not guarantee that every
unique value in your dataset will produce a specific number of false positives.

Note

The effectiveness of these equations is dependent on the distribution of your dataset. If
your dataset is not uniformly distributed, see Are beacons right for my dataset?.
In general, the further your dataset is from a uniform distribution, the more you need to
shorten your beacon length.

1.

Choosing a beacon length 131

AWS Database Encryption SDK Developer Guide

Estimate the population

The population is the expected number of unique values in the field that your standard beacon
is constructed from, it is not the total expected number of values stored in the field. For
example, consider an encrypted Room field that identifies the location of employee meetings.
The Room field is expected to store 100,000 total values, but there are only 50 different rooms
that employees can reserve for meetings. This means that the population is 50 because there
only 50 possible unique values that can be stored in the Room field.

Note

If your standard beacon is constructed from a virtual field, the population used to
calculate beacon length is the number of unique combinations created by the virtual
field.

When estimating your population, be sure to consider the projected growth of the dataset.
After you have written new records with the beacon, you cannot update the beacon length.
Review your threat model and any existing database solutions to create an estimate for the
number of unique values you expect this field to store in the next five years.

Your population does not need to be precise. First, identify the number of unique values in
your current database, or estimate the number of unique values that you expect to store in
the first year. Next, use the following questions to help you determine the projected growth of
unique values over the next five years.

• Do you expect the unique values to multiply by 10?

• Do you expect the unique values to multiply by 100?

• Do you expect the unique values to multiply by 1000?

The difference between 50,000 and 60,000 unique values is not significant and they will both
result in the same recommended beacon length. However, the difference between 50,000 and
500,000 unique values will significantly impact the recommended beacon length.

Consider reviewing public data on the frequency of common data types, such as ZIP codes
or last names. For example, there are 41,707 ZIP codes in the United States. The population
you use should be proportional to your own database. If the ZIPCode field in your database

Choosing a beacon length 132

AWS Database Encryption SDK Developer Guide

includes data from across the entire United States, then you might define your population
as 41,707, even if the ZIPCode field does not currently have 41,707 unique values. If the
ZIPCode field in your database only includes data from a single state, and will only ever
include data from a single state, then you might define your population as the total number of
ZIP codes in that state instead of 41,704.

2. Calculate the recommended range for the expected number of collisions

To determine the appropriate beacon length for a given field, you must first identify an
appropriate range for the expected number of collisions. The expected number of collisions
represents the average expected number of unique plaintext values that map to a particular
HMAC tag. The expected number of false positives for one unique plaintext value is one less
than the expected number of collisions.

We recommend that the expected number of collisions is greater than or equal to two, and
less than the square root of your population. The following equations only work if your
population has 16 or more unique values.

2 ≤ number of collisions < √(Population)

If the number of collisions is less than two, the beacon will produce too few false positives. We
recommend two as the minimum number of expected collisions because it means, on average,
every unique value in the field will generate at least one false positive by mapping to one
other unique value.

3. Calculate the recommended range for beacon lengths

After identifying the minimum and maximum number of expected collisions, use the following
equation to identify a range of appropriate beacon lengths.

number of collisions = Population * 2-(beacon length)

First, solve for beacon length where the number of expected collisions equals two (the
minimum recommended number of expected collisions).

2 = Population * 2-(beacon length)

Then, solve for beacon length where the expected number of collisions equals the square root
of your population (the maximum recommended number of expected collisions).

Choosing a beacon length 133

AWS Database Encryption SDK Developer Guide

√(Population) = Population * 2-(beacon length)

We recommend rounding the output produced by this equation down to the shorter beacon
length. For example, if the equation produces a beacon length of 15.6, we recommend
rounding that value down to 15 bits instead of rounding up to 16 bits.

4. Choose a beacon length

These equations only identify a recommended range of beacon lengths for your field. We
recommend using a shorter beacon length to preserve the security of your dataset whenever
possible. However, the beacon length that you actually use is determined by your threat
model. Consider your performance requirements as you review your threat model to determine
the best beacon length for your field.

Using a shorter beacon length reduces query performance, while using a longer beacon length
decreases security. In general, if your dataset is unevenly distributed, or if you construct
distinct beacons from correlated fields, you need to use shorter beacon lengths to minimize
the amount of information revealed about the distribution of your datasets.

If you review your threat model and decide that any distinguishing information revealed
about the distribution of a field does not present a threat to your overall security, you might
choose to use a beacon length that is longer than the recommended range you calculated. For
example, if you calculated the recommended range of beacon lengths for a field as 9—16 bits,
you might choose to use a beacon length of 24 bits to avoid any performance loss.

Choose your beacon length carefully. After you have written new records with the beacon, you
cannot update the beacon length.

Example

Consider a database that marked the unit field as ENCRYPT_AND_SIGN in the cryptographic
actions. To configure a standard beacon for the unit field, we need to determine the expected
number of false positives and beacon length for the unit field.

1. Estimate the population

After reviewing our threat model and current database solution, we expect the unit field to
eventually have 100,000 unique values.

Choosing a beacon length 134

AWS Database Encryption SDK Developer Guide

This means that Population = 100,000.

2. Calculate the recommended range for the expected number of collisions.

For this example, the expected number of collisions should be between 2—316.

2 ≤ number of collisions < √(Population)

a. 2 ≤ number of collisions < √(100,000)

b. 2 ≤ number of collisions < 316

3. Calculate the recommended range for beacon length.

For this example, the beacon length should be between 9—16 bits.

number of collisions = Population * 2-(beacon length)

a. Calculate the beacon length where the expected number of collisions equals the minimum
identified in Step 2.

2 = 100,000 * 2-(beacon length)

Beacon length = 15.6, or 15 bits

b. Calculate the beacon length where the expected number of collisions equals the
maximum identified in Step 2.

316 = 100,000 * 2-(beacon length)

Beacon length = 8.3, or 8 bits

4. Determine the beacon length appropriate for your security and performance requirements.

For every bit below 15, the performance cost and the security double.

• 16 bits

• On average, each unique value will map to 1.5 other units.

Choosing a beacon length 135

AWS Database Encryption SDK Developer Guide

• Security: two records with the same truncated HMAC tag are 66% likely to have the same
plaintext value.

• Performance: a query will retrieve 15 records for every 10 records that you actually
requested.

• 14 bits

• On average, each unique value will map to 6.1 other units.

• Security: two records with the same truncated HMAC tag are 33% likely to have the same
plaintext value.

• Performance: a query will retrieve 30 records for every 10 records that you actually
requested.

Choosing a beacon name

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

Every beacon is identified by a unique beacon name. Once a beacon is configured, the beacon name
is the name you use when querying an encrypted field. A beacon name can be the same name as
an encrypted field or virtual field, but it cannot be the same name as an unencrypted field. Two
different beacons cannot have the same beacon name.

For examples demonstrating how to name and configure beacons, see Configuring beacons.

Naming standard beacon

When naming standard beacons, we strongly recommend that your beacon name resolves to
the beacon source whenever possible. This means that the beacon name and the name of the
encrypted or virtual field that your standard beacon is constructed from are the same. For example,
if you are creating a standard beacon for an encrypted field named LastName, your beacon name
should also be LastName.

When your beacon name is the same as the beacon source, you can omit the beacon source from
your configuration and the AWS Database Encryption SDK will automatically use the beacon name
as the beacon source.

Choosing a beacon name 136

AWS Database Encryption SDK Developer Guide

Configuring beacons

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

There are two types of beacons that support searchable encryption. Standard beacons perform
equality searches. They are the simplest way to implement searchable encryption in your database.
Compound beacons combine literal plaintext strings and standard beacons to perform more
complex queries.

Beacons are designed to be implemented in new, unpopulated databases. Any beacon configured
in an existing database will only map new records written to the database. Beacons are calculated
from the plaintext value of a field, once the field is encrypted there is no way for the beacon to
map existing data. After you have written new records with a beacon, you cannot update the
beacon's configuration. However, you can add new beacons for new fields that you add to your
record.

After determining your access patterns, configuring beacons should be the second step in your
database implementation. Then, after you configure all of your beacons, you need to create
an AWS KMS Hierarchical keyring, define the beacon version, configure a secondary index for
each beacon, define your cryptographic actions, and configure your database and AWS Database
Encryption SDK client. For more information, see Using beacons.

To make it easier to define the beacon version, we recommend creating lists for standard and
compound beacons. Add each beacon you create to the respective standard or compound beacon
list as you configure them.

Topics

• Configuring standard beacons

• Configuring compound beacons

• Example configurations

Configuring standard beacons

Standard beacons are the simplest way to implement searchable encryption in your database. They
can only perform equality searches for a single encrypted or virtual field.

Configuring beacons 137

AWS Database Encryption SDK Developer Guide

Example configuration syntax

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C# / .NET

var standardBeaconList = new List<StandardBeacon>();
StandardBeacon exampleStandardBeacon = new StandardBeacon
 {
 Name = "beaconName",
 Length = 10
 };
standardBeaconList.Add(exampleStandardBeacon);

Rust

let standard_beacon_list = vec![

 StandardBeacon::builder().name("beacon_name").length(beacon_length_in_bits).build()?,

To configure a standard beacon, provide the following values.

Beacon name

The name you use when querying an encrypted field.

A beacon name can be the same name as an encrypted field or virtual field, but it cannot be the
same name as an unencrypted field. We strongly recommend using the name of the encrypted
field or virtual field that your standard beacon is constructed from whenever possible. Two
different beacons cannot have the same beacon name. For help determining the best beacon
name for your implementation, see Choosing a beacon name.

Configuring standard beacons 138

AWS Database Encryption SDK Developer Guide

Beacon length

The number of bits of the beacon hash value that are kept after truncation.

The beacon length determines the average number of false positives produced by a given
beacon. For more information and help determining the appropriate beacon length for your
implementation, see Determining beacon length.

Beacon source (Optional)

The field that a standard beacon is constructed from.

The beacon source must be a field name or an index referring to the value of a nested field.
When your beacon name is the same as the beacon source, you can omit the the beacon source
from your configuration and the AWS Database Encryption SDK will automatically use the
beacon name as the beacon source.

Creating a virtual field

To create a virtual field, you must provide a name for the virtual field and a list of the source fields.
The order that you add source fields to the virtual part list determines the order that they are
concatenated to build the virtual field. The following example concatenates two source fields in
their entirety to create a virtual field.

Note

We recommend verifying that your virtual fields produce the expected outcome before you
populate your database. For more information, see Testing beacon outputs.

Java

See the complete code example: VirtualBeaconSearchableEncryptionExample.java

List<VirtualPart> virtualPartList = new ArrayList<>();
 virtualPartList.add(sourceField1);
 virtualPartList.add(sourceField2);

VirtualField virtualFieldName = VirtualField.builder()
 .name("virtualFieldName")
 .parts(virtualPartList)

Configuring standard beacons 139

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java

AWS Database Encryption SDK Developer Guide

 .build();

List<VirtualField> virtualFieldList = new ArrayList<>();
 virtualFieldList.add(virtualFieldName);

C# / .NET

See the complete code example: VirtualBeaconSearchableEncryptionExample.cs

var virtualPartList = new List<VirtualPart> { sourceField1, sourceField2 };

var virtualFieldName = new VirtualField
{
 Name = "virtualFieldName",
 Parts = virtualPartList
};

var virtualFieldList = new List<VirtualField> { virtualFieldName };

Rust

See the complete code example: virtual_beacon_searchable_encryption.rs

let virtual_part_list = vec![source_field_one, source_field_two];

let state_and_has_test_result_field = VirtualField::builder()
 .name("virtual_field_name")
 .parts(virtual_part_list)
 .build()?;

let virtual_field_list = vec![virtual_field_name];

To create a virtual field with a specific segment of a source field, you must define that
transformation before adding the source field to your virtual part list.

Security considerations for virtual fields

Beacons do not alter the encrypted state of the field. However, when you use beacons, there is an
inherent tradeoff between how efficient your queries are and how much information is revealed
about the distribution of your data. The way that you configure your beacon determines the level
of security that is preserved by that beacon.

Configuring standard beacons 140

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/virtual_beacon_searchable_encryption.rs

AWS Database Encryption SDK Developer Guide

Avoid creating a virtual field with source fields that overlap with existing standard beacons.
Creating virtual fields that include a source field that has already been used to create a standard
beacon can reduce the level of security for both beacons. The extent that security is reduced is
dependent on the level of entropy added by the additional source fields. The level of entropy is
determined by the distribution of unique values in the additional source field and the number of
bits that the additional source field contributes to the overall size of the virtual field.

You can use population and beacon length to determine if the source fields for a virtual field
preserve the security of your dataset. The population is the expected number of unique values in
a field. Your population does not need to be precise. For help estimating the population of a field,
see Estimate the population.

Consider the following example as you review the security of your virtual fields.

• Beacon1 is constructed from FieldA. FieldA has a population greater than 2(Beacon1 length).

• Beacon2 is constructed from VirtualField, which is constructed from FieldA, FieldB,
FieldC, and FieldD. Together, FieldB, FieldC, and FieldD have a population greater than
2N

Beacon2 preserves the security of both Beacon1 and Beacon2 if the following statements are true:

N ≥ (Beacon1 length)/2

and

N ≥ (Beacon2 length)/2

Defining beacon styles

Standard beacons can be used to perform equality searches for an encrypted or virtual field. Or,
they can be used to construct compound beacons to perform more complex database operations.
To help you organize and manage standard beacons, the AWS Database Encryption SDK provides
the following optional beacon styles that define the intended use of a standard beacon.

Configuring standard beacons 141

AWS Database Encryption SDK Developer Guide

Note

To define beacon styles, you must use version 3.2 or later of the AWS Database Encryption
SDK. Deploy the new version to all readers before adding beacon styles to your beacon
configurations.

PartOnly

A standard beacon defined as PartOnly can only be used to define an encrypted part of a
compound beacon. You cannot directly query a PartOnly standard beacon.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .partOnly(PartOnly.builder().build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C# / .NET

new StandardBeacon
{
 Name = "beaconName",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 PartOnly = new PartOnly()
 }
}

Rust

StandardBeacon::builder()

Configuring standard beacons 142

AWS Database Encryption SDK Developer Guide

 .name("beacon_name")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::PartOnly(PartOnly::builder().build()?))
 .build()?

Shared

By default, every standard beacon generates a unique HMAC key for beacon calculation. As
a result, you cannot perform an equality search on the encrypted fields from two separate
standard beacons. A standard beacon defined as Shared uses the HMAC key from another
standard beacon for its calculations.

For example, if you need to compare beacon1 fields to beacon2 fields, define beacon2 as a
Shared beacon that uses the HMAC key from beacon1 for its calculations.

Note

Consider your security and performance needs before configuring any Shared beacons.
Shared beacons might increase the amount of statistical information that can be
identified about the distribution of your dataset. For example, they might reveal which
shared fields contain the same plaintext value.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beacon2")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .shared(Shared.builder().other("beacon1").build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C# / .NET

new StandardBeacon

Configuring standard beacons 143

AWS Database Encryption SDK Developer Guide

{
 Name = "beacon2",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 Shared = new Shared { Other = "beacon1" }
 }
}

Rust

StandardBeacon::builder()
 .name("beacon2")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::Shared(
 Shared::builder().other("beacon1").build()?,
))
 .build()?

AsSet

By default, if a field value is a set, the AWS Database Encryption SDK calculates
a single standard beacon for the set. As a result, you cannot perform the query
CONTAINS(a, :value) where a is an encrypted field. A standard beacon defined as AsSet
calculates individual standard beacon values for each individual element of the set and stores
the beacon value in the item as a set. This enables the AWS Database Encryption SDK to
perform the query CONTAINS(a, :value).

To define an AsSet standard beacon, the elements in the set must be from the same
population so that they can all use the same beacon length. The beacon set might have fewer
elements than the plaintext set if there were collisions when calculating the beacon values.

Note

Consider your security and performance needs before configuring any AsSet beacons.
AsSet beacons might increase the amount of statistical information that can be
identified about the distribution of your dataset. For example, they might reveal the size
of the plaintext set.

Configuring standard beacons 144

AWS Database Encryption SDK Developer Guide

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .asSet(AsSet.builder().build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C# / .NET

new StandardBeacon
{
 Name = "beaconName",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 AsSet = new AsSet()
 }
}

Rust

StandardBeacon::builder()
 .name("beacon_name")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::AsSet(AsSet::builder().build()?))
 .build()?

SharedSet

A standard beacon defined as SharedSet combines the Shared and AsSet functions so that
you can perform equality searches on the encrypted values of a set and field. This enables the
AWS Database Encryption SDK to perform the query CONTAINS(a, b) where a is an encrypted
set and b is an encrypted field.

Configuring standard beacons 145

AWS Database Encryption SDK Developer Guide

Note

Consider your security and performance needs before configuring any Shared beacons.
SharedSet beacons might increase the amount of statistical information that can be
identified about the distribution of your dataset. For example, they might reveal the size
of the plaintext set or which shared fields contain the same plaintext value.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beacon2")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .sharedSet(SharedSet.builder().other("beacon1").build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C# / .NET

new StandardBeacon
{
 Name = "beacon2",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 SharedSet = new SharedSet { Other = "beacon1" }
 }
}

Rust

StandardBeacon::builder()
 .name("beacon2")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::SharedSet(
 SharedSet::builder().other("beacon1").build()?,

Configuring standard beacons 146

AWS Database Encryption SDK Developer Guide

))
 .build()?

Configuring compound beacons

Compound beacons combine literal plaintext strings and standard beacons to perform complex
database operations, such as querying two different record types from a single index or
querying a combination of fields with a sort key. Compound beacons can be constructed from
ENCRYPT_AND_SIGN, SIGN_ONLY, and SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT fields.
You must create a standard beacon for every encrypted field included in the compound beacon.

Note

We recommend verifying that your compound beacons produce the expected outcome
before you populate your database. For more information, see Testing beacon outputs.

Example configuration syntax

Java

Compound beacon configuration

The following example defines encrypted and signed parts lists locally within the compound
beacon configuration.

List<CompoundBeacon> compoundBeaconList = new ArrayList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.builder()
 .name("compoundBeaconName")
 .split(".")
 .encrypted(encryptedPartList)
 .signed(signedPartList)
 .constructors(constructorList)
 .build();
compoundBeaconList.add(exampleCompoundBeacon);

Beacon version definition

The following example defines encrypted and signed parts lists globally in the beacon version.
For more information on defining the beacon version, see Using beacons.

Configuring compound beacons 147

AWS Database Encryption SDK Developer Guide

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .encryptedParts(encryptedPartList)
 .signedParts(signedPartList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

See the complete code sample: BeaconConfig.cs

Compound beacon configuration

The following example defines encrypted and signed parts lists locally within the compound
beacon configuration.

var compoundBeaconList = new List<CompoundBeacon>();
var exampleCompoundBeacon = new CompoundBeacon
 {
 Name = "compoundBeaconName",
 Split = ".",
 Encrypted = encryptedPartList,
 Signed = signedPartList,
 Constructors = constructorList
 };
compoundBeaconList.Add(exampleCompoundBeacon);

Beacon version definition

The following example defines encrypted and signed parts lists globally in the beacon version.
For more information on defining the beacon version, see Using beacons.

Configuring compound beacons 148

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS Database Encryption SDK Developer Guide

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = keyStore,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branchKeyId,
 CacheTTL = 6000
 }
 }
 }
};

Rust

See the complete code sample: beacon_config.rs

Compound beacon configuration

The following example defines encrypted and signed parts lists locally within the compound
beacon configuration.

let compound_beacon_list = vec![
 CompoundBeacon::builder()
 .name("compound_beacon_name")
 .split(".")
 .encrypted(encrypted_parts_list)
 .signed(signed_parts_list)
 .constructors(constructor_list)
 .build()?

Beacon version definition

The following example defines encrypted and signed parts lists globally in the beacon version.
For more information on defining the beacon version, see Using beacons.

Configuring compound beacons 149

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/complexexample/beacon_config.rs

AWS Database Encryption SDK Developer Guide

let beacon_versions = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .encrypted_parts(encrypted_parts_list)
 .signed_parts(signed_parts_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_versions];

You can define your encrypted parts and signed parts in locally or globally defined lists. We
recommend defining your encrypted and signed parts in a global list in the beacon version
whenever possible. By defining encrypted and signed parts globally, you can define each part
once and then reuse the parts in multiple compound beacon configurations. If you only intend
to use an encrypted or signed part once, you can define it in a local list in the compound beacon
configuration. You can reference both local and global parts in your constructor list.

If you define your encrypted and signed parts lists globally, you must provide a list of constructor
parts that identify all of the possible ways the compound beacon can assemble the fields in your
compound beacon configuration.

Note

To define encrypted and signed parts lists globally, you must use version 3.2 or later of the
AWS Database Encryption SDK. Deploy the new version to all readers before defining any
new parts globally.
You cannot update existing beacon configurations to define encrypted and signed parts
lists globally.

To configure a compound beacon, provide the following values.

Configuring compound beacons 150

AWS Database Encryption SDK Developer Guide

Beacon name

The name you use when querying an encrypted field.

A beacon name can be the same name as an encrypted field or virtual field, but it cannot be the
same name as an unencrypted field. No two beacons can have the same beacon name. For help
determining the best beacon name for your implementation, see Choosing a beacon name.

Split character

The character used to separate the parts that make up your compound beacon.

The split character cannot appear in the plaintext values of any of the fields that the compound
beacon is constructed from.

Encrypted parts list

Identifies the ENCRYPT_AND_SIGN fields included in the compound beacon.

Each part must include a name and prefix. The part name must be the name of the standard
beacon constructed from the encrypted field. The prefix can be any string, but it must be
unique. An encrypted part cannot have the same prefix as a signed part. We recommend using a
short value that distinguishes the part from other parts served by the compound beacon.

We recommend defining your encrypted parts globally whenever possible. You might consider
defining an encrypted part locally if you only intend on using it in one compound beacon.
A locally defined encrypted part cannot have the same prefix or name as a globally defined
encrypted part.

Java

List<EncryptedPart> encryptedPartList = new ArrayList<>);
EncryptedPart encryptedPartExample = EncryptedPart.builder()
 .name("standardBeaconName")
 .prefix("E-")
 .build();
encryptedPartList.add(encryptedPartExample);

C# / .NET

var encryptedPartList = new List<EncryptedPart>();
var encryptedPartExample = new EncryptedPart
 {
 Name = "compoundBeaconName",

Configuring compound beacons 151

AWS Database Encryption SDK Developer Guide

 Prefix = "E-"
 };
encryptedPartList.Add(encryptedPartExample);

Rust

let encrypted_parts_list = vec![
 EncryptedPart::builder()
 .name("standard_beacon_name")
 .prefix("E-")
 .build()?
];

Signed parts list

Identifies the signed fields included in the compound beacon.

Note

Signed parts are optional. You can configure a compound beacon that does not
reference any signed parts.

Each part must include a name, source, and prefix. The source is the SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT field that the part identifies. The source
must be a field name or an index referring to the value of a nested field. If your part name
identifies the source, you can omit the source and the AWS Database Encryption SDK will
automatically use the name as its source. We recommend specifying the source as the part
name whenever possible. The prefix can be any string, but it must be unique. A signed part
cannot have the same prefix as an encrypted part. We recommend using a short value that
distinguishes the part from other parts served by the compound beacon.

We recommend defining your signed parts globally whenever possible. You might consider
defining a signed part locally if you only intend on using it in one compound beacon. A locally
defined signed part cannot have the same prefix or name as a globally defined signed part.

Java

List<SignedPart> signedPartList = new ArrayList<>);

Configuring compound beacons 152

AWS Database Encryption SDK Developer Guide

SignedPart signedPartExample = SignedPart.builder()
 .name("signedFieldName")
 .prefix("S-")
 .build();
signedPartList.add(signedPartExample);

C# / .NET

var signedPartsList = new List<SignedPart>
{
 new SignedPart { Name = "signedFieldName1", Prefix = "S-" },
 new SignedPart { Name = "signedFieldName2", Prefix = "SF-" }
};

Rust

let signed_parts_list = vec![
 SignedPart::builder()
 .name("signed_field_name_1")
 .prefix("S-")
 .build()?,
 SignedPart::builder()
 .name("signed_field_name_2")
 .prefix("SF-")
 .build()?,
];

Constructor list

Identifies the constructors that define the different ways that the encrypted and signed parts
can be assembled by the compound beacon. You can reference both local and global parts in
your constructor list.

If you construct your compound beacon from globally defined encrypted and signed parts, you
must provide a constructor list.

If you do not use any globally defined encrypted or signed parts to construct your compound
beacon, the constructor list is optional. If you do not specify a constructor list, the AWS
Database Encryption SDK assembles the compound beacon with the following default
constructor.

• All signed parts in the order they were added to the signed parts list

Configuring compound beacons 153

AWS Database Encryption SDK Developer Guide

• All encrypted parts in the order they were added to the encrypted parts list

• All parts are required

Constructors

Each constructor is an ordered list of constructor parts that defines one way that the
compound beacon can be assembled. The constructor parts are joined together in the order
they are added to the list, with each part separated by the specified split character.

Each constructor part names an encrypted part or a signed part, and defines whether that
part is required or optional within the constructor. For example, if you want to query a
compound beacon on Field1, Field1.Field2, and Field1.Field2.Field3, mark
Field2 and Field3 as optional and create one constructor.

Each constructor must have at least one required part. We recommend making the first part
in each constructor required so that you can use the BEGINS_WITH operator in your queries.

A constructor succeeds if all its required parts are present in the record. When you write a
new record, the compound beacon uses the constructor list to determine if the beacon can
be assembled from the values provided. It attempts to assemble the beacon in the order
that the constructors were added to the constructor list, and it uses the first constructor that
succeeds. If no constructors succeed, the beacon is not written to the record.

All readers and writers should specify the same order of constructors to ensure that their
query results are correct.

Use the following procedures to specify your own constructor list.

1. Create a constructor part for each encrypted part and signed part to define whether or not
that part is required.

The constructor part name must be the name of the standard beacon or signed field it
represents.

Java

ConstructorPart field1ConstructorPart = ConstructorPart.builder()
 .name("Field1")
 .required(true)
 .build();

Configuring compound beacons 154

AWS Database Encryption SDK Developer Guide

C# / .NET

var field1ConstructorPart = new ConstructorPart { Name = "Field1", Required
 = true };

Rust

let field_1_constructor_part = ConstructorPart::builder()
 .name("field_1")
 .required(true)
 .build()?;

2. Create a constructor for each possible way that the compound beacon can be assembled
using the constructor parts you created in Step 1.

For example, if you want to query on Field1.Field2.Field3 and
Field4.Field2.Field3, then you must create two constructors. Field1 and Field4
can both be required because they are defined in two separate constructors.

Java

// Create a list for Field1.Field2.Field3 queries
List<ConstructorPart> field123ConstructorPartList = new ArrayList<>();
field123ConstructorPartList.add(field1ConstructorPart);
field123ConstructorPartList.add(field2ConstructorPart);
field123ConstructorPartList.add(field3ConstructorPart);
Constructor field123Constructor = Constructor.builder()
 .parts(field123ConstructorPartList)
 .build();
// Create a list for Field4.Field2.Field1 queries
List<ConstructorPart> field421ConstructorPartList = new ArrayList<>();
field421ConstructorPartList.add(field4ConstructorPart);
field421ConstructorPartList.add(field2ConstructorPart);
field421ConstructorPartList.add(field1ConstructorPart);
Constructor field421Constructor = Constructor.builder()
 .parts(field421ConstructorPartList)
 .build();

C# / .NET

// Create a list for Field1.Field2.Field3 queries

Configuring compound beacons 155

AWS Database Encryption SDK Developer Guide

 var field123ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field1ConstructorPart,
 field2ConstructorPart, field3ConstructorPart }
};
// Create a list for Field4.Field2.Field1 queries
var field421ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field4ConstructorPart,
 field2ConstructorPart, field1ConstructorPart }
};

Rust

// Create a list for field1.field2.field3 queries
let field1_field2_field3_constructor = Constructor::builder()
 .parts(vec![
 field1_constructor_part,
 field2_constroctor_part.clone(),
 field3_constructor_part,
])
 .build()?;

// Create a list for field4.field2.field1 queries
let field4_field2_field1_constructor = Constructor::builder()
 .parts(vec![
 field4_constructor_part,
 field2_constroctor_part.clone(),
 field1_constructor_part,
])
 .build()?;

3. Create a constructor list that includes all of the constructors that you created in Step 2.

Java

List<Constructor> constructorList = new ArrayList<>();
constructorList.add(field123Constructor)
constructorList.add(field421Constructor)

C# / .NET

var constructorList = new List<Constructor>

Configuring compound beacons 156

AWS Database Encryption SDK Developer Guide

{
 field123Constructor,
 field421Constructor
};

Rust

let constructor_list = vec![
 field1_field2_field3_constructor,
 field4_field2_field1_constructor,
];

4. Specify the constructorList when you create your compound beacon.

Example configurations

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The following examples demonstrate how to configure standard and compound beacons. The
following configurations do not provide beacon lengths. For help determining the appropriate
beacon length for your configuration, see Choose a beacon length.

To see complete code examples that demonstrate how to configure and use beacons, see the Java,
.NET, and Rust searchable encryption examples in the aws-database-encryption-sdk-dynamodb
repository on GitHub.

Topics

• Standard beacons

• Compound beacons

Standard beacons

If you want to query the inspector_id_last4 field for exact matches, create a standard beacon
using the following configuration.

Example configurations 157

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/

AWS Database Encryption SDK Developer Guide

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("inspector_id_last4")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C# / .NET

var standardBeaconList = new List<StandardBeacon>>);
StandardBeacon exampleStandardBeacon = new StandardBeacon
 {
 Name = "inspector_id_last4",
 Length = 10
 };
standardBeaconList.Add(exampleStandardBeacon);

Rust

let last4_beacon = StandardBeacon::builder()
 .name("inspector_id_last4")
 .length(10)
 .build()?;

let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;

let standard_beacon_list = vec![last4_beacon, unit_beacon];

Compound beacons

If you want to query the UnitInspection database on inspector_id_last4 and
inspector_id_last4.unit, create a compound beacon with the following configuration. This
compound beacon only requires encrypted parts.

Java

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
List<StandardBeacon> standardBeaconList = new ArrayList<>);

Example configurations 158

AWS Database Encryption SDK Developer Guide

StandardBeacon inspectorBeacon = StandardBeacon.builder()
 .name("inspector_id_last4")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(inspectorBeacon);

StandardBeacon unitBeacon = StandardBeacon.builder()
 .name("unit")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(unitBeacon);

// 2. Define the encrypted parts.
List<EncryptedPart> encryptedPartList = new ArrayList<>);

// Each encrypted part needs a name and prefix
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
EncryptedPart encryptedPartInspector = EncryptedPart.builder()
 .name("inspector_id_last4")
 .prefix("I-")
 .build();
encryptedPartList.add(encryptedPartInspector);

EncryptedPart encryptedPartUnit = EncryptedPart.builder()
 .name("unit")
 .prefix("U-")
 .build();
encryptedPartList.add(encryptedPartUnit);

// 3. Create the compound beacon.
// This compound beacon only requires a name, split character,
// and list of encrypted parts
CompoundBeacon inspectorUnitBeacon = CompoundBeacon.builder()
 .name("inspectorUnitBeacon")
 .split(".")
 .sensitive(encryptedPartList)
 .build();

Example configurations 159

AWS Database Encryption SDK Developer Guide

C# / .NET

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
StandardBeacon inspectorBeacon = new StandardBeacon
 {
 Name = "inspector_id_last4",
 Length = 10
 };
standardBeaconList.Add(inspectorBeacon);
StandardBeacon unitBeacon = new StandardBeacon
 {
 Name = "unit",
 Length = 30
 };
standardBeaconList.Add(unitBeacon);

// 2. Define the encrypted parts.
var last4EncryptedPart = new EncryptedPart

// Each encrypted part needs a name and prefix
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
var last4EncryptedPart = new EncryptedPart
 {
 Name = "inspector_id_last4",
 Prefix = "I-"
 };
encryptedPartList.Add(last4EncryptedPart);

var unitEncryptedPart = new EncryptedPart
 {
 Name = "unit",
 Prefix = "U-"
 };
encryptedPartList.Add(unitEncryptedPart);

// 3. Create the compound beacon.
// This compound beacon only requires a name, split character,
// and list of encrypted parts
var compoundBeaconList = new List<CompoundBeacon>>);
var inspectorCompoundBeacon = new CompoundBeacon
 {

Example configurations 160

AWS Database Encryption SDK Developer Guide

 Name = "inspector_id_last4",
 Split = ".",
 Encrypted = encryptedPartList
 };
compoundBeaconList.Add(inspectorCompoundBeacon);

Rust

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
let last4_beacon = StandardBeacon::builder()
 .name("inspector_id_last4")
 .length(10)
 .build()?;

let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;

let standard_beacon_list = vec![last4_beacon, unit_beacon];

// 2. Define the encrypted parts.
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
let encrypted_parts_list = vec![
 EncryptedPart::builder()
 .name("inspector_id_last4")
 .prefix("I-")
 .build()?,
 EncryptedPart::builder().name("unit").prefix("U-").build()?,
];

// 3. Create the compound beacon
// This compound beacon only requires a name, split character,
// and list of encrypted parts
let compound_beacon_list = vec![CompoundBeacon::builder()
 .name("last4UnitCompound")
 .split(".")
 .encrypted(encrypted_parts_list)
 .build()?];

Example configurations 161

AWS Database Encryption SDK Developer Guide

Using beacons

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

Beacons enable you to search encrypted records without decrypting the entire database being
queried. Beacons are designed to be implemented in new, unpopulated databases. Any beacon
configured in an existing database will only map new records written to the database. Beacons are
calculated from the plaintext value of a field, once the field is encrypted there is no way for the
beacon to map existing data. After you have written new records with a beacon, you cannot update
the beacon's configuration. However, you can add add new beacons for new fields that you add to
your record.

After you configure your beacons, you must complete the following steps before you begin
populating your database and performing queries on your beacons.

1. Create an AWS KMS Hierarchical keyring

To use searchable encryption, you must use the AWS KMS Hierarchical keyring to generate,
encrypt, and decrypt the data keys used to protect your records.

After you configure your beacons, assemble the Hierarchical keyring prerequisites and create
your Hierarchical keyring.

For more details on why the Hierarchical keyring is required, see Using the Hierarchical keyring
for searchable encryption.

2.

Define the beacon version

Specify your keyStore, keySource, a list of all standard beacons you configured, a list of
all compound beacons you configured, a list of encrypted parts, a list of signed parts, and
a beacon version. You must specify 1 for the beacon version. For guidance on defining your
keySource, see Defining your beacon key source.

The following Java example defines the beacon version for a single tenant database. For
help defining the beacon version for a multitenant database, see Searchable encryption for
multitenant databases.

Using beacons 162

AWS Database Encryption SDK Developer Guide

Java

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .encryptedParts(encryptedPartsList)
 .signedParts(signedPartsList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = branchKeyStoreName,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000
 }
 }
 }

Using beacons 163

AWS Database Encryption SDK Developer Guide

};

Rust

let beacon_version = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_version];

3. Configure secondary indexes

After you configure your beacons, you must configure a secondary index that reflects each
beacon before you can search on the encrypted fields. For more information, see Configuring
secondary indexes with beacons.

4. Define your cryptographic actions

All fields used to construct a standard beacon must be marked ENCRYPT_AND_SIGN.
All other fields used to construct beacons must be marked SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

5. Configure an AWS Database Encryption SDK client

To configure an AWS Database Encryption SDK client that protects the table items in your
DynamoDB table, see Java client-side encryption library for DynamoDB.

Using beacons 164

AWS Database Encryption SDK Developer Guide

Querying beacons

The type of beacon you configure determines the type of queries you are able to perform.
Standard beacons use filter expressions to perform equality searches. Compound beacons combine
literal plaintext strings and standard beacons to perform complex queries. When you query
encrypted data, you search on the beacon name.

You cannot compare the values of two standard beacons, even if they contain the same underlying
plaintext. The two standard beacons will produce two different HMAC tags for the same plaintext
values. As a result, standard beacons cannot perform the following queries.

• beacon1 = beacon2

• beacon1 IN (beacon2)

• value IN (beacon1, beacon2, ...)

• CONTAINS(beacon1, beacon2)

Compound beacons can perform the following queries.

• BEGINS_WITH(a), where a reflects the entire value of the field that the assembled compound
beacon begins with. You cannot use the BEGINS_WITH operator to identify a value that begins
with a particular substring. However, you can use BEGINS_WITH(S_), where S_ reflects the
prefix for a part that the assembled compound beacon begins with.

• CONTAINS(a), where a reflects the entire value of a field that the assembled compound beacon
contains. You cannot use the CONTAINS operator to identify a record that contains a particular
substring or a value within a set.

For example, you cannot perform a query CONTAINS(path, "a" where a reflects the value in a
set.

• You can compare signed parts of compound beacons. When you compare signed parts, you can
optionally append the prefix of an encrypted part to one or more signed parts, but you cannot
include the value of an encrypted field in any query.

For example, you can compare signed parts and query on signedField1 = signedField2 or
value IN (signedField1, signedField2, ...).

You can also compare signed parts and the prefix of an encrypted part by query on
signedField1.A_ = signedField2.B_.

Querying beacons 165

AWS Database Encryption SDK Developer Guide

• field BETWEEN a AND b, where a and b are signed parts. You can optionally append the
prefix of an encrypted part to one or more signed parts, but you cannot include the value of an
encrypted field in any query.

You must include the prefix for each part you include in a query on a compound beacon.
For example, if you constructed a compound beacon, compoundBeacon, from two fields,
encryptedField and signedField, you must include the prefixes configured for those two
parts when you query the beacon.

compoundBeacon = E_encryptedFieldValue.S_signedFieldValue

Searchable encryption for multitenant databases

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

To implement searchable encryption in your database, you must use an AWS KMS Hierarchical
keyring. The AWS KMS Hierarchical keyring generates, encrypts, and decrypts the data keys used to
protect your records. It also creates the beacon key used to generate beacons. When using the AWS
KMS Hierarchical keyring with multitenant databases, there is a distinct branch key and beacon key
for each tenant. To query encrypted data in a multitenant database, you must identify the beacon
key materials used to generate the beacon you are querying. For more information, see the section
called “Using the Hierarchical keyring for searchable encryption”.

When you define the beacon version for a multitenant database, specify a list of all standard
beacons you configured, a list of all compound beacons you configured, a beacon version, and
a keySource. You must define your beacon key source as a MultiKeyStore, and include a
keyFieldName, a cache time to live for the local beacon key cache, and maximum cache size for
the local beacon key cache.

If you configured any signed beacons, they must be included in your compoundBeaconList.
Signed beacons are a type of compound beacon that index and perform complex queries on
SIGN_ONLY and SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTfields.

Searchable encryption for multitenant databases 166

AWS Database Encryption SDK Developer Guide

Java

List<BeaconVersion> beaconVersions = new ArrayList<>();
 beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .version(1) // MUST be 1
 .keyStore(branchKeyStoreName)
 .keySource(BeaconKeySource.builder()
 .multi(MultiKeyStore.builder()
 .keyFieldName(keyField)
 .cacheTTL(6000)
 .maxCacheSize(10)
 .build())
 .build())
 .build()
);

C# / .NET

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = branchKeyStoreName,
 KeySource = new BeaconKeySource
 {
 Multi = new MultiKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000,
 MaxCacheSize = 10
 }
 }
 }
};

Searchable encryption for multitenant databases 167

AWS Database Encryption SDK Developer Guide

Rust

let beacon_version = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Multi(
 MultiKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .max_cache_size(10)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_version];

keyFieldName

The keyFieldName defines the name of the field that stores the branch-key-id associated
with the beacon key used to generated beacons for a given tenant.

When you write new records to your database, the branch-key-id that identifies the beacon
key used to generate any beacons for that record is stored in this field.

By default, the keyField is a conceptual field that is not explicitly stored in your database. The
AWS Database Encryption SDK identifies the branch-key-id from the encrypted data key in
the material description and stores the value in the conceptual keyField for you to reference
in your compound beacons and signed beacons. Since the material description is signed, the
conceptual keyField is considered a signed part.

You can also include the keyField in your cryptographic actions as a SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT field to explicitly store the field in your
database. If you do this, you must manually include the branch-key-id in the keyField
every time you write a record to your database.

Searchable encryption for multitenant databases 168

AWS Database Encryption SDK Developer Guide

Querying beacons in a multitenant database

To query a beacon, you must include the keyField in your query to identify the appropriate
beacon key materials required to recalculate the beacon. You must specify the branch-key-id
associated with the beacon key used to generate the beacons for a record. You cannot specify the
friendly name that identifies a tenant's branch-key-id in the branch key ID supplier. You can
include the keyField in your queries in a following ways.

Compound beacons

Whether you explicitly store the keyField in your records or not, you can include the
keyField directly in your compound beacons as a signed part. The keyField signed part
must be required.

For example, if you want to construct a compound beacon, compoundBeacon, from two fields,
encryptedField and signedField, you must also include the keyField as a signed part.
This enables you to perform the following query on compoundBeacon.

compoundBeacon = E_encryptedFieldValue.S_signedFieldValue.K_branch-key-id

Signed beacons

The AWS Database Encryption SDK uses standard and compound beacons to provide searchable
encryption solutions. These beacons must include at least one encrypted field. However, the
AWS Database Encryption SDK also supports signed beacons that can be configured entirely
from plaintext SIGN_ONLY and SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT fields.

Signed beacons can be constructed from a single part. Whether you explicitly store the
keyField in your records or not, you can construct a signed beacon from the keyField and
use it to create compound queries that combine a query on the keyField signed beacon with a
query on one of your other beacons. For example, you could perform the following query.

keyField = K_branch-key-id AND compoundBeacon =
 E_encryptedFieldValue.S_signedFieldValue

For help configuring signed beacons, see Creating signed beacons

Query directly on the keyField

If you specified the keyField in your cryptographic actions and explicitly store the field in your
record, you can create a compound query that combines a query on your beacon with a query

Querying beacons in a multitenant database 169

AWS Database Encryption SDK Developer Guide

on the keyField. You might choose to query directly on the keyField if you want to query a
standard beacon. For example, you could perform the following query.

keyField = branch-key-id AND standardBeacon = S_standardBeaconValue

Querying beacons in a multitenant database 170

AWS Database Encryption SDK Developer Guide

AWS Database Encryption SDK for DynamoDB

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK for DynamoDB is a software library that enables you to include
client-side encryption in your Amazon DynamoDB design. The AWS Database Encryption SDK for
DynamoDB provides attribute-level encryption and enables you to specify which items to encrypt
and which items to include in the signatures that ensure the authenticity of your data. Encrypting
your sensitive data in transit and at rest helps ensure that your plaintext data isn’t available to any
third party, including AWS.

Note

The AWS Database Encryption SDK does not support PartiQL.

In DynamoDB, a table is a collection of items. Each item is a collection of attributes. Each attribute
has a name and a value. The AWS Database Encryption SDK for DynamoDB encrypts the values of
attributes. Then, it calculates a signature over the attributes. You specify which attribute values to
encrypt and which to include in the signature in the cryptographic actions.

The topics in this chapter provide an overview of the AWS Database Encryption SDK for
DynamoDB, including which fields are encrypted, guidance on client installation and configuration,
and Java examples to help you get started.

Topics

• Client-side and server-side encryption

• Which fields are encrypted and signed?

• Searchable encryption in DynamoDB

• Updating your data model

• AWS Database Encryption SDK for DynamoDB available programming languages

• Legacy DynamoDB Encryption Client

171

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.TablesItemsAttributes

AWS Database Encryption SDK Developer Guide

Client-side and server-side encryption

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK for DynamoDB supports client-side encryption, where you
encrypt your table data before you send it to your database. However, DynamoDB provides a
server-side encryption at rest feature that transparently encrypts your table when it is persisted to
disk and decrypts it when you access the table.

The tools that you choose depend on the sensitivity of your data and the security requirements
of your application. You can use both the AWS Database Encryption SDK for DynamoDB and
encryption at rest. When you send encrypted and signed items to DynamoDB, DynamoDB doesn't
recognize the items as being protected. It just detects typical table items with binary attribute
values.

Server-side encryption at rest

DynamoDB supports encryption at rest, a server-side encryption feature in which DynamoDB
transparently encrypts your tables for you when the table is persisted to disk, and decrypts them
when you access the table data.

When you use an AWS SDK to interact with DynamoDB, by default, your data is encrypted in transit
over an HTTPS connection, decrypted at the DynamoDB endpoint, and then re-encrypted before
being stored in DynamoDB.

• Encryption by default. DynamoDB transparently encrypts and decrypts all tables when they are
written. There is no option to enable or disable encryption at rest.

• DynamoDB creates and manages the cryptographic keys. The unique key for each table is
protected by an AWS KMS key that never leaves AWS Key Management Service (AWS KMS)
unencrypted. By default, DynamoDB uses an AWS owned key in the DynamoDB service account,
but you can choose an AWS managed key or customer managed key in your account to protect
some or all of your tables.

• All table data is encrypted on disk. When an encrypted table is saved to disk, DynamoDB
encrypts all table data, including the primary key and local and global secondary indexes. If your
table has a sort key, some of the sort keys that mark range boundaries are stored in plaintext in
the table metadata.

Client-side and server-side encryption 172

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes

AWS Database Encryption SDK Developer Guide

• Objects related to tables are encrypted, too. Encryption at rest protects DynamoDB streams,
global tables, and backups whenever they are written to durable media.

• Your items are decrypted when you access them. When you access the table, DynamoDB
decrypts the part of the table that includes your target item, and returns the plaintext item to
you.

AWS Database Encryption SDK for DynamoDB

Client-side encryption provides end-to-end protection for your data, in transit and at rest, from its
source to storage in DynamoDB. Your plaintext data is never exposed to any third party, including
AWS. You can use the AWS Database Encryption SDK for DynamoDB with new DynamoDB tables,
or you can migrate your existing Amazon DynamoDB tables to the latest version of the AWS
Database Encryption SDK for DynamoDB.

• Your data is protected in transit and at rest. It is never exposed to any third party, including
AWS.

• You can sign your table Items. You can direct the AWS Database Encryption SDK for DynamoDB
to calculate a signature over all or part of a table item, including the primary key attributes. This
signature allows you to detect unauthorized changes to the item as a whole, including adding or
deleting attributes, or swapping attribute values.

• You determine how your data is protected by selecting a keyring. Your keyring determines
the wrapping keys that protect your data keys, and ultimately, your data. Use the most secure
wrapping keys that are practical for your task.

• The AWS Database Encryption SDK for DynamoDB doesn't encrypt the entire table. You
choose which attributes are encrypted in your items. The AWS Database Encryption SDK for
DynamoDB does not encrypt an entire item. It does not encrypt attribute names, or the names or
values of the primary key (partition key and sort key) attributes.

AWS Encryption SDK

If you are encrypting data that you store in DynamoDB, we recommend the AWS Database
Encryption SDK for DynamoDB.

The AWS Encryption SDK is a client-side encryption library that helps you to encrypt and decrypt
generic data. Although it can protect any type of data, it isn't designed to work with structured
data, like database records. Unlike the AWS Database Encryption SDK for DynamoDB, the AWS

Client-side and server-side encryption 173

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BackupRestore.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/

AWS Database Encryption SDK Developer Guide

Encryption SDK cannot provide item-level integrity checking and it has no logic to recognize
attributes or prevent encryption of primary keys.

If you use the AWS Encryption SDK to encrypt any element of your table, remember that it isn't
compatible with the AWS Database Encryption SDK for DynamoDB. You cannot encrypt with one
library and decrypt with the other.

Which fields are encrypted and signed?

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK for DynamoDB is a client-side encryption library designed
especially for Amazon DynamoDB applications. Amazon DynamoDB stores data in tables, which
are a collection of items. Each item is a collection of attributes. Each attribute has a name and a
value. The AWS Database Encryption SDK for DynamoDB encrypts the values of attributes. Then,
it calculates a signature over the attributes. You can specify which attribute values to encrypt and
which to include in the signature.

Encryption protects the confidentiality of the attribute value. Signing provides integrity of all
signed attributes and their relationship to each other, and provides authentication. It enables you
to detect unauthorized changes to the item as a whole, including adding or deleting attributes, or
substituting one encrypted value for another.

In an encrypted item, some data remains in plaintext, including the table name, all attribute
names, the attribute values that you don't encrypt, the names and values of the primary key
(partition key and sort key) attributes, and the attribute types. Do not store sensitive data in these
fields.

For more information on how the AWS Database Encryption SDK for DynamoDB works, see How
the AWS Database Encryption SDK works.

Note

All mentions of attribute actions in the AWS Database Encryption SDK for DynamoDB topics
refer to cryptographic actions.

Which fields are encrypted and signed? 174

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.TablesItemsAttributes

AWS Database Encryption SDK Developer Guide

Topics

• Encrypting attribute values

• Signing the item

Encrypting attribute values

The AWS Database Encryption SDK for DynamoDB encrypts the values (but not the attribute name
or type) of the attributes that you specify. To determine which attribute values are encrypted, use
attribute actions.

For example, this item includes example and test attributes.

'example': 'data',
'test': 'test-value',
...

If you encrypt the example attribute, but don't encrypt the test attribute, the results look like the
following. The encrypted example attribute value is binary data, instead of a string.

'example': Binary(b"'b\x933\x9a+s\xf1\xd6a\xc5\xd5\x1aZ\xed\xd6\xce\xe9X\xf0T\xcb\x9fY
\x9f\xf3\xc9C\x83\r\xbb\\"),
'test': 'test-value'
...

The primary key attributes—partition key and sort key—of each item must remain in plaintext
because DynamoDB uses them to find the item in the table. They should be signed, but not
encrypted.

The AWS Database Encryption SDK for DynamoDB identifies the primary key attributes for you and
ensures that their values are signed, but not encrypted. And, if you identify your primary key and
then try to encrypt it, the client will throw an exception.

The client stores the material description in a new attribute (aws_dbe_head) that it adds to the
item. The material description describes how the item was encrypted and signed. The client uses
this information to verify and decrypt the item. The field that stores the material description is not
encrypted.

Encrypting attribute values 175

AWS Database Encryption SDK Developer Guide

Signing the item

After encrypting the specified attribute values, the AWS Database Encryption SDK for DynamoDB
calculates Hash-Based Message Authentication Codes (HMACs) and a digital signature over
the canonicalization of the material description, encryption context, and each field marked
ENCRYPT_AND_SIGN, SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in the
attribute actions. ECDSA signatures are enabled by default, but are not required. The client stores
the HMACs and signatures in a new attribute (aws_dbe_foot) that it adds to the item.

Searchable encryption in DynamoDB

To configure your Amazon DynamoDB tables for searchable encryption, you must use the AWS
KMS Hierarchical keyring to generate, encrypt, and decrypt the data keys used to protect your
items. You must also include the SearchConfig in your table encryption configuration.

Note

If you're using the Java client-side encryption library for DynamoDB, you must use
the low-level AWS Database Encryption SDK for DynamoDB API to encrypt, sign,
verify, and decrypt your table items. The DynamoDB Enhanced Client and lower-level
DynamoDBItemEncryptor do not support searchable encryption.

Topics

• Configuring secondary indexes with beacons

• Testing beacon outputs

Configuring secondary indexes with beacons

After you configure your beacons, you must configure a secondary index that reflects each beacon
before you can search on the encrypted attributes.

When you configure a standard or compound beacon, the AWS Database Encryption SDK adds
the aws_dbe_b_ prefix to the beacon name so that the server can easily identify beacons. For
example, if you name a compound beacon, compoundBeacon, the full beacon name is actually
aws_dbe_b_compoundBeacon. If you want to configure secondary indexes that include a

Signing the item 176

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html

AWS Database Encryption SDK Developer Guide

standard or compound beacon, you must include the aws_dbe_b_ prefix when you identify the
beacon name.

Partition and sort keys

You cannot encrypt primary key values. Your partition and sort keys must be signed. Your
primary key values cannot be a standard or compound beacon.

Your primary key values must be SIGN_ONLY, unless you specify any
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributes, then the partition and sort
attributes must also be SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Your primary key values can be signed beacons. If you configured distinct signed beacons
for each of your primary key values, you must specify the attribute name that identifies the
primary key value as the signed beacon name. However, the AWS Database Encryption SDK
does not add the aws_dbe_b_ prefix to signed beacons. Even if you configured distinct signed
beacons for your primary key values, you only need to specify the attribute names for the
primary key values when you configure a secondary index.

Local secondary indexes

The sort key for a local secondary index can be a beacon.

If you specify a beacon for the sort key, the type must be String. If you specify a standard or
compound beacon for the sort key, you must include the aws_dbe_b_ prefix when you specify
the beacon name. If you specify a signed beacon, specify the beacon name without any prefix.

Global secondary indexes

The partition and sort keys for a global secondary index can both be beacons.

If you specify a beacon for the partition or sort key, the type must be String. If you specify a
standard or compound beacon for the sort key, you must include the aws_dbe_b_ prefix when
you specify the beacon name. If you specify a signed beacon, specify the beacon name without
any prefix.

Attribute projections

A projection is the set of attributes that is copied from a table into a secondary index. The
partition key and sort key of the table are always projected into the index; you can project other
attributes to support your application's query requirements. DynamoDB provides three different
options for attribute projections: KEYS_ONLY, INCLUDE, and ALL.

Configuring secondary indexes with beacons 177

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html#GSI.Projections

AWS Database Encryption SDK Developer Guide

If you use the INCLUDE attribute projection to search on a beacon, you must specify the names
for all of the attributes that the beacon is constructed from and the beacon name with the
aws_dbe_b_ prefix. For example, if you configured a compound beacon, compoundBeacon,
from field1, field2, and field3, you must specify aws_dbe_b_compoundBeacon, field1,
field2, and field3 in the projection.

A global secondary index can only use the attributes explicitly specified in the projection, but a
local secondary index can use any attribute.

Testing beacon outputs

If you configured compound beacons or constructed your beacons using virtual fields, we
recommend verifying that these beacons produce the expected output before populating your
DynamoDB table.

The AWS Database Encryption SDK provides the DynamoDbEncryptionTransforms service to
help you troubleshoot virtual field and compound beacon outputs.

Testing virtual fields

The following snippet creates test items, defines the DynamoDbEncryptionTransforms
service with the DynamoDB table encryption configuration, and demonstrates how to use
ResolveAttributes to verify that the virtual field produces the expected output.

Java

See the complete code sample: VirtualBeaconSearchableEncryptionExample.java

// Create test items
final PutItemRequest itemWithHasTestResultPutRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(itemWithHasTestResult)
 .build();

final PutItemResponse itemWithHasTestResultPutResponse =
 ddb.putItem(itemWithHasTestResultPutRequest);

final PutItemRequest itemWithNoHasTestResultPutRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(itemWithNoHasTestResult)

Testing beacon outputs 178

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java

AWS Database Encryption SDK Developer Guide

 .build();

final PutItemResponse itemWithNoHasTestResultPutResponse =
 ddb.putItem(itemWithNoHasTestResultPutRequest);

// Define the DynamoDbEncryptionTransforms service
final DynamoDbEncryptionTransforms trans = DynamoDbEncryptionTransforms.builder()
 .DynamoDbTablesEncryptionConfig(encryptionConfig).build();

// Verify configuration
final ResolveAttributesInput resolveInput = ResolveAttributesInput.builder()
 .TableName(ddbTableName)
 .Item(itemWithHasTestResult)
 .Version(1)
 .build();
final ResolveAttributesOutput resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that VirtualFields has the expected value
Map<String, String> vf = new HashMap<>();
vf.put("stateAndHasTestResult", "CAt");
assert resolveOutput.VirtualFields().equals(vf);

C# / .NET

See the complete code sample: VirtualBeaconSearchableEncryptionExample.cs.

 // Create item with hasTestResult=true
var itemWithHasTestResult = new Dictionary<String, AttributeValue>
{
 ["customer_id"] = new AttributeValue("ABC-123"),
 ["create_time"] = new AttributeValue { N = "1681495205" },
 ["state"] = new AttributeValue("CA"),
 ["hasTestResult"] = new AttributeValue { BOOL = true }
};

// Create item with hasTestResult=false
var itemWithNoHasTestResult = new Dictionary<String, AttributeValue>
{
 ["customer_id"] = new AttributeValue("DEF-456"),
 ["create_time"] = new AttributeValue { N = "1681495205" },
 ["state"] = new AttributeValue("CA"),
 ["hasTestResult"] = new AttributeValue { BOOL = false }
};

Testing beacon outputs 179

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs

AWS Database Encryption SDK Developer Guide

// Define the DynamoDbEncryptionTransforms service
var trans = new DynamoDbEncryptionTransforms(encryptionConfig);

// Verify configuration
var resolveInput = new ResolveAttributesInput
{
 TableName = ddbTableName,
 Item = itemWithHasTestResult,
 Version = 1
};
var resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that VirtualFields has the expected value
Debug.Assert(resolveOutput.VirtualFields.Count == 1);
Debug.Assert(resolveOutput.VirtualFields["stateAndHasTestResult"] == "CAt");

Rust

See the complete code sample: virtual_beacon_searchable_encryption.rs.

// Create item with hasTestResult=true
let item_with_has_test_result = HashMap::from([
 (
 "customer_id".to_string(),
 AttributeValue::S("ABC-123".to_string()),
),
 (
 "create_time".to_string(),
 AttributeValue::N("1681495205".to_string()),
),
 ("state".to_string(), AttributeValue::S("CA".to_string())),
 ("hasTestResult".to_string(), AttributeValue::Bool(true)),
]);

// Create item with hasTestResult=false
let item_with_no_has_test_result = HashMap::from([
 (
 "customer_id".to_string(),
 AttributeValue::S("DEF-456".to_string()),
),
 (
 "create_time".to_string(),
 AttributeValue::N("1681495205".to_string()),
),

Testing beacon outputs 180

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/virtual_beacon_searchable_encryption.rs

AWS Database Encryption SDK Developer Guide

 ("state".to_string(), AttributeValue::S("CA".to_string())),
 ("hasTestResult".to_string(), AttributeValue::Bool(false)),
]);

// Define the transform service
let trans = transform_client::Client::from_conf(encryption_config.clone())?;

// Verify the configuration
let resolve_output = trans
 .resolve_attributes()
 .table_name(ddb_table_name)
 .item(item_with_has_test_result.clone())
 .version(1)
 .send()
 .await?;

// Verify that VirtualFields has the expected value
let virtual_fields = resolve_output.virtual_fields.unwrap();
assert_eq!(virtual_fields.len(), 1);
assert_eq!(virtual_fields["stateAndHasTestResult"], "CAt");

Testing compound beacons

The following snippet creates a test item, defines the DynamoDbEncryptionTransforms
service with the DynamoDB table encryption configuration, and demonstrates how to use
ResolveAttributes to verify that the compound beacon produces the expected output.

Java

See the complete code sample: CompoundBeaconSearchableEncryptionExample.java

// Create an item with both attributes used in the compound beacon.
final HashMap<String, AttributeValue> item = new HashMap<>();
item.put("work_id", AttributeValue.builder().s("9ce39272-8068-4efd-a211-
cd162ad65d4c").build());
item.put("inspection_date", AttributeValue.builder().s("2023-06-13").build());
item.put("inspector_id_last4", AttributeValue.builder().s("5678").build());
item.put("unit", AttributeValue.builder().s("011899988199").build());

// Define the DynamoDbEncryptionTransforms service
final DynamoDbEncryptionTransforms trans = DynamoDbEncryptionTransforms.builder()
 .DynamoDbTablesEncryptionConfig(encryptionConfig).build();

Testing beacon outputs 181

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/CompoundBeaconSearchableEncryptionExample.java

AWS Database Encryption SDK Developer Guide

// Verify configuration
final ResolveAttributesInput resolveInput = ResolveAttributesInput.builder()
 .TableName(ddbTableName)
 .Item(item)
 .Version(1)
 .build();

final ResolveAttributesOutput resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that CompoundBeacons has the expected value
Map<String, String> cbs = new HashMap<>();
cbs.put("last4UnitCompound", "L-5678.U-011899988199");
assert resolveOutput.CompoundBeacons().equals(cbs);
// Note : the compound beacon actually stored in the table is not
 "L-5678.U-011899988199"
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

C# / .NET

See the complete code sample: CompoundBeaconSearchableEncryptionExample.cs

// Create an item with both attributes used in the compound beacon
var item = new Dictionary<String, AttributeValue>
{
 ["work_id"] = new AttributeValue("9ce39272-8068-4efd-a211-cd162ad65d4c"),
 ["inspection_date"] = new AttributeValue("2023-06-13"),
 ["inspector_id_last4"] = new AttributeValue("5678"),
 ["unit"] = new AttributeValue("011899988199")
};

// Define the DynamoDbEncryptionTransforms service
var trans = new DynamoDbEncryptionTransforms(encryptionConfig);

// Verify configuration
var resolveInput = new ResolveAttributesInput
{
 TableName = ddbTableName,
 Item = item,
 Version = 1
};
var resolveOutput = trans.ResolveAttributes(resolveInput);

Testing beacon outputs 182

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/CompoundBeaconSearchableEncryptionExample.cs

AWS Database Encryption SDK Developer Guide

// Verify that CompoundBeacons has the expected value
Debug.Assert(resolveOutput.CompoundBeacons.Count == 1);
Debug.Assert(resolveOutput.CompoundBeacons["last4UnitCompound"] ==
 "L-5678.U-011899988199");
// Note : the compound beacon actually stored in the table is not
 "L-5678.U-011899988199"
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

Rust

See the complete code sample: compound_beacon_searchable_encryption.rs

// Create an item with both attributes used in the compound beacon
let item = HashMap::from([
 (
 "work_id".to_string(),
 AttributeValue::S("9ce39272-8068-4efd-a211-cd162ad65d4c".to_string()),
),
 (
 "inspection_date".to_string(),
 AttributeValue::S("2023-06-13".to_string()),
),
 (
 "inspector_id_last4".to_string(),
 AttributeValue::S("5678".to_string()),
),
 (
 "unit".to_string(),
 AttributeValue::S("011899988199".to_string()),
),
]);

// Define the transforms service
let trans = transform_client::Client::from_conf(encryption_config.clone())?;

// Verify configuration
let resolve_output = trans
 .resolve_attributes()
 .table_name(ddb_table_name)
 .item(item.clone())
 .version(1)
 .send()

Testing beacon outputs 183

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/compound_beacon_searchable_encryption.rs

AWS Database Encryption SDK Developer Guide

 .await?;

// Verify that CompoundBeacons has the expected value
Dlet compound_beacons = resolve_output.compound_beacons.unwrap();
assert_eq!(compound_beacons.len(), 1);
assert_eq!(
 compound_beacons["last4UnitCompound"],
 "L-5678.U-011899988199"
);
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

Updating your data model

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

When you configure the AWS Database Encryption SDK for DynamoDB, you provide attribute
actions. On encrypt, AWS Database Encryption SDK uses the attribute actions to identify which
attributes to encrypt and sign, which attributes to sign (but not encrypt), and which to ignore. You
also define allowed unsigned attributes to explicitly tell the client which attributes are excluded
from the signatures. On decrypt, the AWS Database Encryption SDK uses the allowed unsigned
attributes that you defined to identify which attributes are not included in the signatures. Attribute
actions are not saved in the encrypted item and the AWS Database Encryption SDK does not
update your attribute actions automatically.

Choose your attribute actions carefully. When in doubt, use Encrypt and sign. After you have
used the AWS Database Encryption SDK to protect your items, you cannot change an existing
ENCRYPT_AND_SIGN, SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute
to DO_NOTHING. However, you can safely make the following changes.

• Add new ENCRYPT_AND_SIGN, SIGN_ONLY, and
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributes

• Remove existing attributes

• Change an existing ENCRYPT_AND_SIGN attribute to SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Updating your data model 184

AWS Database Encryption SDK Developer Guide

• Change an existing SIGN_ONLY or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute to
ENCRYPT_AND_SIGN

• Add a new DO_NOTHING attribute

• Change an existing SIGN_ONLY attribute to SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

• Change an existing SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute to SIGN_ONLY

Considerations for searchable encryption

Before you update your data model, carefully consider how your updates might impact any
beacons you constructed from the attributes. After you have written new records with a beacon,
you cannot update the beacon's configuration. You cannot update the attribute actions associated
with the attributes you used to construct beacons. If you remove an existing attribute and its
associated beacon, you will not be able to query existing records using that beacon. You can create
new beacons for new fields that you add to your record, but you cannot update existing beacons to
include the new field.

Considerations for SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributes

By default, the partition and sort keys are the only attribute included in the encryption context.
You might consider defining additional fields as SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
so that the branch key ID supplier for your AWS KMS Hierarchical keyring can identify which branch
key is required for decryption from the encryption context. For more information, see branch key
ID supplier. If you specify any SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributes, then
the partition and sort attributes must also be SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

To use the SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographic
action, you must use version 3.3 or later of the AWS Database Encryption SDK.
Deploy the new version to all readers before updating your data model to include
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Updating your data model 185

AWS Database Encryption SDK Developer Guide

Add new ENCRYPT_AND_SIGN, SIGN_ONLY, and
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributes

To add a new ENCRYPT_AND_SIGN, SIGN_ONLY, or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute, define the new attribute in your
attribute actions.

You cannot remove an existing DO_NOTHING attribute and add it back as an ENCRYPT_AND_SIGN,
SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute.

Using an annotated data class

If you defined your attribute actions with a TableSchema, add the new attribute to
your annotated data class. If you do not specify an attribute action annotation for the
new attribute, the client will encrypt and sign the new attribute by default (unless
the attribute is part of the primary key). If you only want to sign the new attribute,
you must add the new attribute with the @DynamoDBEncryptionSignOnly or
@DynamoDBEncryptionSignAndIncludeInEncryptionContext annotation.

Using an object model

If you manually defined your attribute actions, add the new attribute to the attribute
actions in your object model and specify ENCRYPT_AND_SIGN, SIGN_ONLY, or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT as the attribute action.

Remove existing attributes

If you decide that you no longer need an attribute, you can stop writing data to that attribute or
you can formally remove it from your attribute actions. When you stop writing new data to an
attribute, the attribute still shows up in your attribute actions. This can be helpful if you need to
start using the attribute again in the future. Formally removing the attribute from your attribute
actions does not remove it from your dataset. Your dataset will still contain items that include that
attribute.

To formally remove an existing ENCRYPT_AND_SIGN, SIGN_ONLY,
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, or DO_NOTHING attribute, update your
attribute actions.

Add new ENCRYPT_AND_SIGN, SIGN_ONLY, and SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
attributes

186

AWS Database Encryption SDK Developer Guide

If you remove a DO_NOTHING attribute, you must not remove that attribute from your allowed
unsigned attributes. Even if you are no longer writing new values to that attribute, the client still
needs to know that the attribute is unsigned to read existing items that contain the attribute.

Using an annotated data class

If you defined your attribute actions with a TableSchema, remove the attribute from your
annotated data class.

Using an object model

If you manually defined your attribute actions, remove the attribute from the attribute actions in
your object model.

Change an existing ENCRYPT_AND_SIGN attribute to SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

To change an existing ENCRYPT_AND_SIGN attribute to SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, you must update your attribute actions. After
you deploy the update, the client will be able to verify and decrypt existing values written to the
attribute, but will only sign new values written to the attribute.

Note

Carefully consider your security requirements before changing
an existing ENCRYPT_AND_SIGN attribute to SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Any attribute that can store sensitive
data should be encrypted.

Using an annotated data class

If you defined your attribute actions with a TableSchema, update the
existing attribute to include the @DynamoDBEncryptionSignOnly or
@DynamoDBEncryptionSignAndIncludeInEncryptionContext annotation in your annotated
data class.

Using an object model

Change an existing ENCRYPT_AND_SIGN attribute to SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

187

AWS Database Encryption SDK Developer Guide

If you manually defined your attribute actions, update the attribute action
associated with the existing attribute from ENCRYPT_AND_SIGN to SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in your object model.

Change an existing SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute to
ENCRYPT_AND_SIGN

To change an existing SIGN_ONLY or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute
to ENCRYPT_AND_SIGN, you must update your attribute actions. After you deploy the update, the
client will be able to verify the existing values written to the attribute, and will encrypt and sign
new values written to the attribute.

Using an annotated data class

If you defined your attribute actions with a TableSchema, remove the
@DynamoDBEncryptionSignOnly or
@DynamoDBEncryptionSignAndIncludeInEncryptionContext annotation from the existing
attribute.

Using an object model

If you manually defined your attribute actions, update the attribute action associated with
the attribute from SIGN_ONLY or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT to
ENCRYPT_AND_SIGN in your object model.

Add a new DO_NOTHING attribute

To reduce the risk of error when adding a new DO_NOTHING attribute, we recommend specifying a
distinct prefix when naming your DO_NOTHING attributes, and then using that prefix to define your
allowed unsigned attributes.

You cannot remove an existing ENCRYPT_AND_SIGN, SIGN_ONLY, or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute from your annotated data class
and then add the attribute back as a DO_NOTHING attribute. You can only add entirely new
DO_NOTHING attributes.

The steps you take to add a new DO_NOTHING attribute depend on whether your defined your
allowed unsigned attributes explicitly in a list or with a prefix.

Change an existing SIGN_ONLY or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute to
ENCRYPT_AND_SIGN

188

AWS Database Encryption SDK Developer Guide

Using an allowed unsigned attributes prefix

If you defined your attribute actions with a TableSchema, add the new DO_NOTHING attribute
to your annotated data class with the @DynamoDBEncryptionDoNothing annotation. If you
manually defined your attribute actions, update your attribute actions to include the new attribute.
Be sure to explicitly configure the new attribute with the DO_NOTHING attribute action. You must
include the same distinct prefix in the new attribute's name.

Using an allowed unsigned attributes list

1. Add the new DO_NOTHING attribute to your allowed unsigned attributes list and deploy the
updated list.

2. Deploy the change from Step 1.

You cannot move on to Step 3 until the change has propagated to all hosts that need to read
this data.

3. Add the new DO_NOTHING attribute to your attribute actions.

a. If you defined your attribute actions with a TableSchema, add the new DO_NOTHING
attribute to your annotated data class with the @DynamoDBEncryptionDoNothing
annotation.

b. If you manually defined your attribute actions, update your attribute actions to include
the new attribute. Be sure to explicitly configure the new attribute with the DO_NOTHING
attribute action.

4. Deploy the change from Step 3.

Change an existing SIGN_ONLY attribute to
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

To change an existing SIGN_ONLY attribute to SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT,
you must update your attribute actions. After you deploy the update, the client will be able to
verify the existing values written to the attribute, and will continue to sign new values written to
the attribute. New values written to the attribute will be included in the encryption context.

If you specify any SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributes, then the partition
and sort attributes must also be SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Using an annotated data class

Change an existing SIGN_ONLY attribute to SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 189

AWS Database Encryption SDK Developer Guide

If you defined your attribute actions with a TableSchema, update the attribute
action associated with the attribute from @DynamoDBEncryptionSignOnly to
@DynamoDBEncryptionSignAndIncludeInEncryptionContext.

Using an object model

If you manually defined your attribute actions, update the attribute action associated with the
attribute from SIGN_ONLY to SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in your object
model.

Change an existing SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
attribute to SIGN_ONLY

To change an existing SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute to SIGN_ONLY,
you must update your attribute actions. After you deploy the update, the client will be able to
verify the existing values written to the attribute, and will continue to sign new values written to
the attribute. New values written to the attribute will not be included in the encryption context.

Before changing an existing SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute to
SIGN_ONLY, carefully consider how your updates might impact the functionality of your branch
key ID supplier.

Using an annotated data class

If you defined your attribute actions with a TableSchema, update the attribute action associated
with the attribute from @DynamoDBEncryptionSignAndIncludeInEncryptionContext to
@DynamoDBEncryptionSignOnly.

Using an object model

If you manually defined your attribute actions, update the attribute action associated with the
attribute from SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT to SIGN_ONLY in your object
model.

AWS Database Encryption SDK for DynamoDB available
programming languages

The AWS Database Encryption SDK for DynamoDB is available for the following programming
languages. The language-specific libraries vary, but the resulting implementations are
interoperable. You can encrypt with one language implementation and decrypt with another.

Change an existing SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute to SIGN_ONLY 190

AWS Database Encryption SDK Developer Guide

Interoperability might be subject to language constraints. If so, these constraints are described in
the topic about the language implementation.

Topics

• Java

• .NET

• Rust

Java

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

This topic explains how to install and use version 3.x of the Java client-side encryption library
for DynamoDB. For details about programming with the AWS Database Encryption SDK for
DynamoDB, see the Java examples in the aws-database-encryption-sdk-dynamodb repository on
GitHub.

Note

The following topics focus on version 3.x of the Java client-side encryption library for
DynamoDB.
Our client-side encryption library was renamed to AWS Database Encryption SDK. The
AWS Database Encryption SDK continues to support legacy DynamoDB Encryption Client
versions.

Topics

• Prerequisites

• Installation

• Using the Java client-side encryption library for DynamoDB

• Java examples

• Configure an existing DynamoDB table to use the AWS Database Encryption SDK for DynamoDB

• Migrate to version 3.x of the Java client-side encryption library for DynamoDB

Java 191

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS Database Encryption SDK Developer Guide

Prerequisites

Before you install version 3.x of the Java client-side encryption library for DynamoDB, be sure you
have the following prerequisites.

A Java development environment

You will need Java 8 or later. On the Oracle website, go to Java SE Downloads, and then
download and install the Java SE Development Kit (JDK).

If you use the Oracle JDK, you must also download and install the Java Cryptography Extension
(JCE) Unlimited Strength Jurisdiction Policy Files.

AWS SDK for Java 2.x

The AWS Database Encryption SDK for DynamoDB requires the DynamoDB Enhanced Client
module of the AWS SDK for Java 2.x. You can install the entire SDK or just this module.

For information about updating your version of the AWS SDK for Java, see Migrating from
version 1.x to 2.x of the AWS SDK for Java.

The AWS SDK for Java is available through Apache Maven. You can declare a dependency for
the entire AWS SDK for Java, or just the dynamodb-enhanced module.

Install the AWS SDK for Java using Apache Maven

• To import the entire AWS SDK for Java as a dependency, declare it in your pom.xml file.

• To create a dependency only for the Amazon DynamoDB module in the AWS SDK for
Java, follow the instructions for specifying particular modules. Set the groupId to
software.amazon.awssdk and the artifactID to dynamodb-enhanced.

Note

If you use the AWS KMS keyring or AWS KMS Hierarchical keyring, you also
need to create a dependency for the AWS KMS module. Set the groupId to
software.amazon.awssdk and the artifactID to kms.

Installation

You can install version 3.x of the Java client-side encryption library for DynamoDB in the following
ways.

Java 192

https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies

AWS Database Encryption SDK Developer Guide

Using Apache Maven

The Amazon DynamoDB Encryption Client for Java is available through Apache Maven with the
following dependency definition.

<dependency>
 <groupId>software.amazon.cryptography</groupId>
 <artifactId>aws-database-encryption-sdk-dynamodb</artifactId>
 <version>version-number</version>
</dependency>

Using Gradle Kotlin

You can use Gradle to declare a dependency on The Amazon DynamoDB Encryption Client for
Java by adding the following to the dependencies section of your Gradle project.

implementation("software.amazon.cryptography:aws-database-encryption-sdk-
dynamodb:version-number")

Manually

To install the Java client-side encryption library for DynamoDB, clone or download the aws-
database-encryption-sdk-dynamodb GitHub repository.

After you install the SDK, get started by looking at the example code in this guide and the Java
examples in the aws-database-encryption-sdk-dynamodb repository on GitHub.

Using the Java client-side encryption library for DynamoDB

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

This topic explains some of the functions and helper classes in version 3.x of the Java client-side
encryption library for DynamoDB.

For details about programming with the Java client-side encryption library for DynamoDB, see the
Java examples, the Java examples in the aws-database-encryption-sdk-dynamodb repository on
GitHub.

Java 193

https://maven.apache.org/
https://gradle.org/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS Database Encryption SDK Developer Guide

Topics

• Item encryptors

• Attribute actions in the AWS Database Encryption SDK for DynamoDB

• Encryption configuration in the AWS Database Encryption SDK for DynamoDB

• Updating items with the AWS Database Encryption SDK

• Decrypting signed sets

Item encryptors

At its core, the AWS Database Encryption SDK for DynamoDB is an item encryptor. You can use
version 3.x of the Java client-side encryption library for DynamoDB to encrypt, sign, verify, and
decrypt your DynamoDB table items in the following ways.

The DynamoDB Enhanced Client

You can configure the DynamoDB Enhanced Client with the
DynamoDbEncryptionInterceptor to automatically encrypt and sign items client-side with
your DynamoDB PutItem requests. With the DynamoDB Enhanced Client, you can define your
attribute actions using an annotated data class. We recommend using the DynamoDB Enhanced
Client whenever possible.

The DynamoDB Enhanced Client does not support searchable encryption.

Note

The AWS Database Encryption SDK does not support annotations on nested attributes.

The low-level DynamoDB API

You can configure the low-level DynamoDB API with the DynamoDbEncryptionInterceptor
to automatically encrypt and sign items client-side with your DynamoDB PutItem requests.

You must use the low-level DynamoDB API to use searchable encryption.

The lower-level DynamoDbItemEncryptor

The lower-level DynamoDbItemEncryptor directly encrypts and signs or decrypts and verifies
your table items without calling DynamoDB. It does not make DynamoDB PutItem or GetItem

Java 194

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html

AWS Database Encryption SDK Developer Guide

requests. For example, you can use the lower-level DynamoDbItemEncryptor to directly
decrypt and verify a DynamoDB item that you have already retrieved.

The lower-level DynamoDbItemEncryptor does not support searchable encryption.

Attribute actions in the AWS Database Encryption SDK for DynamoDB

Attribute actions determine which attribute values are encrypted and signed, which are only
signed, which are signed and included in the encryption context, and which are ignored.

Note

To use the SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographic
action, you must use version 3.3 or later of the AWS Database Encryption SDK.
Deploy the new version to all readers before updating your data model to include
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

If you use the low-level DynamoDB API or the lower-level DynamoDbItemEncryptor, you must
manually define your attribute actions. If you use the DynamoDB Enhanced Client you can either
manually define your attribute actions, or you can use an annotated data class to generate a
TableSchema. To simplify the configuration process, we recommend using an annotated data
class. When you use an annotated data class, you only have to model your object once.

Note

After you define your attribute actions, you must define which attributes are excluded
from the signatures. To make it easier to add new unsigned attributes in the future, we
recommend choosing a distinct prefix (such as ":") to identify your unsigned attributes.
Include this prefix in the attribute name for all attributes marked DO_NOTHING as you
define your DynamoDB schema and attribute actions.

Use an annotated data class

Use an annotated data class to specify your attribute actions with the DynamoDB Enhanced Client
and DynamoDbEncryptionInterceptor. The AWS Database Encryption SDK for DynamoDB uses
the standard DynamoDB attribute annotations that define the attribute type to determine how to

Java 195

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/mapper/annotations/package-summary.html

AWS Database Encryption SDK Developer Guide

protect an attribute. By default, all attributes are encrypted and signed except for primary keys,
which are signed but not encrypted.

Note

To use the SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographic
action, you must use version 3.3 or later of the AWS Database Encryption SDK.
Deploy the new version to all readers before updating your data model to include
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

See SimpleClass.java in the aws-database-encryption-sdk-dynamodb repository on GitHub for
more guidance on the DynamoDB Enhanced Client annotations.

By default, primary key attributes are signed but not encrypted (SIGN_ONLY) and all other
attributes are encrypted and signed (ENCRYPT_AND_SIGN). If you define any attributes as
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, then the partition and sort attributes must also
be SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. To specify exceptions, use the encryption
annotations defined in the Java client-side encryption library for DynamoDB. For example, if
you want a particular attribute to only be signed use the @DynamoDbEncryptionSignOnly
annotation. If you want a particular attribute to be signed and included in the encryption
context, use the @DynamoDbEncryptionSignAndIncludeInEncryptionContext. If
you want a particular attribute to be neither signed nor encrypted (DO_NOTHING), use the
@DynamoDbEncryptionDoNothing annotation.

Note

The AWS Database Encryption SDK does not support annotations on nested attributes.

The following example shows the annotations used to define ENCRYPT_AND_SIGN, SIGN_ONLY,
and DO_NOTHINGattribute actions. For an example that shows the annotations used to define
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, see SimpleClass4.java.

@DynamoDbBean
public class SimpleClass {

 private String partitionKey;
 private int sortKey;

Java 196

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS Database Encryption SDK Developer Guide

 private String attribute1;
 private String attribute2;
 private String attribute3;

 @DynamoDbPartitionKey
 @DynamoDbAttribute(value = "partition_key")
 public String getPartitionKey() {
 return this.partitionKey;
 }

 public void setPartitionKey(String partitionKey) {
 this.partitionKey = partitionKey;
 }

 @DynamoDbSortKey
 @DynamoDbAttribute(value = "sort_key")
 public int getSortKey() {
 return this.sortKey;
 }

 public void setSortKey(int sortKey) {
 this.sortKey = sortKey;
 }

 public String getAttribute1() {
 return this.attribute1;
 }

 public void setAttribute1(String attribute1) {
 this.attribute1 = attribute1;
 }

 @DynamoDbEncryptionSignOnly
 public String getAttribute2() {
 return this.attribute2;
 }

 public void setAttribute2(String attribute2) {
 this.attribute2 = attribute2;
 }

 @DynamoDbEncryptionDoNothing
 public String getAttribute3() {
 return this.attribute3;

Java 197

AWS Database Encryption SDK Developer Guide

 }

 @DynamoDbAttribute(value = ":attribute3")
 public void setAttribute3(String attribute3) {
 this.attribute3 = attribute3;
 }

}

Use your annotated data class to create the TableSchema as shown in the following snippet.

final TableSchema<SimpleClass> tableSchema = TableSchema.fromBean(SimpleClass.class);

Manually define your attribute actions

To manually specify attribute actions, create a Map object in which the name-value pairs represent
attribute names and the specified actions.

Specify ENCRYPT_AND_SIGN to encrypt and sign an attribute. Specify SIGN_ONLY to sign, but
not encrypt, an attribute. Specify SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT to sign an
attribute and include it in the encryption context. You cannot encrypt an attribute without also
signing it. Specify DO_NOTHING to ignore an attribute.

The partition and sort attributes must be either SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. If you define any attributes as
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, then the partition and sort attributes must also
be SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

To use the SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographic
action, you must use version 3.3 or later of the AWS Database Encryption SDK.
Deploy the new version to all readers before updating your data model to include
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be signed
attributeActionsOnEncrypt.put("partition_key",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);

Java 198

AWS Database Encryption SDK Developer Guide

// The sort attribute must be signed
attributeActionsOnEncrypt.put("sort_key",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute3",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
attributeActionsOnEncrypt.put(":attribute4", CryptoAction.DO_NOTHING);

Encryption configuration in the AWS Database Encryption SDK for DynamoDB

When you use the AWS Database Encryption SDK, you must explicitly define an encryption
configuration for your DynamoDB table. The values required in your encryption configuration
depend on whether you defined your attribute actions manually or with an annotated data class.

The following snippet defines a DynamoDB table encryption configuration using the DynamoDB
Enhanced Client, TableSchema, and allowed unsigned attributes defined by a distinct prefix.

final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .schemaOnEncrypt(tableSchema)
 // Optional: only required if you use beacons
 .search(SearchConfig.builder()
 .writeVersion(1) // MUST be 1
 .versions(beaconVersions)
 .build())
 .build());

Logical table name

A logical table name for your DynamoDB table.

The logical table name is cryptographically bound to all data stored in the table to simplify
DynamoDB restore operations. We strongly recommend specifying your DynamoDB table name
as the logical table name when you first define your encryption configuration. You must always
specify the same logical table name. For decryption to succeed, the logical table name must
match the name specified on encryption. In the event that your DynamoDB table name changes

Java 199

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html

AWS Database Encryption SDK Developer Guide

after restoring your DynamoDB table from a backup, the logical table name ensures that the
decrypt operation still recognizes the table.

Allowed unsigned attributes

The attributes marked DO_NOTHING in your attribute actions.

The allowed unsigned attributes tell the client which attributes are excluded from the
signatures. The client assumes that all other attributes are included in the signature. Then,
when decrypting a record, the client determines which attributes it needs to verify and which
to ignore from the allowed unsigned attributes you specified. You cannot remove an attribute
from your allowed unsigned attributes.

You can define the allowed unsigned attributes explicitly by creating an array that lists all
of your DO_NOTHING attributes. You can also specify a distinct prefix when naming your
DO_NOTHING attributes and use the prefix to tell the client which attributes are unsigned. We
strongly recommend specifying a distinct prefix because it simplifies the process of adding a
new DO_NOTHING attribute in the future. For more information, see Updating your data model.

If you do not specify a prefix for all DO_NOTHING attributes, you can configure an
allowedUnsignedAttributes array that explicitly lists all of the attributes that the client
should expect to be unsigned when it encounters them on decryption. You should only
explicitly define your allowed unsigned attributes if absolutely necessary.

Search Configuration (Optional)

The SearchConfig defines the beacon version.

The SearchConfig must be specified to use searchable encryption or signed beacons.

Algorithm Suite (Optional)

The algorithmSuiteId defines which algorithm suite the AWS Database Encryption SDK
uses.

Unless you explicitly specify an alternative algorithm suite, the AWS Database Encryption SDK
uses the default algorithm suite. The default algorithm suite uses the AES-GCM algorithm with
key derivation, digital signatures, and key commitment. Although the default algorithm suite
is likely to be suitable for most applications, you can choose an alternate algorithm suite. For
example, some trust models would be satisfied by an algorithm suite without digital signatures.
For information about the algorithm suites that the AWS Database Encryption SDK supports,
see Supported algorithm suites in the AWS Database Encryption SDK.

Java 200

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Database Encryption SDK Developer Guide

To select the AES-GCM algorithm suite without ECDSA digital signatures, include the following
snippet in your table encryption configuration.

.algorithmSuiteId(
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384)

Updating items with the AWS Database Encryption SDK

The AWS Database Encryption SDK does not support ddb:UpdateItem for items that have been
encrypted or signed. To update an encrypted or signed item, you must use ddb:PutItem. When
you specify the same primary key as an existing item in your PutItem request, the new item
completely replaces the existing item. You can also use CLOBBER to clear and replace all attributes
on save after updating your items.

Decrypting signed sets

In versions 3.0.0 and 3.1.0 of the AWS Database Encryption SDK, if you define a set type attribute
as SIGN_ONLY, the values of the set are canonicalized in the order that they are provided.
DynamoDB does not preserve the order of sets. As a result, there is a chance that signature
validation of the item that contains the set will fail. Signature validation fails when the values of
the set are returned in a different order than they were provided to the AWS Database Encryption
SDK, even if the set attributes contain the same values.

Note

Versions 3.1.1 and later of the AWS Database Encryption SDK canonicalize the values of all
set type attributes, so that the values are read in the same order that they were written to
DynamoDB.

If signature validation fails, the decrypt operation fails and returns the following error message.

software.amazon.cryptography.dbencryptionsdk.structuredencryption.model.StructuredEncrypti
onException: No recipient tag matched.

If you receive the above error message, and believe that the item you are trying to decrypt includes
a set that was signed using version 3.0.0 or 3.1.0, see the DecryptWithPermute directory of

Java 201

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.SaveBehavior.html#CLOBBER
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.SetTypes
https://github.com/aws/aws-database-encryption-sdk-dynamodb-java/tree/v3.1.1/DecryptWithPermute

AWS Database Encryption SDK Developer Guide

the aws-database-encryption-sdk-dynamodb-java repository on GitHub for details on how to
successfully validate the set.

Java examples

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The following examples show you how to use the Java client-side encryption library for DynamoDB
to protect the table items in your application. You can find more examples (and contribute your
own) in the Java examples in the aws-database-encryption-sdk-dynamodb repository on GitHub.

The following examples demonstrate how to configure the Java client-side encryption library for
DynamoDB in a new, unpopulated Amazon DynamoDB table. If you want to configure your existing
Amazon DynamoDB tables for client-side encryption, see Add version 3.x to an existing table.

Topics

• Using the DynamoDB enhanced client

• Using the low-level DynamoDB API

• Using the lower-level DynamoDbItemEncryptor

Using the DynamoDB enhanced client

The following example shows how to use the DynamoDB Enhanced Client and
DynamoDbEncryptionInterceptor with an AWS KMS keyring to encrypt DynamoDB table items
as part of your DynamoDB API calls.

You can use any supported keyring with the DynamoDB Enhanced Client, but we recommend using
one of the AWS KMS keyrings whenever possible.

Note

The DynamoDB Enhanced Client does not support searchable encryption. Use the
DynamoDbEncryptionInterceptor with the low-level DynamoDB API to use searchable
encryption.

Java 202

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS Database Encryption SDK Developer Guide

See the complete code sample: EnhancedPutGetExample.java

Step 1: Create the AWS KMS keyring

The following example uses CreateAwsKmsMrkMultiKeyring to create an AWS KMS keyring
with a symmetric encryption KMS key. The CreateAwsKmsMrkMultiKeyring method ensures
that the keyring will correctly handle both single-Region and multi-Region keys.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Step 2: Create a table schema from the annotated data class

The following example uses the annotated data class to create the TableSchema.

This example assumes that the annotated data class and attribute actions were defined using
the SimpleClass.java. For more guidance on annotating your attribute actions, see Use an
annotated data class.

Note

The AWS Database Encryption SDK does not support annotations on nested attributes.

final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

Step 3: Define which attributes are excluded from the signatures

The following example assumes that all DO_NOTHING attributes share the distinct prefix ":",
and uses the prefix to define the allowed unsigned attributes. The client assumes that any
attribute name with the ":" prefix is excluded from the signatures. For more information, see
Allowed unsigned attributes.

Java 203

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/EnhancedPutGetExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html

AWS Database Encryption SDK Developer Guide

final String unsignedAttrPrefix = ":";

Step 4: Create the encryption configuration

The following example defines a tableConfigs Map that represents the encryption
configuration for the DynamoDB table.

This example specifies the DynamoDB table name as the logical table name. We strongly
recommend specifying your DynamoDB table name as the logical table name when you first
define your encryption configuration. For more information, see Encryption configuration in the
AWS Database Encryption SDK for DynamoDB.

Note

To use searchable encryption or signed beacons, you must also include the
SearchConfig in your encryption configuration.

final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .schemaOnEncrypt(tableSchema)
 .build());

Step 5: Creates the DynamoDbEncryptionInterceptor

The following example creates a new DynamoDbEncryptionInterceptor with the
tableConfigs from Step 4.

final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

Java 204

AWS Database Encryption SDK Developer Guide

Step 6: Create a new AWS SDK DynamoDB client

The following example creates a new AWS SDK DynamoDB client using the interceptor from
Step 5.

final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

Step 7: Create the DynamoDB Enhanced Client and create a table

The following example creates the DynamoDB Enhanced Client using the AWS SDK DynamoDB
client created in Step 6 and creates a table using the annotated data class.

final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);

Step 8: Encrypt and sign a table item

The following example puts an item into the DynamoDB table using the DynamoDB Enhanced
Client. The item is encrypted and signed client-side before it is send to DynamoDB.

final SimpleClass item = new SimpleClass();
item.setPartitionKey("EnhancedPutGetExample");
item.setSortKey(0);
item.setAttribute1("encrypt and sign me!");
item.setAttribute2("sign me!");
item.setAttribute3("ignore me!");

table.putItem(item);

Using the low-level DynamoDB API

The following example shows how to use the low-level DynamoDB API with an AWS KMS keyring
to automatically encrypt and sign items client-side with your DynamoDB PutItem requests.

Java 205

AWS Database Encryption SDK Developer Guide

You can use any supported keyring, but we recommend using one of the AWS KMS keyrings
whenever possible.

See the complete code sample: BasicPutGetExample.java

Step 1: Create the AWS KMS keyring

The following example uses CreateAwsKmsMrkMultiKeyring to create an AWS KMS keyring
with a symmetric encryption KMS key. The CreateAwsKmsMrkMultiKeyring method ensures
that the keyring will correctly handle both single-Region and multi-Region keys.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Step 2: Configure your attribute actions

The following example defines an attributeActionsOnEncrypt Map that represents sample
attribute actions for a table item.

Note

The following example does not define any attributes as
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. If you specify any
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributes, then the partition and
sort attributes must also be SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("partition_key", CryptoAction.SIGN_ONLY);
// The sort attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("sort_key", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put(":attribute3", CryptoAction.DO_NOTHING);

Java 206

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/BasicPutGetExample.java

AWS Database Encryption SDK Developer Guide

Step 3: Define which attributes are excluded from the signatures

The following example assumes that all DO_NOTHING attributes share the distinct prefix ":",
and uses the prefix to define the allowed unsigned attributes. The client assumes that any
attribute name with the ":" prefix is excluded from the signatures. For more information, see
Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

Step 4: Define the DynamoDB table encryption configuration

The following example defines a tableConfigs Map that represents the encryption
configuration for this DynamoDB table.

This example specifies the DynamoDB table name as the logical table name. We strongly
recommend specifying your DynamoDB table name as the logical table name when you first
define your encryption configuration. For more information, see Encryption configuration in the
AWS Database Encryption SDK for DynamoDB.

Note

To use searchable encryption or signed beacons, you must also include the
SearchConfig in your encryption configuration.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .attributeActionsOnEncrypt(attributeActionsOnEncrypt)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .build();
tableConfigs.put(ddbTableName, config);

Step 5: Create the DynamoDbEncryptionInterceptor

The following example creates the DynamoDbEncryptionInterceptor using the
tableConfigs from Step 4.

Java 207

AWS Database Encryption SDK Developer Guide

DynamoDbEncryptionInterceptor interceptor = DynamoDbEncryptionInterceptor.builder()
 .config(DynamoDbTablesEncryptionConfig.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build())
 .build();

Step 6: Create a new AWS SDK DynamoDB client

The following example creates a new AWS SDK DynamoDB client using the interceptor from
Step 5.

final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

Step 7: Encrypt and sign a DynamoDB table item

The following example defines an item Map that represents a sample table item and puts the
item in the DynamoDB table. The item is encrypted and signed client-side before it is sent to
DynamoDB.

final HashMap<String, AttributeValue> item = new HashMap<>();
item.put("partition_key", AttributeValue.builder().s("BasicPutGetExample").build());
item.put("sort_key", AttributeValue.builder().n("0").build());
item.put("attribute1", AttributeValue.builder().s("encrypt and sign me!").build());
item.put("attribute2", AttributeValue.builder().s("sign me!").build());
item.put(":attribute3", AttributeValue.builder().s("ignore me!").build());

final PutItemRequest putRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(item)
 .build();

final PutItemResponse putResponse = ddb.putItem(putRequest);

Java 208

AWS Database Encryption SDK Developer Guide

Using the lower-level DynamoDbItemEncryptor

The following example shows how to use the lower-level DynamoDbItemEncryptor with an AWS
KMS keyring to directly encrypt and sign table items. The DynamoDbItemEncryptor does not put
the item in your DynamoDB table.

You can use any supported keyring with the DynamoDB Enhanced Client, but we recommend using
one of the AWS KMS keyrings whenever possible.

Note

The lower-level DynamoDbItemEncryptor does not support searchable encryption.
Use the DynamoDbEncryptionInterceptor with the low-level DynamoDB API to use
searchable encryption.

See the complete code sample: ItemEncryptDecryptExample.java

Step 1: Create the AWS KMS keyring

The following example uses CreateAwsKmsMrkMultiKeyring to create an AWS KMS keyring
with a symmetric encryption KMS key. The CreateAwsKmsMrkMultiKeyring method ensures
that the keyring will correctly handle both single-Region and multi-Region keys.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Step 2: Configure your attribute actions

The following example defines an attributeActionsOnEncrypt Map that represents sample
attribute actions for a table item.

Java 209

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/itemencryptor/ItemEncryptDecryptExample.java

AWS Database Encryption SDK Developer Guide

Note

The following example does not define any attributes as
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. If you specify any
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributes, then the partition and
sort attributes must also be SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("partition_key", CryptoAction.SIGN_ONLY);
// The sort attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("sort_key", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put(":attribute3", CryptoAction.DO_NOTHING);

Step 3: Define which attributes are excluded from the signatures

The following example assumes that all DO_NOTHING attributes share the distinct prefix ":",
and uses the prefix to define the allowed unsigned attributes. The client assumes that any
attribute name with the ":" prefix is excluded from the signatures. For more information, see
Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

Step 4: Define the DynamoDbItemEncryptor configuration

The following example defines the configuration for the DynamoDbItemEncryptor.

This example specifies the DynamoDB table name as the logical table name. We strongly
recommend specifying your DynamoDB table name as the logical table name when you first
define your encryption configuration. For more information, see Encryption configuration in the
AWS Database Encryption SDK for DynamoDB.

final DynamoDbItemEncryptorConfig config = DynamoDbItemEncryptorConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .attributeActionsOnEncrypt(attributeActionsOnEncrypt)

Java 210

AWS Database Encryption SDK Developer Guide

 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .build();

Step 5: Create the DynamoDbItemEncryptor

The following example creates a new DynamoDbItemEncryptor using the config from Step
4.

final DynamoDbItemEncryptor itemEncryptor = DynamoDbItemEncryptor.builder()
 .DynamoDbItemEncryptorConfig(config)
 .build();

Step 6: Directly encrypt and sign a table item

The following example directly encrypts and signs an item using the
DynamoDbItemEncryptor. The DynamoDbItemEncryptor does not put the item in your
DynamoDB table.

final Map<String, AttributeValue> originalItem = new HashMap<>();
originalItem.put("partition_key",
 AttributeValue.builder().s("ItemEncryptDecryptExample").build());
originalItem.put("sort_key", AttributeValue.builder().n("0").build());
originalItem.put("attribute1", AttributeValue.builder().s("encrypt and sign
 me!").build());
originalItem.put("attribute2", AttributeValue.builder().s("sign me!").build());
originalItem.put(":attribute3", AttributeValue.builder().s("ignore me!").build());

final Map<String, AttributeValue> encryptedItem = itemEncryptor.EncryptItem(
 EncryptItemInput.builder()
 .plaintextItem(originalItem)
 .build()
).encryptedItem();

Configure an existing DynamoDB table to use the AWS Database Encryption SDK
for DynamoDB

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

Java 211

AWS Database Encryption SDK Developer Guide

With version 3.x of the Java client-side encryption library for DynamoDB, you can configure your
existing Amazon DynamoDB tables for client-side encryption. This topic provides guidance on the
three steps you must take to add version 3.x to an existing, populated DynamoDB table.

Prerequisites

Version 3.x of the Java client-side encryption library for DynamoDB requires the DynamoDB
Enhanced Client provided in AWS SDK for Java 2.x . If you still use the DynamoDBMapper, you must
migrate to AWS SDK for Java 2.x to use the DynamoDB Enhanced Client.

Follow the instructions for migrating from version 1.x to 2.x of the AWS SDK for Java.

Then, follow the instructions to Get Started using the DynamoDB Enhanced Client API.

Before configuring your table to use the Java client-side encryption library for DynamoDB, you
need to generate a TableSchema using an annotated data class and create an enhanced client.

Step 1: Prepare to read and write encrypted items

Complete the following steps to prepare your AWS Database Encryption SDK client to read and
write encrypted items. After you deploy the following changes, your client will continue to read
and write plaintext items. It will not encrypt or sign any new items written to the table, but it will
be able to decrypt encrypted items as soon as they appear. These changes prepare the client to
begin encrypting new items. The following changes must be deployed to each reader before you
proceed to the next step.

1. Define your attribute actions

Update your annotated data class to include attribute actions that define which attribute values
will be encrypted and signed, which will be only signed, and which will be ignored.

See the SimpleClass.java in the aws-database-encryption-sdk-dynamodb repository on GitHub
for more guidance on the DynamoDB Enhanced Client annotations.

By default, primary key attributes are signed but not encrypted (SIGN_ONLY)
and all other attributes are encrypted and signed (ENCRYPT_AND_SIGN). To
specify exceptions, use the encryption annotations defined in the Java client-side
encryption library for DynamoDB. For example, if you want a particular attribute
to be sign only use the @DynamoDbEncryptionSignOnly annotation. If you want
a particular attribute to be signed and included in the encryption context, use the

Java 212

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java

AWS Database Encryption SDK Developer Guide

@DynamoDbEncryptionSignAndIncludeInEncryptionContext annotation. If you
want a particular attribute to be neither signed nor encrypted (DO_NOTHING), use the
@DynamoDbEncryptionDoNothing annotation.

Note

If you specify any SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
attributes, then the partition and sort attributes must also be
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. For an example that shows the
annotations used to define SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, see
SimpleClass4.java.

For example annotations, see Use an annotated data class.

2. Define which attributes will be excluded from the signatures

The following example assumes that all DO_NOTHING attributes share the distinct prefix ":",
and uses the prefix to define the allowed unsigned attributes. The client will assume that any
attribute name with the ":" prefix is excluded from the signatures. For more information, see
Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

3. Create a keyring

The following example creates an AWS KMS keyring. The AWS KMS keyring uses symmetric
encryption or asymmetric RSA AWS KMS keys to generate, encrypt, and decrypt data keys.

This example uses CreateMrkMultiKeyring to create an AWS KMS keyring with a symmetric
encryption KMS key. The CreateAwsKmsMrkMultiKeyring method ensures that the keyring
will correctly handle both single-Region and multi-Region keys.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)

Java 213

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS Database Encryption SDK Developer Guide

 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

4. Define the DynamoDB table encryption configuration

The following example defines a tableConfigs Map that represents the encryption
configuration for this DynamoDB table.

This example specifies the DynamoDB table name as the logical table name. We strongly
recommend specifying your DynamoDB table name as the logical table name when you first
define your encryption configuration. For more information, see Encryption configuration in the
AWS Database Encryption SDK for DynamoDB.

You must specify FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT as the plaintext
override. This policy continues to read and write plaintext items, reads encrypted items, and
prepares the client to write encrypted items.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)

 .plaintextOverride(PlaintextOverride.FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

5. Create the DynamoDbEncryptionInterceptor

The following example creates the DynamoDbEncryptionInterceptor using the
tableConfigs from Step 3.

DynamoDbEncryptionInterceptor interceptor = DynamoDbEncryptionInterceptor.builder()
 .config(DynamoDbTablesEncryptionConfig.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build())
 .build();

Java 214

AWS Database Encryption SDK Developer Guide

Step 2: Write encrypted and signed items

Update the plaintext policy in your DynamoDbEncryptionInterceptor configuration to allow
the client to write encrypted and signed items. After you deploy the following change, the client
will encrypt and sign new items based on the attribute actions you configured in Step 1. The client
will be able read plaintext items and encrypted and signed items.

Before you proceed to Step 3, you must encrypt and sign all existing plaintext items in your table.
There is no single metric or query that you can run to quickly encrypt your existing plaintext
items. Use the process that makes the most sense for your system. For example, you could use an
asynchronous process that slowly scans the table and the rewrites the items using the attribute
actions and encryption configuration you defined. To identify the plaintext items in your table, we
recommend scanning for all items that do not contain the aws_dbe_head and aws_dbe_foot
attributes that the AWS Database Encryption SDK adds to items when they're encrypted and
signed.

The following example updates the table encryption configuration from Step 1. You must update
the plaintext override with FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT. This policy
continues to read plaintext items, but also reads and writes encrypted items. Create a new
DynamoDbEncryptionInterceptor using the updated tableConfigs.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)

 .plaintextOverride(PlaintextOverride.FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

Step 3: Only read encrypted and signed items

After you have encrypted and signed all of your items, update the plaintext override in your
DynamoDbEncryptionInterceptor configuration to only allow the client to read and write
encrypted and signed items. After you deploy the following change, the client will encrypt and sign

Java 215

AWS Database Encryption SDK Developer Guide

new items based on the attribute actions you configured in Step 1. The client will only be able read
encrypted and signed items.

The following example updates the table encryption configuration from Step 2. You can either
update the plaintext override with FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT or
remove the plaintext policy from your configuration. The client only reads and writes encrypted
and signed items by default. Create a new DynamoDbEncryptionInterceptor using the
updated tableConfigs.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 // Optional: you can also remove the plaintext policy from your configuration

 .plaintextOverride(PlaintextOverride.FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

Migrate to version 3.x of the Java client-side encryption library for DynamoDB

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

Version 3.x of the Java client-side encryption library for DynamoDB is a major rewrite of the 2.x
code base. It includes many updates, such as a new structured data format, improved multitenancy
support, seamless schema changes, and searchable encryption support. This topic provides
guidance on how to migrate your code to version 3.x.

Migrating from version 1.x to 2.x

Migrate to version 2.x before you migrate to version 3.x. Version 2.x changed the symbol for
the Most Recent Provider from MostRecentProvider to CachingMostRecentProvider.
If you currently use version 1.x of the Java client-side encryption library for DynamoDB with

Java 216

AWS Database Encryption SDK Developer Guide

the MostRecentProvider symbol, you must update the symbol name in your code to
CachingMostRecentProvider. For more information, see Updates to the Most Recent Provider.

Migrating from version 2.x to 3.x

The following procedures describe how to migrate your code from version 2.x to version 3.x of the
Java client-side encryption library for DynamoDB.

Step 1. Prepare to read items in the new format

Complete the following steps to prepare your AWS Database Encryption SDK client to read items
in the new format. After you deploy the following changes, your client will continue to behave in
the same manner that it did in version 2.x. Your client will continue to read and write items in the
version 2.x format, but these changes prepare the client to read items in the new format.

Update your AWS SDK for Java to version 2.x

Version 3.x of the Java client-side encryption library for DynamoDB requires the DynamoDB
Enhanced Client. The DynamoDB Enhanced Client replaces the DynamoDBMapper used in
previous versions. To use the enhanced client, you must use the AWS SDK for Java 2.x.

Follow the instructions for migrating from version 1.x to 2.x of the AWS SDK for Java.

For more information on what AWS SDK for Java 2.x modules are required, see Prerequisites.

Configure your client to read items encrypted by legacy versions

The following procedures provide an overview of the steps demonstrated in the code example
below.

1. Create a keyring.

Keyrings and cryptographic materials managers replace the cryptographic materials
providers used in previous versions of the Java client-side encryption library for DynamoDB.

Important

The wrapping keys you specify when creating a keyring must be the same wrapping
keys you used with your cryptographic materials provider in version 2.x.

2. Create a table schema over your annotated class.

Java 217

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html

AWS Database Encryption SDK Developer Guide

This step defines the attribute actions that will be used when you begin writing items in the
new format.

For guidance on using the new DynamoDB Enhanced Client, see the Generate a
TableSchema in the AWS SDK for Java Developer Guide.

The following example assumes you updated your annotated class from version 2.x using
the new attribute actions annotations. For more guidance on annotating your attribute
actions, see Use an annotated data class.

Note

If you specify any SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
attributes, then the partition and sort attributes must also be
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. For an example that shows the
annotations used to define SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, see
SimpleClass4.java.

3. Define which attributes are excluded from the signature.

4. Configure an explicit map of the attribute actions configured in your version 2.x modeled
class.

This step defines the attribute actions used to write items in the old format.

5. Configure the DynamoDBEncryptor you used in version 2.x of the Java client-side
encryption library for DynamoDB.

6. Configure the legacy behavior.

7. Create a DynamoDbEncryptionInterceptor.

8. Create a new AWS SDK DynamoDB client.

9. Create the DynamoDBEnhancedClient and create a table with your modeled class.

For more information on the DynamoDB Enhanced Client, see create an enhanced client.

public class MigrationExampleStep1 {

 public static void MigrationStep1(String kmsKeyId, String ddbTableName, int
 sortReadValue) {

Java 218

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS Database Encryption SDK Developer Guide

 // 1. Create a Keyring.
 // This example creates an AWS KMS Keyring that specifies the
 // same kmsKeyId previously used in the version 2.x configuration.
 // It uses the 'CreateMrkMultiKeyring' method to create the
 // keyring, so that the keyring can correctly handle both single
 // region and Multi-Region KMS Keys.
 // Note that this example uses the AWS SDK for Java v2 KMS client.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 // 2. Create a Table Schema over your annotated class.
 // For guidance on using the new attribute actions
 // annotations, see SimpleClass.java in the
 // aws-database-encryption-sdk-dynamodb GitHub repository.
 // All primary key attributes must be signed but not encrypted
 // and by default all non-primary key attributes
 // are encrypted and signed (ENCRYPT_AND_SIGN).
 // If you want a particular non-primary key attribute to be signed but
 // not encrypted, use the 'DynamoDbEncryptionSignOnly' annotation.
 // If you want a particular attribute to be neither signed nor encrypted
 // (DO_NOTHING), use the 'DynamoDbEncryptionDoNothing' annotation.
 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 // 3. Define which attributes the client should expect to be excluded
 // from the signature when reading items.
 // This value represents all unsigned attributes across the entire
 // dataset.
 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 // 4. Configure an explicit map of the attribute actions configured
 // in your version 2.x modeled class.
 final Map<String, CryptoAction> legacyActions = new HashMap<>();
 legacyActions.put("partition_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("sort_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
 legacyActions.put("attribute2", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute3", CryptoAction.DO_NOTHING);

Java 219

AWS Database Encryption SDK Developer Guide

 // 5. Configure the DynamoDBEncryptor that you used in version 2.x.
 final AWSKMS kmsClient = AWSKMSClientBuilder.defaultClient();
 final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kmsClient,
 kmsKeyId);
 final DynamoDBEncryptor oldEncryptor = DynamoDBEncryptor.getInstance(cmp);

 // 6. Configure the legacy behavior.
 // Input the DynamoDBEncryptor and attribute actions created in
 // the previous steps. For Legacy Policy, use
 // 'FORCE_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT'. This policy continues to
 read
 // and write items using the old format, but will be able to read
 // items written in the new format as soon as they appear.
 final LegacyOverride legacyOverride = LegacyOverride
 .builder()
 .encryptor(oldEncryptor)
 .policy(LegacyPolicy.FORCE_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT)
 .attributeActionsOnEncrypt(legacyActions)
 .build();

 // 7. Create a DynamoDbEncryptionInterceptor with the above configuration.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .legacyOverride(legacyOverride)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 8. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 7.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()

Java 220

AWS Database Encryption SDK Developer Guide

 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 9. Create the DynamoDbEnhancedClient using the AWS SDK DynamoDb client
 // created in Step 8, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

Step 2. Write items in the new format

After you have deployed the changes from Step 1 to all readers, complete the following steps
to configure your AWS Database Encryption SDK client to write items in the new format. After
you deploy the following changes, your client will continue read items in the old format and start
writing and reading items in the new format.

The following procedures provide an overview of the steps demonstrated in the code example
below.

1. Continue configuring your keyring, table schema, legacy attribute actions,
allowedUnsignedAttributes, and DynamoDBEncryptor as you did in Step 1.

2. Update your legacy behavior to only write new items using the new format.

3. Create a DynamoDbEncryptionInterceptor

4. Create a new AWS SDK DynamoDB client.

5. Create the DynamoDBEnhancedClient and create a table with your modeled class.

For more information on the DynamoDB Enhanced Client, see create an enhanced client.

public class MigrationExampleStep2 {

 public static void MigrationStep2(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Continue to configure your keyring, table schema, legacy
 // attribute actions, allowedUnsignedAttributes, and
 // DynamoDBEncryptor as you did in Step 1.

Java 221

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS Database Encryption SDK Developer Guide

 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 final Map<String, CryptoAction> legacyActions = new HashMap<>();
 legacyActions.put("partition_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("sort_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
 legacyActions.put("attribute2", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute3", CryptoAction.DO_NOTHING);

 final AWSKMS kmsClient = AWSKMSClientBuilder.defaultClient();
 final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kmsClient,
 kmsKeyId);
 final DynamoDBEncryptor oldEncryptor = DynamoDBEncryptor.getInstance(cmp);

 // 2. Update your legacy behavior to only write new items using the new
 // format.
 // For Legacy Policy, use 'FORBID_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT'. This
 policy
 // continues to read items in both formats, but will only write items
 // using the new format.
 final LegacyOverride legacyOverride = LegacyOverride
 .builder()
 .encryptor(oldEncryptor)
 .policy(LegacyPolicy.FORBID_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT)
 .attributeActionsOnEncrypt(legacyActions)
 .build();

 // 3. Create a DynamoDbEncryptionInterceptor with the above configuration.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()

Java 222

AWS Database Encryption SDK Developer Guide

 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .legacyOverride(legacyOverride)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 4. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 3.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 5. Create the DynamoDbEnhancedClient using the AWS SDK DynamoDb Client
 created
 // in Step 4, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

After deploying the Step 2 changes, you must re-encrypt all old items in your table with the new
format before you can continue on to Step 3. There is no single metric or query that you can run to
quickly encrypt your existing items. Use the process that makes the most sense for your system. For
example, you could use an asynchronous process that slowly scans the table and the rewrites the
items using the new attribute actions and encryption configuration you defined.

Java 223

AWS Database Encryption SDK Developer Guide

Step 3. Only read and write items in the new format

After re-encrypting all of the items in your table with the new format, you can remove the legacy
behavior from your configuration. Complete the following steps to configure your client to only
read and write items in the new format.

The following procedures provide an overview of the steps demonstrated in the code example
below.

1. Continue configuring your keyring, table schema, and allowedUnsignedAttributes as
you did in Step 1. Remove the legacy attribute actions and DynamoDBEncryptor from your
configuration.

2. Create a DynamoDbEncryptionInterceptor.

3. Create a new AWS SDK DynamoDB client.

4. Create the DynamoDBEnhancedClient and create a table with your modeled class.

For more information on the DynamoDB Enhanced Client, see create an enhanced client.

public class MigrationExampleStep3 {

 public static void MigrationStep3(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Continue to configure your keyring, table schema,
 // and allowedUnsignedAttributes as you did in Step 1.
 // Do not include the configurations for the DynamoDBEncryptor or
 // the legacy attribute actions.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

Java 224

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS Database Encryption SDK Developer Guide

 // 3. Create a DynamoDbEncryptionInterceptor with the above configuration.
 // Do not configure any legacy behavior.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 4. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 3.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 5. Create the DynamoDbEnhancedClient using the AWS SDK Client
 // created in Step 4, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

.NET

This topic explains how to install and use version 3.x of the .NET client-side encryption library
for DynamoDB. For details about programming with the AWS Database Encryption SDK for

.NET 225

AWS Database Encryption SDK Developer Guide

DynamoDB, see the .NET examples in the aws-database-encryption-sdk-dynamodb repository on
GitHub.

The .NET client-side encryption library for DynamoDB is for developers who are writing
applications in C# and other .NET programming languages. It is supported on Windows, macOS,
and Linux.

All programming language implementations of the AWS Database Encryption SDK for DynamoDB
are interoperable. However, the SDK for .NET does not support empty values for list or map data
types. This means that if you use the Java client-side encryption library for DynamoDB to write an
item that contains empty values for a list or map data type, you cannot decrypt and read that item
using the .NET client-side encryption library for DynamoDB.

Topics

• Installing the .NET client-side encryption library for DynamoDB

• Debugging with .NET

• Using the .NET client-side encryption library for DynamoDB

• .NET examples

• Configure an existing DynamoDB table to use the AWS Database Encryption SDK for DynamoDB

Installing the .NET client-side encryption library for DynamoDB

The .NET client-side encryption library for DynamoDB is available as the
AWS.Cryptography.DbEncryptionSDK.DynamoDb package in NuGet. For details about installing and
building the library, see the .NET README.md file in the aws-database-encryption-sdk-dynamodb
repository. The .NET client-side encryption library for DynamoDB requires the SDK for .NET even if
you aren't using AWS Key Management Service (AWS KMS) keys. The SDK for .NET is installed with
the NuGet package.

Version 3.x of the .NET client-side encryption library for DynamoDB supports .NET 6.0 and .NET
Framework net48 and later.

Debugging with .NET

The .NET client-side encryption library for DynamoDB does not generate any logs. Exceptions in
the .NET client-side encryption library for DynamoDB generate an exception message, but no stack
traces.

.NET 226

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/
https://www.nuget.org/packages/AWS.Cryptography.DbEncryptionSDK.DynamoDb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/DynamoDbEncryption/runtimes/net/README.md

AWS Database Encryption SDK Developer Guide

To help you debug, be sure to enable logging in the SDK for .NET. The logs and error messages
from the SDK for .NET can help you distinguish errors arising in the SDK for .NET from those in
the .NET client-side encryption library for DynamoDB. For help with SDK for .NET logging, see
AWSLogging in the AWS SDK for .NET Developer Guide. (To see the topic, expand the Open to
view .NET Framework content section.)

Using the .NET client-side encryption library for DynamoDB

This topic explains some of the functions and helper classes in version 3.x of the .NET client-side
encryption library for DynamoDB.

For details about programming with the .NET client-side encryption library for DynamoDB, see the
.NET examples in the aws-database-encryption-sdk-dynamodb repository on GitHub.

Topics

• Item encryptors

• Attribute actions in the AWS Database Encryption SDK for DynamoDB

• Encryption configuration in the AWS Database Encryption SDK for DynamoDB

• Updating items with the AWS Database Encryption SDK

Item encryptors

At its core, the AWS Database Encryption SDK for DynamoDB is an item encryptor. You can use
version 3.x of the .NET client-side encryption library for DynamoDB to encrypt, sign, verify, and
decrypt your DynamoDB table items in the following ways.

The low-level AWS Database Encryption SDK for DynamoDB API

You can use your table encryption configuration to construct a DynamoDB client that
automatically encrypts and signs items client-side with your DynamoDB PutItem requests. You
can use this client directly, or you can construct a document model or object persistence model.

You must use the low-level AWS Database Encryption SDK for DynamoDB API to use searchable
encryption.

The lower-level DynamoDbItemEncryptor

The lower-level DynamoDbItemEncryptor directly encrypts and signs or decrypts and verifies
your table items without calling DynamoDB. It does not make DynamoDB PutItem or GetItem

.NET 227

https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-config-other.html#config-setting-awslogging
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-document
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-object-persistence

AWS Database Encryption SDK Developer Guide

requests. For example, you can use the lower-level DynamoDbItemEncryptor to directly
decrypt and verify a DynamoDB item that you have already retrieved. If you use the lower-level
DynamoDbItemEncryptor, we recommend using the low-level programming modelthat the
SDK for .NET provides for communicating with DynamoDB.

The lower-level DynamoDbItemEncryptor does not support searchable encryption.

Attribute actions in the AWS Database Encryption SDK for DynamoDB

Attribute actions determine which attribute values are encrypted and signed, which are only
signed, which are signed and included in the encryption context, and which are ignored.

To specify attribute actions with the .NET client, manually define attribute actions using an object
model. Specify your attribute actions by creating a Dictionary object in which the name-value
pairs represent attribute names and the specified actions.

Specify ENCRYPT_AND_SIGN to encrypt and sign an attribute. Specify SIGN_ONLY to sign, but
not encrypt, an attribute. Specify SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT to sign an
attribute and include it in the encryption context. You cannot encrypt an attribute without also
signing it. Specify DO_NOTHING to ignore an attribute.

The partition and sort attributes must be either SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. If you define any attributes as
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, then the partition and sort attributes must also
be SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

After you define your attribute actions, you must define which attributes are excluded
from the signatures. To make it easier to add new unsigned attributes in the future, we
recommend choosing a distinct prefix (such as ":") to identify your unsigned attributes.
Include this prefix in the attribute name for all attributes marked DO_NOTHING as you
define your DynamoDB schema and attribute actions.

The following object model demonstrates how to specify ENCRYPT_AND_SIGN, SIGN_ONLY,
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, and DO_NOTHING attribute actions with
the .NET client. This example uses the prefix ":" to identify DO_NOTHING attributes.

.NET 228

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-low-level

AWS Database Encryption SDK Developer Guide

Note

To use the SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographic
action, you must use version 3.3 or later of the AWS Database Encryption SDK.
Deploy the new version to all readers before updating your data model to include
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, // The
 partition attribute must be signed
 ["sort_key"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, // The sort
 attribute must be signed
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 ["attribute3"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT,
 [":attribute4"] = CryptoAction.DO_NOTHING
};

Encryption configuration in the AWS Database Encryption SDK for DynamoDB

When you use the AWS Database Encryption SDK, you must explicitly define an encryption
configuration for your DynamoDB table. The values required in your encryption configuration
depend on whether you defined your attribute actions manually or with an annotated data class.

The following snippet defines a DynamoDB table encryption configuration using the low-level AWS
Database Encryption SDK for DynamoDB API and allowed unsigned attributes defined by a distinct
prefix.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,

.NET 229

AWS Database Encryption SDK Developer Guide

 // Optional: SearchConfig only required if you use beacons
 Search = new SearchConfig
 {
 WriteVersion = 1, // MUST be 1
 Versions = beaconVersions
 }
};
tableConfigs.Add(ddbTableName, config);

Logical table name

A logical table name for your DynamoDB table.

The logical table name is cryptographically bound to all data stored in the table to simplify
DynamoDB restore operations. We strongly recommend specifying your DynamoDB table name
as the logical table name when you first define your encryption configuration. You must always
specify the same logical table name. For decryption to succeed, the logical table name must
match the name specified on encryption. In the event that your DynamoDB table name changes
after restoring your DynamoDB table from a backup, the logical table name ensures that the
decrypt operation still recognizes the table.

Allowed unsigned attributes

The attributes marked DO_NOTHING in your attribute actions.

The allowed unsigned attributes tell the client which attributes are excluded from the
signatures. The client assumes that all other attributes are included in the signature. Then,
when decrypting a record, the client determines which attributes it needs to verify and which
to ignore from the allowed unsigned attributes you specified. You cannot remove an attribute
from your allowed unsigned attributes.

You can define the allowed unsigned attributes explicitly by creating an array that lists all
of your DO_NOTHING attributes. You can also specify a distinct prefix when naming your
DO_NOTHING attributes and use the prefix to tell the client which attributes are unsigned. We
strongly recommend specifying a distinct prefix because it simplifies the process of adding a
new DO_NOTHING attribute in the future. For more information, see Updating your data model.

If you do not specify a prefix for all DO_NOTHING attributes, you can configure an
allowedUnsignedAttributes array that explicitly lists all of the attributes that the client
should expect to be unsigned when it encounters them on decryption. You should only
explicitly define your allowed unsigned attributes if absolutely necessary.

.NET 230

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Database Encryption SDK Developer Guide

Search Configuration (Optional)

The SearchConfig defines the beacon version.

The SearchConfig must be specified to use searchable encryption or signed beacons.

Algorithm Suite (Optional)

The algorithmSuiteId defines which algorithm suite the AWS Database Encryption SDK
uses.

Unless you explicitly specify an alternative algorithm suite, the AWS Database Encryption SDK
uses the default algorithm suite. The default algorithm suite uses the AES-GCM algorithm with
key derivation, digital signatures, and key commitment. Although the default algorithm suite
is likely to be suitable for most applications, you can choose an alternate algorithm suite. For
example, some trust models would be satisfied by an algorithm suite without digital signatures.
For information about the algorithm suites that the AWS Database Encryption SDK supports,
see Supported algorithm suites in the AWS Database Encryption SDK.

To select the AES-GCM algorithm suite without ECDSA digital signatures, include the following
snippet in your table encryption configuration.

AlgorithmSuiteId =
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384

Updating items with the AWS Database Encryption SDK

The AWS Database Encryption SDK does not support ddb:UpdateItem for items that include
encrypted or signed attributes. To update an encrypted or signed attribute, you must use
ddb:PutItem. When you specify the same primary key as an existing item in your PutItem request,
the new item completely replaces the existing item. You can also use CLOBBER to clear and replace
all attributes on save after updating your items.

.NET examples

The following examples show you how to use the .NET client-side encryption library for DynamoDB
to protect the table items in your application. To find more examples (and contribute your own),
see the .NET examples in the aws-database-encryption-sdk-dynamodb repository on GitHub.

.NET 231

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.SaveBehavior.html#CLOBBER
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/net/src

AWS Database Encryption SDK Developer Guide

The following examples demonstrate how to configure the .NET client-side encryption library for
DynamoDB in a new, unpopulated Amazon DynamoDB table. If you want to configure your existing
Amazon DynamoDB tables for client-side encryption, see Add version 3.x to an existing table.

Topics

• Using the low-level AWS Database Encryption SDK for DynamoDB API

• Using the lower-level DynamoDbItemEncryptor

Using the low-level AWS Database Encryption SDK for DynamoDB API

The following example shows how to use the low-level AWS Database Encryption SDK for
DynamoDB API with an AWS KMS keyring to automatically encrypt and sign items client-side with
your DynamoDB PutItem requests.

You can use any supported keyring, but we recommend using one of the AWS KMS keyrings
whenever possible.

See the complete code sample: BasicPutGetExample.cs

Step 1: Create the AWS KMS keyring

The following example uses CreateAwsKmsMrkMultiKeyring to create an AWS KMS keyring
with a symmetric encryption KMS key. The CreateAwsKmsMrkMultiKeyring method ensures
that the keyring will correctly handle both single-Region and multi-Region keys.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Step 2: Configure your attribute actions

The following example defines an attributeActionsOnEncrypt Dictionary that represents
sample attribute actions for a table item.

Note

The following example does not define any attributes as
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. If you specify any

.NET 232

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/BasicPutGetExample.cs

AWS Database Encryption SDK Developer Guide

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributes, then the partition and
sort attributes must also be SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

Step 3: Define which attributes are excluded from the signatures

The following example assumes that all DO_NOTHING attributes share the distinct prefix ":",
and uses the prefix to define the allowed unsigned attributes. The client assumes that any
attribute name with the ":" prefix is excluded from the signatures. For more information, see
Allowed unsigned attributes.

const String unsignAttrPrefix = ":";

Step 4: Define the DynamoDB table encryption configuration

The following example defines a tableConfigs Map that represents the encryption
configuration for this DynamoDB table.

This example specifies the DynamoDB table name as the logical table name. We strongly
recommend specifying your DynamoDB table name as the logical table name when you first
define your encryption configuration. For more information, see Encryption configuration in the
AWS Database Encryption SDK for DynamoDB.

Note

To use searchable encryption or signed beacons, you must also include the
SearchConfig in your encryption configuration.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =

.NET 233

AWS Database Encryption SDK Developer Guide

 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix
};
tableConfigs.Add(ddbTableName, config);

Step 5: Create a new AWS SDK DynamoDB client

The following example creates a new AWS SDK DynamoDB client using the
TableEncryptionConfigs from Step 4.

var ddb = new Client.DynamoDbClient(
 new DynamoDbTablesEncryptionConfig { TableEncryptionConfigs = tableConfigs });

Step 6: Encrypt and sign a DynamoDB table item

The following example defines an item Dictionary that represents a sample table item and puts
the item in the DynamoDB table. The item is encrypted and signed client-side before it is sent
to DynamoDB.

var item = new Dictionary<String, AttributeValue>
{
 ["partition_key"] = new AttributeValue("BasicPutGetExample"),
 ["sort_key"] = new AttributeValue { N = "0" },
 ["attribute1"] = new AttributeValue("encrypt and sign me!"),
 ["attribute2"] = new AttributeValue("sign me!"),
 [":attribute3"] = new AttributeValue("ignore me!")
};

PutItemRequest putRequest = new PutItemRequest
{
 TableName = ddbTableName,
 Item = item
};

PutItemResponse putResponse = await ddb.PutItemAsync(putRequest);

.NET 234

AWS Database Encryption SDK Developer Guide

Using the lower-level DynamoDbItemEncryptor

The following example shows how to use the lower-level DynamoDbItemEncryptor with an AWS
KMS keyring to directly encrypt and sign table items. The DynamoDbItemEncryptor does not put
the item in your DynamoDB table.

You can use any supported keyring with the DynamoDB Enhanced Client, but we recommend using
one of the AWS KMS keyrings whenever possible.

Note

The lower-level DynamoDbItemEncryptor does not support searchable encryption. Use
the the low-level AWS Database Encryption SDK for DynamoDB API to use searchable
encryption.

See the complete code sample: ItemEncryptDecryptExample.cs

Step 1: Create the AWS KMS keyring

The following example uses CreateAwsKmsMrkMultiKeyring to create an AWS KMS keyring
with a symmetric encryption KMS key. The CreateAwsKmsMrkMultiKeyring method ensures
that the keyring will correctly handle both single-Region and multi-Region keys.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Step 2: Configure your attribute actions

The following example defines an attributeActionsOnEncrypt Dictionary that represents
sample attribute actions for a table item.

Note

The following example does not define any attributes as
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. If you specify any
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributes, then the partition and
sort attributes must also be SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

.NET 235

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/itemencryptor/ItemEncryptDecryptExample.cs

AWS Database Encryption SDK Developer Guide

var attributeActionsOnEncrypt = new Dictionary<String, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

Step 3: Define which attributes are excluded from the signatures

The following example assumes that all DO_NOTHING attributes share the distinct prefix ":",
and uses the prefix to define the allowed unsigned attributes. The client assumes that any
attribute name with the ":" prefix is excluded from the signatures. For more information, see
Allowed unsigned attributes.

String unsignAttrPrefix = ":";

Step 4: Define the DynamoDbItemEncryptor configuration

The following example defines the configuration for the DynamoDbItemEncryptor.

This example specifies the DynamoDB table name as the logical table name. We strongly
recommend specifying your DynamoDB table name as the logical table name when you first
define your encryption configuration. For more information, see Encryption configuration in the
AWS Database Encryption SDK for DynamoDB.

var config = new DynamoDbItemEncryptorConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix
};

.NET 236

AWS Database Encryption SDK Developer Guide

Step 5: Create the DynamoDbItemEncryptor

The following example creates a new DynamoDbItemEncryptor using the config from Step
4.

var itemEncryptor = new DynamoDbItemEncryptor(config);

Step 6: Directly encrypt and sign a table item

The following example directly encrypts and signs an item using the
DynamoDbItemEncryptor. The DynamoDbItemEncryptor does not put the item in your
DynamoDB table.

var originalItem = new Dictionary<String, AttributeValue>
{
 ["partition_key"] = new AttributeValue("ItemEncryptDecryptExample"),
 ["sort_key"] = new AttributeValue { N = "0" },
 ["attribute1"] = new AttributeValue("encrypt and sign me!"),
 ["attribute2"] = new AttributeValue("sign me!"),
 [":attribute3"] = new AttributeValue("ignore me!")
};

var encryptedItem = itemEncryptor.EncryptItem(
 new EncryptItemInput { PlaintextItem = originalItem }
).EncryptedItem;

Configure an existing DynamoDB table to use the AWS Database Encryption SDK
for DynamoDB

With version 3.x of the .NET client-side encryption library for DynamoDB, you can configure your
existing Amazon DynamoDB tables for client-side encryption. This topic provides guidance on the
three steps you must take to add version 3.x to an existing, populated DynamoDB table.

Step 1: Prepare to read and write encrypted items

Complete the following steps to prepare your AWS Database Encryption SDK client to read and
write encrypted items. After you deploy the following changes, your client will continue to read
and write plaintext items. It will not encrypt or sign any new items written to the table, but it will
be able to decrypt encrypted items as soon as they appear. These changes prepare the client to

.NET 237

AWS Database Encryption SDK Developer Guide

begin encrypting new items. The following changes must be deployed to each reader before you
proceed to the next step.

1. Define your attribute actions

Create an object model to define which attribute values will be encrypted and signed, which
will be only signed, and which will be ignored.

By default, primary key attributes are signed but not encrypted (SIGN_ONLY) and all other
attributes are encrypted and signed (ENCRYPT_AND_SIGN).

Specify ENCRYPT_AND_SIGN to encrypt and sign an attribute. Specify SIGN_ONLY to sign, but
not encrypt, an attribute. Specify SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT to sign
and attribute and include it in the encryption context. You cannot encrypt an attribute without
also signing it. Specify DO_NOTHING to ignore an attribute. For more information, see Attribute
actions in the AWS Database Encryption SDK for DynamoDB.

Note

If you specify any SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
attributes, then the partition and sort attributes must also be
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

2. Define which attributes will be excluded from the signatures

The following example assumes that all DO_NOTHING attributes share the distinct prefix ":",
and uses the prefix to define the allowed unsigned attributes. The client will assume that any
attribute name with the ":" prefix is excluded from the signatures. For more information, see
Allowed unsigned attributes.

.NET 238

AWS Database Encryption SDK Developer Guide

const String unsignAttrPrefix = ":";

3. Create a keyring

The following example creates an AWS KMS keyring. The AWS KMS keyring uses symmetric
encryption or asymmetric RSA AWS KMS keys to generate, encrypt, and decrypt data keys.

This example uses CreateMrkMultiKeyring to create an AWS KMS keyring with a symmetric
encryption KMS key. The CreateAwsKmsMrkMultiKeyring method ensures that the keyring
will correctly handle both single-Region and multi-Region keys.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

4. Define the DynamoDB table encryption configuration

The following example defines a tableConfigs Map that represents the encryption
configuration for this DynamoDB table.

This example specifies the DynamoDB table name as the logical table name. We strongly
recommend specifying your DynamoDB table name as the logical table name when you first
define your encryption configuration.

You must specify FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT as the plaintext
override. This policy continues to read and write plaintext items, reads encrypted items, and
prepares the client to write encrypted items.

For more information on the values included in the table encryption configuration, see
Encryption configuration in the AWS Database Encryption SDK for DynamoDB.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 PlaintextOverride = FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT

.NET 239

AWS Database Encryption SDK Developer Guide

};
tableConfigs.Add(ddbTableName, config);

5. Create a new AWS SDK DynamoDB client

he following example creates a new AWS SDK DynamoDB client using the
TableEncryptionConfigs from Step 4.

var ddb = new Client.DynamoDbClient(
 new DynamoDbTablesEncryptionConfig { TableEncryptionConfigs = tableConfigs });

Step 2: Write encrypted and signed items

Update the plaintext policy in your table encryption configuration to allow the client to write
encrypted and signed items. After you deploy the following change, the client will encrypt and
sign new items based on the attribute actions you configured in Step 1. The client will be able read
plaintext items and encrypted and signed items.

Before you proceed to Step 3, you must encrypt and sign all existing plaintext items in your table.
There is no single metric or query that you can run to quickly encrypt your existing plaintext
items. Use the process that makes the most sense for your system. For example, you could use an
asynchronous process that slowly scans the table and the rewrites the items using the attribute
actions and encryption configuration you defined. To identify the plaintext items in your table, we
recommend scanning for all items that do not contain the aws_dbe_head and aws_dbe_foot
attributes that the AWS Database Encryption SDK adds to items when they're encrypted and
signed.

The following example updates the table encryption configuration from Step 1. You must update
the plaintext override with FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT. This policy
continues to read plaintext items, but also reads and writes encrypted items. Create a new AWS
SDK DynamoDB client using the updated TableEncryptionConfigs.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,

.NET 240

AWS Database Encryption SDK Developer Guide

 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 PlaintextOverride = FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

Step 3: Only read encrypted and signed items

After you have encrypted and signed all of your items, update the plaintext override in your table
encryption configuration to only allow the client to read and write encrypted and signed items.
After you deploy the following change, the client will encrypt and sign new items based on the
attribute actions you configured in Step 1. The client will only be able read encrypted and signed
items.

The following example updates the table encryption configuration from Step 2. You can either
update the plaintext override with FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT or
remove the plaintext policy from your configuration. The client only reads and writes encrypted
and signed items by default. Create a new AWS SDK DynamoDB client using the updated
TableEncryptionConfigs.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 // Optional: you can also remove the plaintext policy from your configuration
 PlaintextOverride = FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

Rust

This topic explains how to install and use version 1.x of the Rust client-side encryption library
for DynamoDB. For details about programming with the AWS Database Encryption SDK for
DynamoDB, see the Rust examples in the aws-database-encryption-sdk-dynamodb repository on
GitHub.

Rust 241

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/

AWS Database Encryption SDK Developer Guide

All programming language implementations of the AWS Database Encryption SDK for DynamoDB
are interoperable.

Topics

• Prerequisites

• Installation

• Using the Rust client-side encryption library for DynamoDB

Prerequisites

Before you install the Rust client-side encryption library for DynamoDB, be sure you have the
following prerequisites.

Install Rust and Cargo

Install the current stable release of Rust using rustup.

For more information on downloading and installing rustup, see the installation procedures in
The Cargo Book.

Installation

The Rust client-side encryption library for DynamoDB is available as the aws-db-esdk crate on
Crates.io. For details about installing and building the library, see the README.md file in the aws-
database-encryption-sdk-dynamodb GitHub repository.

Manually

To install the Rust client-side encryption library for DynamoDB, clone or download the aws-
database-encryption-sdk-dynamodb GitHub repository.

To install the latest version

Run the following Cargo command in your project directory:

cargo add aws-db-esdk

Or add the following line to your Cargo.toml:

Rust 242

https://www.rust-lang.org/
https://rustup.rs/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://crates.io/crates/aws-db-esdk
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/

AWS Database Encryption SDK Developer Guide

aws-db-esdk = "<version>"

Using the Rust client-side encryption library for DynamoDB

This topic explains some of the functions and helper classes in version 1.x of the Rust client-side
encryption library for DynamoDB.

For details about programming with the Rust client-side encryption library for DynamoDB, see the
Rust examples in the aws-database-encryption-sdk-dynamodb repository on GitHub.

Topics

• Item encryptors

• Attribute actions in the AWS Database Encryption SDK for DynamoDB

• Encryption configuration in the AWS Database Encryption SDK for DynamoDB

• Updating items with the AWS Database Encryption SDK

Item encryptors

At its core, the AWS Database Encryption SDK for DynamoDB is an item encryptor. You can use
version 1.x of the Rust client-side encryption library for DynamoDB to encrypt, sign, verify, and
decrypt your DynamoDB table items in the following ways.

The low-level AWS Database Encryption SDK for DynamoDB API

You can use your table encryption configuration to construct a DynamoDB client that
automatically encrypts and signs items client-side with your DynamoDB PutItem requests.

You must use the low-level AWS Database Encryption SDK for DynamoDB API to use searchable
encryption.

For an example demonstrating how to use the low-level AWS Database Encryption SDK for
DynamoDB API, see basic_get_put_example.rs in the aws-database-encryption-sdk-dynamodb
repository on GitHub.

The lower-level DynamoDbItemEncryptor

The lower-level DynamoDbItemEncryptor directly encrypts and signs or decrypts and verifies
your table items without calling DynamoDB. It does not make DynamoDB PutItem or GetItem

Rust 243

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/basic_get_put_example.rs

AWS Database Encryption SDK Developer Guide

requests. For example, you can use the lower-level DynamoDbItemEncryptor to directly
decrypt and verify a DynamoDB item that you have already retrieved.

The lower-level DynamoDbItemEncryptor does not support searchable encryption.

For an example demonstrating how to use the lower-level DynamoDbItemEncryptor, see
item_encrypt_decrypt.rs in the aws-database-encryption-sdk-dynamodb repository on GitHub.

Attribute actions in the AWS Database Encryption SDK for DynamoDB

Attribute actions determine which attribute values are encrypted and signed, which are only
signed, which are signed and included in the encryption context, and which are ignored.

To specify attribute actions with the Rust client, manually define attribute actions using an object
model. Specify your attribute actions by creating a HashMap object in which the name-value pairs
represent attribute names and the specified actions.

Specify ENCRYPT_AND_SIGN to encrypt and sign an attribute. Specify SIGN_ONLY to sign, but
not encrypt, an attribute. Specify SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT to sign an
attribute and include it in the encryption context. You cannot encrypt an attribute without also
signing it. Specify DO_NOTHING to ignore an attribute.

The partition and sort attributes must be either SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. If you define any attributes as
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, then the partition and sort attributes must also
be SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

After you define your attribute actions, you must define which attributes are excluded
from the signatures. To make it easier to add new unsigned attributes in the future, we
recommend choosing a distinct prefix (such as ":") to identify your unsigned attributes.
Include this prefix in the attribute name for all attributes marked DO_NOTHING as you
define your DynamoDB schema and attribute actions.

The following object model demonstrates how to specify ENCRYPT_AND_SIGN, SIGN_ONLY,
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, and DO_NOTHING attribute actions with the
Rust client. This example uses the prefix ":" to identify DO_NOTHING attributes.

Rust 244

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/itemencryptor/item_encrypt_decrypt.rs

AWS Database Encryption SDK Developer Guide

let attribute_actions_on_encrypt = HashMap::from([
 ("partition_key".to_string(), CryptoAction::SignOnly),
 ("sort_key".to_string(), CryptoAction::SignOnly),
 ("attribute1".to_string(), CryptoAction::EncryptAndSign),
 ("attribute2".to_string(), CryptoAction::SignOnly),
 (":attribute3".to_string(), CryptoAction::DoNothing),
]);

Encryption configuration in the AWS Database Encryption SDK for DynamoDB

When you use the AWS Database Encryption SDK, you must explicitly define an encryption
configuration for your DynamoDB table. The values required in your encryption configuration
depend on whether you defined your attribute actions manually or with an annotated data class.

The following snippet defines a DynamoDB table encryption configuration using the low-level AWS
Database Encryption SDK for DynamoDB API and allowed unsigned attributes defined by a distinct
prefix.

let table_config = DynamoDbTableEncryptionConfig::builder()
 .logical_table_name(ddb_table_name)
 .partition_key_name("partition_key")
 .sort_key_name("sort_key")
 .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
 .keyring(kms_keyring)
 .allowed_unsigned_attribute_prefix(UNSIGNED_ATTR_PREFIX)
 // Specifying an algorithm suite is optional
 .algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)
 .build()?;

let table_configs = DynamoDbTablesEncryptionConfig::builder()
 .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(),
 table_config)]))
 .build()?;

Logical table name

A logical table name for your DynamoDB table.

The logical table name is cryptographically bound to all data stored in the table to simplify
DynamoDB restore operations. We strongly recommend specifying your DynamoDB table name

Rust 245

AWS Database Encryption SDK Developer Guide

as the logical table name when you first define your encryption configuration. You must always
specify the same logical table name. For decryption to succeed, the logical table name must
match the name specified on encryption. In the event that your DynamoDB table name changes
after restoring your DynamoDB table from a backup, the logical table name ensures that the
decrypt operation still recognizes the table.

Allowed unsigned attributes

The attributes marked DO_NOTHING in your attribute actions.

The allowed unsigned attributes tell the client which attributes are excluded from the
signatures. The client assumes that all other attributes are included in the signature. Then,
when decrypting a record, the client determines which attributes it needs to verify and which
to ignore from the allowed unsigned attributes you specified. You cannot remove an attribute
from your allowed unsigned attributes.

You can define the allowed unsigned attributes explicitly by creating an array that lists all
of your DO_NOTHING attributes. You can also specify a distinct prefix when naming your
DO_NOTHING attributes and use the prefix to tell the client which attributes are unsigned. We
strongly recommend specifying a distinct prefix because it simplifies the process of adding a
new DO_NOTHING attribute in the future. For more information, see Updating your data model.

If you do not specify a prefix for all DO_NOTHING attributes, you can configure an
allowedUnsignedAttributes array that explicitly lists all of the attributes that the client
should expect to be unsigned when it encounters them on decryption. You should only
explicitly define your allowed unsigned attributes if absolutely necessary.

Search Configuration (Optional)

The SearchConfig defines the beacon version.

The SearchConfig must be specified to use searchable encryption or signed beacons.

Algorithm Suite (Optional)

The algorithmSuiteId defines which algorithm suite the AWS Database Encryption SDK
uses.

Unless you explicitly specify an alternative algorithm suite, the AWS Database Encryption SDK
uses the default algorithm suite. The default algorithm suite uses the AES-GCM algorithm with
key derivation, digital signatures, and key commitment. Although the default algorithm suite
is likely to be suitable for most applications, you can choose an alternate algorithm suite. For

Rust 246

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Database Encryption SDK Developer Guide

example, some trust models would be satisfied by an algorithm suite without digital signatures.
For information about the algorithm suites that the AWS Database Encryption SDK supports,
see Supported algorithm suites in the AWS Database Encryption SDK.

To select the AES-GCM algorithm suite without ECDSA digital signatures, include the following
snippet in your table encryption configuration.

.algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)

Updating items with the AWS Database Encryption SDK

The AWS Database Encryption SDK does not support ddb:UpdateItem for items that include
encrypted or signed attributes. To update an encrypted or signed attribute, you must use
ddb:PutItem. When you specify the same primary key as an existing item in your PutItem request,
the new item completely replaces the existing item.

Legacy DynamoDB Encryption Client

On June 9, 2023, our client-side encryption library was renamed to AWS Database Encryption
SDK. The AWS Database Encryption SDK continues to support legacy DynamoDB Encryption Client
versions. For more information on the different parts of the client-side encryption library that
changed with the rename, see Amazon DynamoDB Encryption Client rename.

To migrate to the latest version of the Java client-side encryption library for DynamoDB, see
Migrate to version 3.x.

Topics

• AWS Database Encryption SDK for DynamoDB version support

• How the DynamoDB Encryption Client works

• Amazon DynamoDB Encryption Client concepts

• Cryptographic materials provider

• Amazon DynamoDB Encryption Client available programming languages

• Changing your data model

• Troubleshooting issues in your DynamoDB Encryption Client application

Legacy 247

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

AWS Database Encryption SDK Developer Guide

AWS Database Encryption SDK for DynamoDB version support

The topics in the Legacy chapter provide information on versions 1.x—2.x of the DynamoDB
Encryption Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python.

The following table lists the languages and versions that support client-side encryption in Amazon
DynamoDB.

Programming language Version SDK major version life-cycle
phase

Java Versions 1.x End-of-Support phase,
effective July 2022

Java Versions 2.x General Availability (GA)

Java Version 3.x General Availability (GA)

Python Versions 1.x End-of-Support phase,
effective July 2022

Python Versions 2.x End-of-Support phase,
effective July 2022

Python Versions 3.x General Availability (GA)

How the DynamoDB Encryption Client works

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

The DynamoDB Encryption Client is designed specifically to protect the data that you store in
DynamoDB. The libraries include secure implementations that you can extend or use unchanged.

AWS Database Encryption SDK for DynamoDB version support 248

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Database Encryption SDK Developer Guide

And, most elements are represented by abstract elements so you can create and use compatible
custom components.

Encrypting and signing table items

At the core of the DynamoDB Encryption Client is an item encryptor that encrypts, signs, verifies,
and decrypts table items. It takes in information about your table items and instructions about
which items to encrypt and sign. It gets the encryption materials, and instructions on how to use
them, from a cryptographic material provider that you select and configure.

The following diagram shows a high-level view of this process.

To encrypt and sign a table item, the DynamoDB Encryption Client needs:

• Information about the table. It gets information about the table from a DynamoDB encryption
context that you supply. Some helpers get the required information from DynamoDB and create
the DynamoDB encryption context for you.

How it works 249

AWS Database Encryption SDK Developer Guide

Note

The DynamoDB encryption context in the DynamoDB Encryption Client is not related
to the encryption context in AWS Key Management Service (AWS KMS) and the AWS
Encryption SDK.

• Which attributes to encrypt and sign. It gets this information from the attribute actions that
you supply.

• Encryption materials, including encryption and signing keys. It gets these from a
cryptographic materials provider (CMP) that you select and configure.

• Instructions for encrypting and signing the item. The CMP adds instructions for using the
encryption materials, including encryption and signing algorithms, to the actual material
description.

The item encryptor uses all of these elements to encrypt and sign the item. The item encryptor
also adds two attributes to the item: a material description attribute that contains the encryption
and signing instructions (the actual material description), and an attribute that contains the
signature. You can interact with the item encryptor directly, or use helper features that interact
with the item encryptor for you to implement secure default behavior.

The result is a DynamoDB item containing encrypted and signed data.

Verifying and decrypting table items

These components also work together to verify and decrypt your item, as shown in the following
diagram.

How it works 250

AWS Database Encryption SDK Developer Guide

To verify and decrypt an item, the DynamoDB Encryption Client needs the same components,
components with the same configuration, or components especially designed for decrypting the
items, as follows:

• Information about the table from the DynamoDB encryption context.

• Which attributes to verify and decrypt. It gets these from the attribute actions.

• Decryption materials, including verification and decryption keys, from the cryptographic
materials provider (CMP) that you select and configure.

The encrypted item doesn't include any record of the CMP that was used to encrypt it. You must
supply the same CMP, a CMP with the same configuration, or a CMP that is designed to decrypt
items.

• Information about how the item was encrypted and signed, including the encryption and
signing algorithms. The client gets these from the material description attribute in the item.

The item encryptor uses all of these elements to verify and decrypt the item. It also removes the
material description and signature attributes. The result is a plaintext DynamoDB item.

How it works 251

AWS Database Encryption SDK Developer Guide

Amazon DynamoDB Encryption Client concepts

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

This topic explains the concepts and terminology used in the Amazon DynamoDB Encryption
Client.

To learn how the components of the DynamoDB Encryption Client interact, see How the
DynamoDB Encryption Client works.

Topics

• Cryptographic materials provider (CMP)

• Item encryptors

• Attribute actions

• Material description

• DynamoDB encryption context

• Provider store

Cryptographic materials provider (CMP)

When implementing the DynamoDB Encryption Client, one of your first tasks is to select a
cryptographic materials provider (CMP) (also known as an encryption materials provider). Your
choice determines much of the rest of the implementation.

A cryptographic materials provider (CMP) collects, assembles, and returns the cryptographic
materials that the item encryptor uses to encrypt and sign your table items. The CMP determines
the encryption algorithms to use and how to generate and protect encryption and signing keys.

The CMP interacts with the item encryptor. The item encryptor requests encryption or decryption
materials from the CMP, and the CMP returns them to the item encryptor. Then, the item encryptor
uses the cryptographic materials to encrypt and sign, or verify and decrypt, the item.

Concepts 252

AWS Database Encryption SDK Developer Guide

You specify the CMP when you configure the client. You can create a compatible custom CMP,
or use one of the many CMPs in the library. Most CMPs are available for multiple programming
languages.

Item encryptors

The item encryptor is a lower-level component that performs cryptographic operations for the
DynamoDB Encryption Client. It requests cryptographic materials from a cryptographic materials
provider (CMP), then uses the materials that the CMP returns to encrypt and sign, or verify and
decrypt, your table item.

You can interact with the item encryptor directly or use the helpers that your library provides.
For example, the DynamoDB Encryption Client for Java includes an AttributeEncryptor
helper class that you can use with the DynamoDBMapper, instead of interacting directly with
the DynamoDBEncryptor item encryptor. The Python library includes EncryptedTable,
EncryptedClient, and EncryptedResource helper classes that interact with the item
encryptor for you.

Attribute actions

Attribute actions tell the item encryptor which actions to perform on each attribute of the item.

The attribute action values can be one of the following:

• Encrypt and sign – Encrypt the attribute value. Include the attribute (name and value) in the
item signature.

• Sign only – Include the attribute in the item signature.

• Do nothing – Do not encrypt or sign the attribute.

For any attribute that can store sensitive data, use Encrypt and sign. For primary key attributes
(partition key and sort key), use Sign only. The material description attribute and the signature
attribute are not signed or encrypted. You don't need to specify attribute actions for these
attributes.

Choose your attribute actions carefully. When in doubt, use Encrypt and sign. Once you have used
the DynamoDB Encryption Client to protect your table items, you cannot change the action for an
attribute without risking a signature validation error. For details, see Changing your data model.

Concepts 253

AWS Database Encryption SDK Developer Guide

Warning

Do not encrypt the primary key attributes. They must remain in plaintext so DynamoDB can
find the item without running a full table scan.

If the DynamoDB encryption context identifies your primary key attributes, the client will throw an
error if you try to encrypt them.

The technique that you use to specify the attribute actions is different for each programming
language. It might also be specific to helper classes that you use.

For details, see the documentation for your programming language.

• Python

• Java

Material description

The material description for an encrypted table item consists of information, such as encryption
algorithms, about how the table item is encrypted and signed. The cryptographic materials
provider (CMP) records the material description as it assembles the cryptographic materials for
encryption and signing. Later, when it needs to assemble cryptographic materials to verify and
decrypt the item, it uses the material description as its guide.

In the DynamoDB Encryption Client, the material description refers to three related elements:

Requested material description

Some cryptographic materials providers (CMPs) let you specify advanced options, such as
an encryption algorithm. To indicate your choices, you add name-value pairs to the material
description property of the DynamoDB encryption context in your request to encrypt a table
item. This element is known as the requested material description. The valid values in the
requested material description are defined by the CMP that you choose.

Concepts 254

AWS Database Encryption SDK Developer Guide

Note

Because the material description can override secure default values, we recommend that
you omit the requested material description unless you have a compelling reason to use
it.

Actual material description

The material description that the cryptographic materials providers (CMPs) return is known
as the actual material description. It describes the actual values that the CMP used when it
assembled the cryptographic materials. It usually consists of the requested material description,
if any, with additions and changes.

Material description attribute

The client saves the actual material description in the material description attribute of the
encrypted item. The material description attribute name is amzn-ddb-map-desc and its value
is the actual material description. The client uses the values in the material description attribute
to verify and decrypt the item.

DynamoDB encryption context

The DynamoDB encryption context supplies information about the table and item to the
cryptographic materials provider (CMP). In advanced implementations, the DynamoDB encryption
context can include a requested material description.

When you encrypt table items, the DynamoDB encryption context is cryptographically bound to
the encrypted attribute values. When you decrypt, if the DynamoDB encryption context is not
an exact, case-sensitive match for the DynamoDB encryption context that was used to encrypt,
the decrypt operation fails. If you interact with the item encryptor directly, you must provide a
DynamoDB encryption context when you call an encrypt or decrypt method. Most helpers create
the DynamoDB encryption context for you.

Note

The DynamoDB encryption context in the DynamoDB Encryption Client is not related to the
encryption context in AWS Key Management Service (AWS KMS) and the AWS Encryption
SDK.

Concepts 255

AWS Database Encryption SDK Developer Guide

The DynamoDB encryption context can include the following fields. All fields and values are
optional.

• Table name

• Partition key name

• Sort key name

• Attribute name-value pairs

• Requested material description

Provider store

A provider store is a component that returns cryptographic materials providers (CMPs). The provider
store can create the CMPs or get them from another source, such as another provider store. The
provider store saves versions of the CMPs that it creates in persistent storage in which each stored
CMP is identified by the material name of the requester and version number.

The Most Recent Provider in the DynamoDB Encryption Client gets its CMPs from a provider store,
but you can use the provider store to supply CMPs to any component. Each Most Recent Provider is
associated with one provider store, but a provider store can supply CMPs to many requesters across
multiple hosts.

The provider store creates new versions of CMPs on demand, and returns new and existing
versions. It also returns the latest version number for a given material name. This lets the requester
know when the provider store has a new version of its CMP that it can request.

The DynamoDB Encryption Client includes a MetaStore, which is a provider store that creates
Wrapped CMPs with keys that are stored in DynamoDB and encrypted by using an internal
DynamoDB Encryption Client.

Learn more:

• Provider store: Java, Python

• MetaStore: Java, Python

Concepts 256

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/store/ProviderStore.html
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/src/dynamodb_encryption_sdk/material_providers/store/__init__.py
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/store/MetaStore.html
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/materials_providers/metastore.html#module-dynamodb_encryption_sdk.material_providers.store.meta

AWS Database Encryption SDK Developer Guide

Cryptographic materials provider

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

One of the most important decisions you make when using the DynamoDB Encryption Client is
selecting a cryptographic materials provider (CMP). The CMP assembles and returns cryptographic
materials to the item encryptor. It also determines how encryption and signing keys are generated,
whether new key materials are generated for each item or are reused, and the encryption and
signing algorithms that are used.

You can choose a CMP from the implementations provided in the DynamoDB Encryption
Client libraries or build a compatible custom CMP. Your CMP choice might also depend on the
programming language that you use.

This topic describes the most common CMPs and offers some advice to help you choose the best
one for your application.

Direct KMS Materials Provider

The Direct KMS Materials Provider protects your table items under an AWS KMS key that never
leaves AWS Key Management Service (AWS KMS) unencrypted. Your application doesn't have to
generate or manage any cryptographic materials. Because it uses the AWS KMS key to generate
unique encryption and signing keys for each item, this provider calls AWS KMS every time it
encrypts or decrypts an item.

If you use AWS KMS and one AWS KMS call per transaction is practical for your application, this
provider is a good choice.

For details, see Direct KMS Materials Provider.

Wrapped Materials Provider (Wrapped CMP)

The Wrapped Materials Provider (Wrapped CMP) lets you generate and manage your wrapping
and signing keys outside of the DynamoDB Encryption Client.

Cryptographic materials provider 257

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Database Encryption SDK Developer Guide

The Wrapped CMP generates a unique encryption key for each item. Then it uses wrapping
(or unwrapping) and signing keys that you supply. As such, you determine how the wrapping
and signing keys are generated and whether they are unique to each item or are reused. The
Wrapped CMP is a secure alternative to the Direct KMS Provider for applications that don't use
AWS KMS and can safely manage cryptographic materials.

For details, see Wrapped Materials Provider.

Most Recent Provider

The Most Recent Provider is a cryptographic materials provider (CMP) that is designed to
work with a provider store. It gets CMPs from the provider store, and gets the cryptographic
materials that it returns from the CMPs. The Most Recent Provider typically uses each CMP
to satisfy multiple requests for cryptographic materials, but you can use the features of the
provider store to control the extent to which materials are reused, determine how often its CMP
is rotated, and even change the type of CMP that is used without changing the Most Recent
Provider.

You can use the Most Recent Provider with any compatible provider store. The DynamoDB
Encryption Client includes a MetaStore, which is a provider store that returns Wrapped CMPs.

The Most Recent Provider is a good choice for applications that need to minimize calls to their
cryptographic source, and applications that can reuse some cryptographic materials without
violating their security requirements. For example, it allows you to protect your cryptographic
materials under an AWS KMS key in AWS Key Management Service (AWS KMS) without calling
AWS KMS every time you encrypt or decrypt an item.

For details, see Most Recent Provider.

Static Materials Provider

The Static Materials Provider is designed for testing, proof-of-concept demonstrations, and
legacy compatibility. It doesn't generate any unique cryptographic materials for each item. It
returns the same encryption and signing keys that you supply, and those keys are used directly
to encrypt, decrypt, and sign your table items.

Note

The Asymmetric Static Provider in the Java library is not a static provider. It just supplies
alternate constructors for the Wrapped CMP. It is safe for production use, but you
should use the Wrapped CMP directly whenever possible.

Cryptographic materials provider 258

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/AsymmetricStaticProvider.html

AWS Database Encryption SDK Developer Guide

Topics

• Direct KMS Materials Provider

• Wrapped Materials Provider

• Most Recent Provider

• Static Materials Provider

Direct KMS Materials Provider

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

The Direct KMS Materials Provider (Direct KMS Provider) protects your table items under an
AWS KMS key that never leaves AWS Key Management Service (AWS KMS) unencrypted. This
cryptographic materials provider returns a unique encryption key and signing key for every table
item. To do so, it calls AWS KMS every time you encrypt or decrypt an item.

If you're processing DynamoDB items at a high frequency and large scale, you might exceed the
AWS KMS requests-per-second limits, causing processing delays. If you need to exceed a limit,
create a case in the AWS Support Center. You might also consider using a cryptographic materials
provider with limited key reuse, such as the Most Recent Provider.

To use the Direct KMS Provider, the caller must have an AWS account, at least one AWS KMS key,
and permission to call the GenerateDataKey and Decrypt operations on the AWS KMS key. The AWS
KMS key must be a symmetric encryption key; the DynamoDB Encryption Client does not support
asymmetric encryption. If you are using a DynamoDB global table, you might want to specify an
AWS KMS multi-Region key. For details, see How to use it.

Note

When you use the Direct KMS Provider, the names and values of your primary key
attributes appear in plaintext in the AWS KMS encryption context and AWS CloudTrail logs

Cryptographic materials provider 259

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context

AWS Database Encryption SDK Developer Guide

of related AWS KMS operations. However, the DynamoDB Encryption Client never exposes
the plaintext of any encrypted attribute values.

The Direct KMS Provider is one of several cryptographic materials providers (CMPs) that the
DynamoDB Encryption Client supports. For information about the other CMPs, see Cryptographic
materials provider.

For example code, see:

• Java: AwsKmsEncryptedItem

• Python: aws-kms-encrypted-table, aws-kms-encrypted-item

Topics

• How to use it

• How it works

How to use it

To create a Direct KMS Provider, use the key ID parameter to specify a symmetric encryption KMS
key in your account. The value of the key ID parameter can be the key ID, key ARN, alias name, or
alias ARN of the AWS KMS key. For details about the key identifiers, see Key identifiers in the AWS
Key Management Service Developer Guide.

The Direct KMS Provider requires a symmetric encryption KMS key. You cannot use an asymmetric
KMS key. However, you can use a multi-Region KMS key, a KMS key with imported key material, or
a KMS key in a custom key store. You must have kms:GenerateDataKey and kms:Decrypt permission
on the KMS key. As such, you must use a customer managed key, not an AWS managed or AWS
owned KMS key.

The DynamoDB Encryption Client for Python determines the Region for calling AWS KMS from the
Region in the key ID parameter value, if it includes one. Otherwise, it uses the Region in the AWS
KMS client, if you specify one, or the Region that you configure in the AWS SDK for Python (Boto3).
For information about Region selection in Python, see Configuration in the AWS SDK for Python
(Boto3) API Reference.

The DynamoDB Encryption Client for Java determines the Region for calling AWS KMS from the
Region in the AWS KMS client, if the client you specify includes a Region. Otherwise, it uses the

Cryptographic materials provider 260

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_table.py
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_item.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html

AWS Database Encryption SDK Developer Guide

Region that you configure in the AWS SDK for Java. For information about Region selection in the
AWS SDK for Java, see AWS Region selection in the AWS SDK for Java Developer Guide.

Java

// Replace the example key ARN and Region with valid values for your application
final String keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
final String region = 'us-west-2'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Python

The following example uses the key ARN to specify the AWS KMS key. If your key identifier
doesn't include an AWS Region, the DynamoDB Encryption Client gets the Region from the
configured Botocore session, if there is one, or from Boto defaults.

Replace the example key ID with a valid value
kms_key = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key)

If you are using Amazon DynamoDB global tables, we recommend that you encrypt your data
under an AWS KMS multi-Region key. Multi-Region keys are AWS KMS keys in different AWS
Regions that can be used interchangeably because they have the same key ID and key material. For
details, see Using multi-Region keys in the AWS Key Management Service Developer Guide.

Note

If you are using the global tables version 2017.11.29, you must set attribute actions so the
reserved replication fields are not encrypted or signed. For details, see Issues with older
version global tables.

To use a multi-Region key with the DynamoDB Encryption Client, create a multi-Region key and
replicate it into the Regions in which your application runs. Then configure the Direct KMS Provider

Cryptographic materials provider 261

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html

AWS Database Encryption SDK Developer Guide

to use the multi-Region key in the Region in which the DynamoDB Encryption Client calls AWS
KMS.

The following example configures the DynamoDB Encryption Client to encrypt data in the US East
(N. Virginia) (us-east-1) Region and decrypt it in the US West (Oregon) (us-west-2) Region using a
multi-Region key.

Java

In this example, the DynamoDB Encryption Client gets the Region for calling AWS KMS from
the Region in the AWS KMS client. The keyArn value identifies a multi-Region key in the same
Region.

// Encrypt in us-east-1

// Replace the example key ARN and Region with valid values for your application
final String usEastKey = 'arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
final String region = 'us-east-1'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, usEastKey);

// Decrypt in us-west-2

// Replace the example key ARN and Region with valid values for your application
final String usWestKey = 'arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
final String region = 'us-west-2'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, usWestKey);

Python

In this example, the DynamoDB Encryption Client gets the Region for calling AWS KMS from the
Region in the key ARN.

Encrypt in us-east-1

Replace the example key ID with a valid value

Cryptographic materials provider 262

AWS Database Encryption SDK Developer Guide

us_east_key = 'arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=us_east_key)

Decrypt in us-west-2

Replace the example key ID with a valid value
us_west_key = 'arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=us_west_key)

How it works

The Direct KMS Provider returns encryption and signing keys that are protected by an AWS KMS
key that you specify, as shown in the following diagram.

• To generate encryption materials, the Direct KMS Provider asks AWS KMS to generate a unique
data key for each item using an AWS KMS key that you specify. It derives encryption and signing
keys for the item from the plaintext copy of the data key, and then returns the encryption and
signing keys, along with the encrypted data key, which is stored in the material description
attribute of the item.

Cryptographic materials provider 263

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys

AWS Database Encryption SDK Developer Guide

The item encryptor uses the encryption and signing keys and removes them from memory as
soon as possible. Only the encrypted copy of the data key from which they were derived is saved
in the encrypted item.

• To generate decryption materials, the Direct KMS Provider asks AWS KMS to decrypt the
encrypted data key. Then, it derives verification and signing keys from the plaintext data key, and
returns them to the item encryptor.

The item encryptor verifies the item and, if verification succeeds, decrypts the encrypted values.
Then, it removes the keys from memory as soon as possible.

Get encryption materials

This section describes in detail the inputs, outputs, and processing of the Direct KMS Provider when
it receives a request for encryption materials from the item encryptor.

Input (from the application)

• The key ID of an AWS KMS key.

Input (from the item encryptor)

• DynamoDB encryption context

Output (to the item encryptor)

• Encryption key (plaintext)

• Signing key

• In actual material description: These values are saved in the material description attribute that
the client adds to the item.

• amzn-ddb-env-key: Base64-encoded data key encrypted by the AWS KMS key

• amzn-ddb-env-alg: Encryption algorithm, by default AES/256

• amzn-ddb-sig-alg: Signing algorithm, by default, HmacSHA256/256

• amzn-ddb-wrap-alg: kms

Processing

Cryptographic materials provider 264

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://en.wikipedia.org/wiki/HMAC

AWS Database Encryption SDK Developer Guide

1. The Direct KMS Provider sends AWS KMS a request to use the specified AWS KMS key to
generate a unique data key for the item. The operation returns a plaintext key and a copy that is
encrypted under the AWS KMS key. This is known as the initial key material.

The request includes the following values in plaintext in AWS KMS encryption context. These
non-secret values are cryptographically bound to the encrypted object, so the same encryption
context is required on decrypt. You can use these values to identify the call to AWS KMS in AWS
CloudTrail logs.

• amzn-ddb-env-alg – Encryption algorithm, by default AES/256

• amzn-ddb-sig-alg – Signing algorithm, by default HmacSHA256/256

• (Optional) aws-kms-table – table name

• (Optional) partition key name – partition key value (binary values are Base64-
encoded)

• (Optional) sort key name – sort key value (binary values are Base64-encoded)

The Direct KMS Provider gets the values for the AWS KMS encryption context from the
DynamoDB encryption context for the item. If the DynamoDB encryption context doesn't include
a value, such as the table name, that name-value pair is omitted from the AWS KMS encryption
context.

2. The Direct KMS Provider derives a symmetric encryption key and a signing key from the data
key. By default, it uses Secure Hash Algorithm (SHA) 256 and RFC5869 HMAC-based Key
Derivation Function to derive a 256-bit AES symmetric encryption key and a 256-bit HMAC-
SHA-256 signing key.

3. The Direct KMS Provider returns the output to the item encryptor.

4. The item encryptor uses the encryption key to encrypt the specified attributes and the signing
key to sign them, using the algorithms specified in the actual material description. It removes
the plaintext keys from memory as soon as possible.

Get decryption materials

This section describes in detail the inputs, outputs, and processing of the Direct KMS Provider when
it receives a request for decryption materials from the item encryptor.

Input (from the application)

• The key ID of an AWS KMS key.
Cryptographic materials provider 265

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/developerguide/monitoring-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/monitoring-overview.html
https://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS Database Encryption SDK Developer Guide

The value of the key ID can be the key ID, key ARN, alias name or alias ARN of the AWS KMS key.
Any values that aren't included in the key ID, such as the Region, must be available in the AWS
named profile. The key ARN provides all of the values that AWS KMS needs.

Input (from the item encryptor)

• A copy of the DynamoDB encryption context that contains the contents of the material
description attribute.

Output (to the item encryptor)

• Encryption key (plaintext)

• Signing key

Processing

1. The Direct KMS Provider gets the encrypted data key from the material description attribute in
the encrypted item.

2. It asks AWS KMS to use the specified AWS KMS key to decrypt the encrypted data key. The
operation returns a plaintext key.

This request must use the same AWS KMS encryption context that was used to generate and
encrypt the data key.

• aws-kms-table – table name

• partition key name – partition key value (binary values are Base64-encoded)

• (Optional) sort key name – sort key value (binary values are Base64-encoded)

• amzn-ddb-env-alg – Encryption algorithm, by default AES/256

• amzn-ddb-sig-alg – Signing algorithm, by default HmacSHA256/256

3. The Direct KMS Provider uses Secure Hash Algorithm (SHA) 256 and RFC5869 HMAC-based Key
Derivation Function to derive a 256-bit AES symmetric encryption key and a 256-bit HMAC-
SHA-256 signing key from the data key.

4. The Direct KMS Provider returns the output to the item encryptor.

5. The item encryptor uses the signing key to verify the item. If it succeeds, it uses the symmetric
encryption key to decrypt the encrypted attribute values. These operations use the encryption

Cryptographic materials provider 266

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS Database Encryption SDK Developer Guide

and signing algorithms specified in the actual material description. The item encryptor removes
the plaintext keys from memory as soon as possible.

Wrapped Materials Provider

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

The Wrapped Materials Provider (Wrapped CMP) lets you use wrapping and signing keys from any
source with the DynamoDB Encryption Client. The Wrapped CMP does not depend on any AWS
service. However, you must generate and manage your wrapping and signing keys outside of the
client, including providing the correct keys to verify and decrypt the item.

The Wrapped CMP generates a unique item encryption key for each item. It wraps the item
encryption key with the wrapping key that you provide and saves the wrapped item encryption
key in the material description attribute of the item. Because you supply the wrapping and signing
keys, you determine how the wrapping and signing keys are generated and whether they are
unique to each item or are reused.

The Wrapped CMP is a secure implementation and a good choice for applications that can manage
cryptographic materials.

The Wrapped CMP is one of several cryptographic materials providers (CMPs) that the DynamoDB
Encryption Client supports. For information about the other CMPs, see Cryptographic materials
provider.

For example code, see:

• Java: AsymmetricEncryptedItem

• Python: wrapped-rsa-encrypted-table, wrapped-symmetric-encrypted-table

Topics

Cryptographic materials provider 267

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AsymmetricEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/wrapped_rsa_encrypted_table.py
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/wrapped_symmetric_encrypted_table.py

AWS Database Encryption SDK Developer Guide

• How to use it

• How it works

How to use it

To create a Wrapped CMP, specify a wrapping key (required on encrypt), an unwrapping key
(required on decrypt), and a signing key. You must supply keys when you encrypt and decrypt
items.

The wrapping, unwrapping, and signing keys can be symmetric keys or asymmetric key pairs.

Java

// This example uses asymmetric wrapping and signing key pairs
final KeyPair wrappingKeys = ...
final KeyPair signingKeys = ...

final WrappedMaterialsProvider cmp =
 new WrappedMaterialsProvider(wrappingKeys.getPublic(),
 wrappingKeys.getPrivate(),
 signingKeys);

Python

This example uses symmetric wrapping and signing keys
wrapping_key = ...
signing_key = ...

wrapped_cmp = WrappedCryptographicMaterialsProvider(
 wrapping_key=wrapping_key,
 unwrapping_key=wrapping_key,
 signing_key=signing_key
)

How it works

The Wrapped CMP generates a new item encryption key for every item. It uses the wrapping,
unwrapping, and signing keys that you provide, as shown in the following diagram.

Cryptographic materials provider 268

AWS Database Encryption SDK Developer Guide

Get encryption materials

This section describes in detail the inputs, outputs, and processing of the Wrapped Materials
Provider (Wrapped CMP) when it receives a request for encryption materials.

Input (from application)

• Wrapping key: An Advanced Encryption Standard (AES) symmetric key, or an RSA public key.
Required if any attribute values are encrypted. Otherwise, it is optional and ignored.

• Unwrapping key: Optional and ignored.

• Signing key

Input (from the item encryptor)

• DynamoDB encryption context

Output (to the item encryptor):

• Plaintext item encryption key

• Signing key (unchanged)

• Actual material description: These values are saved in the material description attribute that the
client adds to the item.

• amzn-ddb-env-key: Base64-encoded wrapped item encryption key

• amzn-ddb-env-alg: Encryption algorithm used to encrypt the item. The default is AES-256-
CBC.

Cryptographic materials provider 269

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

AWS Database Encryption SDK Developer Guide

• amzn-ddb-wrap-alg: The wrapping algorithm that the Wrapped CMP used to wrap the item
encryption key. If the wrapping key is an AES key, the key is wrapped using unpadded AES-
Keywrap as defined in RFC 3394. If the wrapping key is an RSA key, the key is encrypted by
using RSA OAEP with MGF1 padding.

Processing

When you encrypt an item, you pass in a wrapping key and a signing key. An unwrapping key is
optional and ignored.

1. The Wrapped CMP generates a unique symmetric item encryption key for the table item.

2. It uses the wrapping key that you specify to wrap the item encryption key. Then, it removes it
from memory as soon as possible.

3. It returns the plaintext item encryption key, the signing key that you supplied, and an actual
material description that includes the wrapped item encryption key, and the encryption and
wrapping algorithms.

4. The item encryptor uses the plaintext encryption key to encrypt the item. It uses the signing key
that you supplied to sign the item. Then, it removes the plaintext keys from memory as soon as
possible. It copies the fields in the actual material description, including the wrapped encryption
key (amzn-ddb-env-key), to the material description attribute of the item.

Get decryption materials

This section describes in detail the inputs, outputs, and processing of the Wrapped Materials
Provider (Wrapped CMP) when it receives a request for decryption materials.

Input (from application)

• Wrapping key: Optional and ignored.

• Unwrapping key: The same Advanced Encryption Standard (AES) symmetric key or RSA private
key that corresponds to the RSA public key used to encrypt. Required if any attribute values are
encrypted. Otherwise, it is optional and ignored.

• Signing key

Input (from the item encryptor)

Cryptographic materials provider 270

https://tools.ietf.org/html/rfc3394.html
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

AWS Database Encryption SDK Developer Guide

• A copy of the DynamoDB encryption context that contains the contents of the material
description attribute.

Output (to the item encryptor)

• Plaintext item encryption key

• Signing key (unchanged)

Processing

When you decrypt an item, you pass in an unwrapping key and a signing key. A wrapping key is
optional and ignored.

1. The Wrapped CMP gets the wrapped item encryption key from the material description attribute
of the item.

2. It uses the unwrapping key and algorithm to unwrap the item encryption key.

3. It returns the plaintext item encryption key, the signing key, and encryption and signing
algorithms to the item encryptor.

4. The item encryptor uses the signing key to verify the item. If it succeeds, it uses the item
encryption key to decrypt the item. Then, it removes the plaintext keys from memory as soon as
possible.

Most Recent Provider

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

The Most Recent Provider is a cryptographic materials provider (CMP) that is designed to work with
a provider store. It gets CMPs from the provider store, and gets the cryptographic materials that
it returns from the CMPs. It typically uses each CMP to satisfy multiple requests for cryptographic
materials. But you can use the features of its provider store to control the extent to which materials

Cryptographic materials provider 271

AWS Database Encryption SDK Developer Guide

are reused, determine how often its CMP is rotated, and even change the type of CMP that it uses
without changing the Most Recent Provider.

Note

The code associated with the MostRecentProvider symbol for the Most Recent Provider
might store cryptographic materials in memory for the lifetime of the process. It might
allow a caller to use keys that they're no longer authorized to use.
The MostRecentProvider symbol is deprecated in older supported versions of the
DynamoDB Encryption Client and removed from version 2.0.0. It is replaced by the
CachingMostRecentProvider symbol. For details, see Updates to the Most Recent
Provider.

The Most Recent Provider is a good choice for applications that need to minimize calls to the
provider store and its cryptographic source, and applications that can reuse some cryptographic
materials without violating their security requirements. For example, It allows you to protect your
cryptographic materials under an AWS KMS key in AWS Key Management Service (AWS KMS)
without calling AWS KMS every time you encrypt or decrypt an item.

The provider store that you choose determines the type of CMPs that the Most Recent Provider
uses and how often it gets a new CMP. You can use any compatible provider store with the Most
Recent Provider, including custom provider stores that you design.

The DynamoDB Encryption Client includes a MetaStore that creates and returns Wrapped Materials
Providers (Wrapped CMPs). The MetaStore saves multiple versions of the Wrapped CMPs that it
generates in an internal DynamoDB table and protects them with client-side encryption by an
internal instance of the DynamoDB Encryption Client.

You can configure the MetaStore to use any type of internal CMP to protect the materials in
the table, including a Direct KMS Provider that generates cryptographic materials protected by
your AWS KMS key, a Wrapped CMP that uses wrapping and signing keys that you supply, or a
compatible custom CMP that you design.

For example code, see:

• Java: MostRecentEncryptedItem

• Python: most_recent_provider_encrypted_table

Cryptographic materials provider 272

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/MostRecentEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/most_recent_provider_encrypted_table.py

AWS Database Encryption SDK Developer Guide

Topics

• How to use it

• How it works

• Updates to the Most Recent Provider

How to use it

To create a Most Recent Provider, you need to create and configure a provider store, and then
create a Most Recent Provider that uses the provider store.

The following examples show how to create a Most Recent Provider that uses a MetaStore and
protects the versions in its internal DynamoDB table with cryptographic materials from a Direct
KMS Provider. These examples use the CachingMostRecentProvider symbol.

Each Most Recent Provider has a name that identifies its CMPs in the MetaStore table, a time-to-
live (TTL) setting, and a cache size setting that determines how many entries the cache can hold.
These examples set the cache size to 1000 entries and a TTL of 60 seconds.

Java

// Set the name for MetaStore's internal table
final String keyTableName = 'metaStoreTable'

// Set the Region and AWS KMS key
final String region = 'us-west-2'
final String keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

// Set the TTL and cache size
final long ttlInMillis = 60000;
final long cacheSize = 1000;

// Name that identifies the MetaStore's CMPs in the provider store
final String materialName = 'testMRP'

// Create an internal DynamoDB client for the MetaStore
final AmazonDynamoDB ddb =
 AmazonDynamoDBClientBuilder.standard().withRegion(region).build();

// Create an internal Direct KMS Provider for the MetaStore
final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();

Cryptographic materials provider 273

AWS Database Encryption SDK Developer Guide

final DirectKmsMaterialProvider kmsProv = new DirectKmsMaterialProvider(kms,
 keyArn);

// Create an item encryptor for the MetaStore,
// including the Direct KMS Provider
final DynamoDBEncryptor keyEncryptor = DynamoDBEncryptor.getInstance(kmsProv);

// Create the MetaStore
final MetaStore metaStore = new MetaStore(ddb, keyTableName, keyEncryptor);

//Create the Most Recent Provider
final CachingMostRecentProvider cmp = new CachingMostRecentProvider(metaStore,
 materialName, ttlInMillis, cacheSize);

Python

Designate an AWS KMS key
kms_key_id = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

Set the name for MetaStore's internal table
meta_table_name = 'metaStoreTable'

Name that identifies the MetaStore's CMPs in the provider store
material_name = 'testMRP'

Create an internal DynamoDB table resource for the MetaStore
meta_table = boto3.resource('dynamodb').Table(meta_table_name)

Create an internal Direct KMS Provider for the MetaStore
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Create the MetaStore with the Direct KMS Provider
meta_store = MetaStore(
 table=meta_table,
 materials_provider=kms_cmp
)

Create a Most Recent Provider using the MetaStore
Sets the TTL (in seconds) and cache size (# entries)
most_recent_cmp = MostRecentProvider(
 provider_store=meta_store,
 material_name=material_name,

Cryptographic materials provider 274

AWS Database Encryption SDK Developer Guide

 version_ttl=60.0,
 cache_size=1000
)

How it works

The Most Recent Provider gets CMPs from a provider store. Then, it uses the CMP to generate the
cryptographic materials that it returns to the item encryptor.

About the Most Recent Provider

The Most Recent Provider gets a cryptographic materials provider (CMP) from a provider store.
Then, it uses the CMP to generate the cryptographic materials it returns. Each Most Recent Provider
is associated with one provider store, but a provider store can supply CMPs to multiple providers
across multiple hosts.

The Most Recent Provider can work with any compatible CMP from any provider store. It requests
encryption or decryption materials from the CMP and returns the output to the item encryptor. It
does not perform any cryptographic operations.

To request a CMP from its provider store, the Most Recent Provider supplies its material name and
the version of an existing CMP it wants to use. For encryption materials, the Most Recent Provider
always requests the maximum ("most recent") version. For decryption materials, it requests the
version of the CMP that was used to create the encryption materials, as shown in the following
diagram.

Cryptographic materials provider 275

AWS Database Encryption SDK Developer Guide

The Most Recent Provider saves versions of the CMPs that the provider store returns in a local Least
Recently Used (LRU) cache in memory. The cache enables the Most Recent Provider to get the CMPs
that it needs without calling the provider store for every item. You can clear the cache on demand.

The Most Recent Provider uses a configurable time-to-live value that you can adjust based on the
characteristics of your application.

About the MetaStore

You can use a Most Recent Provider with any provider store, including a compatible custom
provider store. The DynamoDB Encryption Client includes a MetaStore, a secure implementation
that you can configure and customize.

A MetaStore is a provider store that creates and returns Wrapped CMPs that are configured with
the wrapping key, unwrapping key, and signing key that Wrapped CMPs require. A MetaStore is
a secure option for a Most Recent Provider because Wrapped CMPs always generate unique item
encryption keys for every item. Only the wrapping key that protects the item encryption key and
the signing keys are reused.

The following diagram shows the components of the MetaStore and how it interacts with the Most
Recent Provider.

Cryptographic materials provider 276

AWS Database Encryption SDK Developer Guide

The MetaStore generates the Wrapped CMPs, and then stores them (in encrypted form) in an
internal DynamoDB table. The partition key is the name of the Most Recent Provider material; the
sort key its version number. The materials in the table are protected by an internal DynamoDB
Encryption Client, including an item encryptor and internal cryptographic materials provider (CMP).

You can use any type of internal CMP in your MetaStore, including the a Direct KMS Provider, a
Wrapped CMP with cryptographic materials that you provide, or a compatible custom CMP. If the
internal CMP in your MetaStore is a Direct KMS Provider, your reusable wrapping and signing keys
are protected under a AWS KMS key in AWS Key Management Service (AWS KMS). The MetaStore
calls AWS KMS every time it adds a new CMP version to its internal table or gets a CMP version
from its internal table.

Setting a time-to-live value

You can set a time-to-live (TTL) value for each Most Recent Provider that you create. In general, use
the lowest TTL value that is practical for your application.

The use of the TTL value is changed in the CachingMostRecentProvider symbol for the Most
Recent Provider.

Note

The MostRecentProvider symbol for the Most Recent Provider is deprecated in older
supported versions of the DynamoDB Encryption Client and removed from version 2.0.0.
It is replaced by the CachingMostRecentProvider symbol. We recommend that you
update your code as soon as possible. For details, see Updates to the Most Recent Provider.

CachingMostRecentProvider

The CachingMostRecentProvider uses the TTL value in two different ways.

• The TTL determines how often the Most Recent Provider checks the provider store for a new
version of the CMP. If a new version is available, the Most Recent Provider replaces its CMP
and refreshes its cryptographic materials. Otherwise, it continues to use its current CMP and
cryptographic materials.

• The TTL determines how long CMPs in the cache can be used. Before it uses a cached CMP for
encryption, the Most Recent Provider evaluates its time in the cache. If the CMP cache time
exceeds the TTL, the CMP is evicted from the cache and the Most Recent Provider gets a new,
latest-version CMP from its provider store.

Cryptographic materials provider 277

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Database Encryption SDK Developer Guide

MostRecentProvider

In the MostRecentProvider, the TTL determines how often the Most Recent Provider checks
the provider store for a new version of the CMP. If a new version is available, the Most Recent
Provider replaces its CMP and refreshes its cryptographic materials. Otherwise, it continues to
use its current CMP and cryptographic materials.

The TTL does not determine how often a new CMP version is created. You create new CMP versions
by rotating the cryptographic materials.

An ideal TTL value varies with the application and its latency and availability goals. A lower TTL
improves your security profile by reducing the time that cryptographic materials are stored in
memory. Also, a lower TTL refreshes critical information more frequently. For example, if your
internal CMP is a Direct KMS Provider, it verifies more frequently that the caller is still authorized to
use an AWS KMS key.

However, if the TTL is too brief, the frequent calls to the provider store can increase your costs
and cause your provider store to throttle requests from your application and other applications
that share your service account. You might also benefit from coordinating the TTL with the rate at
which you rotate cryptographic materials.

During testing, vary the TTL and cache size under different work loads until you find a
configuration that works for your application and your security and performance standards.

Rotating cryptographic materials

When a Most Recent Provider needs encryption materials, it always uses the most recent version of
its CMP that it knows about. The frequency that it checks for a newer version is determined by the
time-to-live (TTL) value that you set when you configure the Most Recent Provider.

When the TTL expires, the Most Recent Provider checks the provider store for newer version of the
CMP. If one is available, the Most Recent Provider get it and replaces the CMP in its cache. It uses
this CMP and its cryptographic materials until it discovers that provider store has a newer version.

To tell the provider store to create a new version of a CMP for a Most Recent Provider, call the
provider store's Create New Provider operation with the material name of the Most Recent
Provider. The provider store creates a new CMP and saves an encrypted copy in its internal storage
with a greater version number. (It also returns a CMP, but you can discard it.) As a result, the next
time the Most Recent Provider queries the provider store for the maximum version number of its

Cryptographic materials provider 278

AWS Database Encryption SDK Developer Guide

CMPs, it gets the new greater version number, and uses it in subsequent requests to the store to
see if a new version of the CMP has been created.

You can schedule your Create New Provider calls based on time, the number of items or attributes
processed, or any other metric that makes sense for your application.

Get encryption materials

The Most Recent Provider uses the following process, shown in this diagram, to get the encryption
materials that it returns to the item encryptor. The output depends on the type of CMP that the
provider store returns. The Most Recent Provider can use any compatible provider store, including
the MetaStore that is included in the DynamoDB Encryption Client.

When you create a Most Recent Provider by using the CachingMostRecentProvider symbol,
you specify a provider store, a name for the Most Recent Provider, and a time-to-live (TTL)
value. You can also optionally specify a cache size, which determines the maximum number of
cryptographic materials that can exist in the cache.

Cryptographic materials provider 279

AWS Database Encryption SDK Developer Guide

When the item encryptor asks the Most Recent Provider for encryption materials, the Most Recent
Provider begins by searching its cache for the latest version of its CMP.

• If it finds the latest version CMP in its cache and the CMP has not exceeded the TTL value,
the Most Recent Provider uses the CMP to generate encryption materials. Then, it returns the
encryption materials to the item encryptor. This operation does not require a call to the provider
store.

• If the latest version of the CMP is not in its cache, or if it is in the cache but has exceeded its TTL
value, the Most Recent Provider requests a CMP from its provider store. The request includes the
Most Recent Provider material name and the maximum version number that it knows.

1. The provider store returns a CMP from its persistent storage. If the provider store is a
MetaStore, it gets an encrypted Wrapped CMP from its internal DynamoDB table by using the
Most Recent Provider material name as the partition key and the version number as the sort
key. The MetaStore uses its internal item encryptor and internal CMP to decrypt the Wrapped
CMP. Then, it returns the plaintext CMP to the Most Recent Provider . If the internal CMP is a
Direct KMS Provider, this step includes a call to the AWS Key Management Service (AWS KMS).

2. The CMP adds the amzn-ddb-meta-id field to the actual material description. Its value is the
material name and version of the CMP in its internal table. The provider store returns the CMP
to the Most Recent Provider.

3. The Most Recent Provider caches the CMP in memory.

4. The Most Recent Provider uses the CMP to generate encryption materials. Then, it returns the
encryption materials to the item encryptor.

Get decryption materials

When the item encryptor asks the Most Recent Provider for decryption materials, the Most Recent
Provider uses the following process to get and return them.

1. The Most Recent Provider asks the provider store for the version number of the cryptographic
materials that were used to encrypt the item. It passes in the actual material description from
the material description attribute of the item.

2. The provider store gets the encrypting CMP version number from the amzn-ddb-meta-id field
in the actual material description and returns it to the Most Recent Provider.

3. The Most Recent Provider searches its cache for the version of CMP that was used to encrypt and
sign the item.

Cryptographic materials provider 280

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Database Encryption SDK Developer Guide

• If it finds the matching version of the CMP is in its cache and the CMP has not exceeded the time-
to-live (TTL) value, the Most Recent Provider uses the CMP to generate decryption materials.
Then, it returns the decryption materials to the item encryptor. This operation does not require a
call to the provider store or any other CMP.

• If the matching version of the CMP is not in its cache, or if the cached AWS KMS key has
exceeded its TTL value, the Most Recent Provider requests a CMP from its provider store. It sends
its material name and the encrypting CMP version number in the request.

1. The provider store searches its persistent storage for the CMP by using the Most Recent
Provider name as the partition key and the version number as the sort key.

• If the name and version number are not in its persistent storage, the provider store throws
an exception. If the provider store was used to generate the CMP, the CMP should be stored
in its persistent storage, unless it was intentionally deleted.

• If the CMP with the matching name and version number are in the provider store's
persistent storage, the provider store returns the specified CMP to the Most Recent Provider.

If the provider store is a MetaStore, it gets the encrypted CMP from its DynamoDB table.
Then, it uses cryptographic materials from its internal CMP to decrypt the encrypted CMP
before it returns the CMP to Most Recent Provider. If the internal CMP is a Direct KMS
Provider, this step includes a call to the AWS Key Management Service (AWS KMS).

2. The Most Recent Provider caches the CMP in memory.

3. The Most Recent Provider uses the CMP to generate decryption materials. Then, it returns the
decryption materials to the item encryptor.

Updates to the Most Recent Provider

The symbol for the Most Recent Provider is changed from MostRecentProvider to
CachingMostRecentProvider.

Note

The MostRecentProvider symbol, which represents the Most Recent Provider, is
deprecated in version 1.15 of the DynamoDB Encryption Client for Java and version
1.3 of the DynamoDB Encryption Client for Python and removed from versions 2.0.0 of
the DynamoDB Encryption Client in both language implementations. Instead, use the
CachingMostRecentProvider.

Cryptographic materials provider 281

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Database Encryption SDK Developer Guide

The CachingMostRecentProvider implements the following changes:

• The CachingMostRecentProvider periodically removes cryptographic materials from
memory when their time in memory exceeds the configured time-to-live (TTL) value.

The MostRecentProvider might store cryptographic materials in memory for the lifetime of
the process. As a result, the Most Recent Provider might not be aware of authorization changes.
It might use encryption keys after the caller's permissions to use them are revoked.

If you can't update to this new version, you can get a similar effect by periodically calling the
clear() method on the cache. This method manually flushes the cache contents and requires
the Most Recent Provider to request a new CMP and new cryptographic materials.

• The CachingMostRecentProvider also includes a cache size setting that gives you more
control over the cache.

To update to the CachingMostRecentProvider, you have to change the symbol name in your
code. In all other respects, the CachingMostRecentProvider is fully backwards compatible with
the MostRecentProvider. You don't need to re-encrypt any table items.

However, the CachingMostRecentProvider generates more calls to the underlying key
infrastructure. It calls the provider store at least once in each time-to-live (TTL) interval.
Applications with numerous active CMPs (due to frequent rotation) or applications with large fleets
are most likely to be sensitive to this change.

Before releasing your updated code, test it thoroughly to ensure that the more frequent calls don't
impair your application or cause throttling by services on which your provider depends, such as
AWS Key Management Service (AWS KMS) or Amazon DynamoDB. To mitigate any performance
problems, adjust the cache size and the time-to-live of the CachingMostRecentProvider based
on the performance characteristics you observe. For guidance, see Setting a time-to-live value.

Static Materials Provider

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

Cryptographic materials provider 282

AWS Database Encryption SDK Developer Guide

The Static Materials Provider (Static CMP) is a very simple cryptographic materials provider (CMP)
that is intended for testing, proof-of-concept demonstrations, and legacy compatibility.

To use the Static CMP to encrypt a table item, you supply an Advanced Encryption Standard (AES)
symmetric encryption key and a signing key or key pair. You must supply the same keys to decrypt
the encrypted item. The Static CMP does not perform any cryptographic operations. Instead, it
passes the encryption keys that you supply to the item encryptor unchanged. The item encryptor
encrypts the items directly under the encryption key. Then, it uses the signing key directly to sign
them.

Because the Static CMP does not generate any unique cryptographic materials, all table items that
you process are encrypted with the same encryption key and signed by the same signing key. When
you use the same key to encrypt the attributes values in numerous items or use the same key or
key pair to sign all items, you risk exceeding the cryptographic limits of the keys.

Note

The Asymmetric Static Provider in the Java library is not a static provider. It just supplies
alternate constructors for the Wrapped CMP. It's safe for production use, but you should
use the Wrapped CMP directly whenever possible.

The Static CMP is one of several cryptographic materials providers (CMPs) that the DynamoDB
Encryption Client supports. For information about the other CMPs, see Cryptographic materials
provider.

For example code, see:

• Java: SymmetricEncryptedItem

Topics

• How to use it

• How it works

How to use it

To create a static provider, supply an encryption key or key pair and a signing key or key pair. You
need to provide key material to encrypt and decrypt table items.

Cryptographic materials provider 283

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/AsymmetricStaticProvider.html
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/SymmetricEncryptedItem.java

AWS Database Encryption SDK Developer Guide

Java

// To encrypt
SecretKey cek = ...; // Encryption key
SecretKey macKey = ...; // Signing key
EncryptionMaterialsProvider provider = new SymmetricStaticProvider(cek, macKey);

// To decrypt
SecretKey cek = ...; // Encryption key
SecretKey macKey = ...; // Verification key
EncryptionMaterialsProvider provider = new SymmetricStaticProvider(cek, macKey);

Python

You can provide encryption materials, decryption materials, or both
encrypt_keys = EncryptionMaterials(
 encryption_key = ...,
 signing_key = ...
)

decrypt_keys = DecryptionMaterials(
 decryption_key = ...,
 verification_key = ...
)

static_cmp = StaticCryptographicMaterialsProvider(
 encryption_materials=encrypt_keys
 decryption_materials=decrypt_keys
)

How it works

The Static Provider passes the encryption and signing keys that you supply to the item encryptor,
where they are used directly to encrypt and sign your table items. Unless you supply different keys
for each item, the same keys are used for every item.

Cryptographic materials provider 284

AWS Database Encryption SDK Developer Guide

Get encryption materials

This section describes in detail the inputs, outputs, and processing of the Static Materials Provider
(Static CMP) when it receives a request for encryption materials.

Input (from the application)

• An encryption key – This must be a symmetric key, such as an Advanced Encryption Standard
(AES) key.

• A signing key – This can be a symmetric key or an asymmetric key pair.

Input (from the item encryptor)

• DynamoDB encryption context

Output (to the item encryptor)

• The encryption key passed as input.

• The signing key passed as input.

• Actual material description: The requested material description, if any, unchanged.

Get decryption materials

This section describes in detail the inputs, outputs, and processing of the Static Materials Provider
(Static CMP) when it receives a request for decryption materials.

Although it includes separate methods for getting encryption materials and getting decryption
materials, the behavior is the same.

Cryptographic materials provider 285

https://tools.ietf.org/html/rfc3394.html

AWS Database Encryption SDK Developer Guide

Input (from the application)

• An encryption key – This must be a symmetric key, such as an Advanced Encryption Standard
(AES) key.

• A signing key – This can be a symmetric key or an asymmetric key pair.

Input (from the item encryptor)

• DynamoDB encryption context (not used)

Output (to the item encryptor)

• The encryption key passed as input.

• The signing key passed as input.

Amazon DynamoDB Encryption Client available programming
languages

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

The Amazon DynamoDB Encryption Client is available for the following programming languages.
The language-specific libraries vary, but the resulting implementations are interoperable. For
example, you can encrypt (and sign) an item with the Java client and decrypt the item with the
Python client.

For more information, see the corresponding topic.

Topics

• Amazon DynamoDB Encryption Client for Java

• DynamoDB Encryption Client for Python

Programming languages 286

https://tools.ietf.org/html/rfc3394.html

AWS Database Encryption SDK Developer Guide

Amazon DynamoDB Encryption Client for Java

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

This topic explains how to install and use the Amazon DynamoDB Encryption Client for Java. For
details about programming with the DynamoDB Encryption Client, see the Java examples, the
examples in the aws-dynamodb-encryption-java repository on GitHub, and the Javadoc for the
DynamoDB Encryption Client.

Note

Versions 1.x.x of the DynamoDB Encryption Client for Java are in end-of-support phase
effective July 2022. Upgrade to a newer version as soon as possible.

Topics

• Prerequisites

• Installation

• Using the DynamoDB Encryption Client for Java

• Example code for the DynamoDB Encryption Client for Java

Prerequisites

Before you install the Amazon DynamoDB Encryption Client for Java, be sure you have the
following prerequisites.

A Java development environment

You will need Java 8 or later. On the Oracle website, go to Java SE Downloads, and then
download and install the Java SE Development Kit (JDK).

Programming languages 287

https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/
https://www.oracle.com/java/technologies/downloads/

AWS Database Encryption SDK Developer Guide

If you use the Oracle JDK, you must also download and install the Java Cryptography Extension
(JCE) Unlimited Strength Jurisdiction Policy Files.

AWS SDK for Java

The DynamoDB Encryption Client requires the DynamoDB module of the AWS SDK for Java
even if your application doesn't interact with DynamoDB. You can install the entire SDK or just
this module. If you are using Maven, add aws-java-sdk-dynamodb to your pom.xml file.

For more information about installing and configuring the AWS SDK for Java, see AWS SDK for
Java.

Installation

You can install the Amazon DynamoDB Encryption Client for Java in the following ways.

Manually

To install the Amazon DynamoDB Encryption Client for Java, clone or download the aws-
dynamodb-encryption-java GitHub repository.

Using Apache Maven

The Amazon DynamoDB Encryption Client for Java is available through Apache Maven with the
following dependency definition.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-dynamodb-encryption-java</artifactId>
 <version>version-number</version>
</dependency>

After you install the SDK, get started by looking at the example code in this guide and the
DynamoDB Encryption Client Javadoc on GitHub.

Using the DynamoDB Encryption Client for Java

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption

Programming languages 288

http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/getting-started.html
https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/
https://maven.apache.org/
https://aws.github.io/aws-dynamodb-encryption-java/

AWS Database Encryption SDK Developer Guide

Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

This topic explains some of the features of the DynamoDB Encryption Client in Java that might not
be found in other programming language implementations.

For details about programming with the DynamoDB Encryption Client, see the Java examples, the
examples in the aws-dynamodb-encryption-java repository on GitHub, and the Javadoc
for the DynamoDB Encryption Client.

Topics

• Item encryptors: AttributeEncryptor and DynamoDBEncryptor

• Configuring save behavior

• Attribute actions in Java

• Overriding table names

Item encryptors: AttributeEncryptor and DynamoDBEncryptor

The DynamoDB Encryption Client in Java has two item encryptors: the lower-level
DynamoDBEncryptor and the AttributeEncryptor.

The AttributeEncryptor is a helper class that helps you use the DynamoDBMapper in the AWS
SDK for Java with the DynamoDB Encryptor in the DynamoDB Encryption Client. When you use
the AttributeEncryptor with the DynamoDBMapper, it transparently encrypts and signs your
items when you save them. It also transparently verifies and decrypts your items when you load
them.

Configuring save behavior

You can use the AttributeEncryptor and DynamoDBMapper to add or replace table items with
attributes that are signed only or encrypted and signed. For these tasks, we recommend that you
configure it to use the PUT save behavior, as shown in the following example. Otherwise, you might
not be able to decrypt your data.

DynamoDBMapperConfig mapperConfig =
 DynamoDBMapperConfig.builder().withSaveBehavior(SaveBehavior.PUT).build();

Programming languages 289

https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html

AWS Database Encryption SDK Developer Guide

DynamoDBMapper mapper = new DynamoDBMapper(ddb, mapperConfig, new
 AttributeEncryptor(encryptor));

If you use the default save behavior, which updates only the attributes that are modeled in the
table item, attributes that are not modeled are not included in the signature, and are not changed
by table writes. As a result, on later reads of all attributes, the signature will not validate, because it
doesn't include un-modeled attributes.

You can also use the CLOBBER save behavior. This behavior is identical to the PUT save behavior
except that it disables optimistic locking and overwrites the item in the table.

To prevent signature errors, the DynamoDB Encryption Client throws a runtime exception if
an AttributeEncryptor is used with a DynamoDBMapper that is not configured with a save
behavior of CLOBBER or PUT.

To see this code used in an example, see Using the DynamoDBMapper and the
AwsKmsEncryptedObject.java example in the aws-dynamodb-encryption-java repository in
GitHub.

Attribute actions in Java

Attribute actions determine which attribute values are encrypted and signed, which are only
signed, and which are ignored. The method you use to specify attribute actions depends
on whether you use the DynamoDBMapper and AttributeEncryptor, or the lower-level
DynamoDBEncryptor.

Important

After you use your attribute actions to encrypt your table items, adding or removing
attributes from your data model might cause a signature validation error that prevents you
from decrypting your data. For a detailed explanation, see Changing your data model.

Attribute actions for the DynamoDBMapper

When you use the DynamoDBMapper and AttributeEncryptor, you use annotations to specify
the attribute actions. The DynamoDB Encryption Client uses the standard DynamoDB attribute
annotations that define the attribute type to determine how to protect an attribute. By default, all
attributes are encrypted and signed except for primary keys, which are signed but not encrypted.

Programming languages 290

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedObject.java
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Annotations.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Annotations.html

AWS Database Encryption SDK Developer Guide

Note

Do not encrypt the value of attributes with the @DynamoDBVersionAttribute annotation,
although you can (and should) sign them. Otherwise, conditions that use its value will have
unintended effects.

// Attributes are encrypted and signed
@DynamoDBAttribute(attributeName="Description")

// Partition keys are signed but not encrypted
@DynamoDBHashKey(attributeName="Title")

// Sort keys are signed but not encrypted
@DynamoDBRangeKey(attributeName="Author")

To specify exceptions, use the encryption annotations defined in the DynamoDB Encryption Client
for Java. If you specify them at the class level, they become the default value for the class.

// Sign only
@DoNotEncrypt

// Do nothing; not encrypted or signed
@DoNotTouch

For example, these annotations sign but do not encrypt the PublicationYear attribute, and do
not encrypt or sign the ISBN attribute value.

// Sign only (override the default)
@DoNotEncrypt
@DynamoDBAttribute(attributeName="PublicationYear")

// Do nothing (override the default)
@DoNotTouch
@DynamoDBAttribute(attributeName="ISBN")

Attribute actions for the DynamoDBEncryptor

To specify attribute actions when you use the DynamoDBEncryptor directly, create a HashMap
object in which the name-value pairs represent attribute names and the specified actions.

Programming languages 291

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.OptimisticLocking.html
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html

AWS Database Encryption SDK Developer Guide

The valid values are for the attribute actions are defined in the EncryptionFlags enumerated
type. You can use ENCRYPT and SIGN together, use SIGN alone, or omit both. However, if you use
ENCRYPT alone, the DynamoDB Encryption Client throws an error. You cannot encrypt an attribute
that you don't sign.

ENCRYPT
SIGN

Warning

Do not encrypt the primary key attributes. They must remain in plaintext so DynamoDB can
find the item without running a full table scan.

If you specify a primary key in the encryption context and then specify ENCRYPT in the attribute
action for either primary key attribute, the DynamoDB Encryption Client throws an exception.

For example, the following Java code creates an actions HashMap that encrypts and signs all
attributes in the record item. The exceptions are the partition key and sort key attributes, which
are signed but not encrypted, and the test attribute, which is not signed or encrypted.

final EnumSet<EncryptionFlags> signOnly = EnumSet.of(EncryptionFlags.SIGN);
final EnumSet<EncryptionFlags> encryptAndSign = EnumSet.of(EncryptionFlags.ENCRYPT,
 EncryptionFlags.SIGN);
final Map<String, Set<EncryptionFlags>> actions = new HashMap<>();

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName: // no break; falls through to next case
 case sortKeyName:
 // Partition and sort keys must not be encrypted, but should be signed
 actions.put(attributeName, signOnly);
 break;
 case "test":
 // Don't encrypt or sign
 break;
 default:
 // Encrypt and sign everything else
 actions.put(attributeName, encryptAndSign);
 break;
 }

Programming languages 292

AWS Database Encryption SDK Developer Guide

}

Then, when you call the encryptRecord method of the DynamoDBEncryptor, specify the map as
the value of the attributeFlags parameter. For example, this call to encryptRecord uses the
actions map.

// Encrypt the plaintext record
final Map<String, AttributeValue> encrypted_record = encryptor.encryptRecord(record,
 actions, encryptionContext);

Overriding table names

In the DynamoDB Encryption Client, the name of the DynamoDB table is an element of the
DynamoDB encryption context that is passed to the encryption and decryption methods. When
you encrypt or sign table items, the DynamoDB encryption context, including the table name, is
cryptographically bound to the ciphertext. If the DynamoDB encryption context that is passed
to the decrypt method doesn't match the DynamoDB encryption context that was passed to the
encrypt method, the decrypt operation fails.

Occasionally, the name of a table changes, such as when you back up a table or perform a point-in-
time recovery. When you decrypt or verify the signature of these items, you must pass in the same
DynamoDB encryption context that was used to encrypt and sign the items, including the original
table name. The current table name is not needed.

When you use the DynamoDBEncryptor, you assemble the DynamoDB encryption context
manually. However, if you are using the DynamoDBMapper, the AttributeEncryptor creates
the DynamoDB encryption context for you, including the current table name. To tell the
AttributeEncryptor to create an encryption context with a different table name, use the
EncryptionContextOverrideOperator.

For example, the following code creates instances of the cryptographic materials provider (CMP)
and the DynamoDBEncryptor. Then it calls the setEncryptionContextOverrideOperator
method of the DynamoDBEncryptor. It uses the overrideEncryptionContextTableName
operator, which overrides one table name. When it is configured this way, the
AttributeEncryptor creates a DynamoDB encryption context that includes
newTableName in place of oldTableName. For a complete example, see
EncryptionContextOverridesWithDynamoDBMapper.java.

final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Programming languages 293

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html#encryptRecord-java.util.Map-java.util.Map-com.amazonaws.services.dynamodbv2.datamodeling.encryption.EncryptionContext-
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery.html
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/EncryptionContextOverridesWithDynamoDBMapper.java

AWS Database Encryption SDK Developer Guide

final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp);

encryptor.setEncryptionContextOverrideOperator(EncryptionContextOperators.overrideEncryptionContextTableName(
 oldTableName, newTableName));

When you call the load method of the DynamoDBMapper, which decrypts and verifies the item, you
specify the original table name.

mapper.load(itemClass, DynamoDBMapperConfig.builder()

 .withTableNameOverride(DynamoDBMapperConfig.TableNameOverride.withTableNameReplacement(oldTableName))
 .build());

You can also use the overrideEncryptionContextTableNameUsingMap operator, which
overrides multiple table names.

The table name override operators are typically used when decrypting data and verifying
signatures. However, you can use them to set the table name in the DynamoDB encryption context
to a different value when encrypting and signing.

Do not use the table name override operators if you are using the DynamoDBEncryptor. Instead,
create an encryption context with the original table name and submit it to the decryption method.

Example code for the DynamoDB Encryption Client for Java

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

The following examples show you how to use the DynamoDB Encryption Client for Java to protect
DynamoDB table items in your application. You can find more examples (and contribute your own)
in the examples directory of the aws-dynamodb-encryption-java repository on GitHub.

Topics

• Using the DynamoDBEncryptor

Programming languages 294

https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://github.com/aws/aws-dynamodb-encryption-java/

AWS Database Encryption SDK Developer Guide

• Using the DynamoDBMapper

Using the DynamoDBEncryptor

This example shows how to use the lower-level DynamoDBEncryptor with the Direct KMS Provider.
The Direct KMS Provider generates and protects its cryptographic materials under an AWS KMS key
in AWS Key Management Service (AWS KMS) that you specify.

You can use any compatible cryptographic materials provider (CMP) with the
DynamoDBEncryptor, and you can use the Direct KMS Provider with the DynamoDBMapper and
AttributeEncryptor.

See the complete code sample: AwsKmsEncryptedItem.java

Step 1: Create the Direct KMS Provider

Create an instance of the AWS KMS client with the specified region. Then, use the client
instance to create an instance of the Direct KMS Provider with your preferred AWS KMS key.

This example uses the Amazon Resource Name (ARN) to identify the AWS KMS key, but you can
use any valid key identifier.

final String keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
final String region = "us-west-2";

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Step 2: Create an item

This example defines a record HashMap that represents a sample table item.

final String partitionKeyName = "partition_attribute";
final String sortKeyName = "sort_attribute";

final Map<String, AttributeValue> record = new HashMap<>();
record.put(partitionKeyName, new AttributeValue().withS("value1"));
record.put(sortKeyName, new AttributeValue().withN("55"));
record.put("example", new AttributeValue().withS("data"));
record.put("numbers", new AttributeValue().withN("99"));

Programming languages 295

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedItem.java
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS Database Encryption SDK Developer Guide

record.put("binary", new AttributeValue().withB(ByteBuffer.wrap(new byte[]{0x00,
 0x01, 0x02})));
record.put("test", new AttributeValue().withS("test-value"));

Step 3: Create a DynamoDBEncryptor

Create an instance of the DynamoDBEncryptor with the Direct KMS Provider.

final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp);

Step 4: Create a DynamoDB encryption context

The DynamoDB encryption context contains information about the table structure and how it is
encrypted and signed. If you use the DynamoDBMapper, the AttributeEncryptor creates the
encryption context for you.

final String tableName = "testTable";

final EncryptionContext encryptionContext = new EncryptionContext.Builder()
 .withTableName(tableName)
 .withHashKeyName(partitionKeyName)
 .withRangeKeyName(sortKeyName)
 .build();

Step 5: Create the attribute actions object

Attribute actions determine which attributes of the item are encrypted and signed, which are
only signed, and which are not encrypted or signed.

In Java, to specify attribute actions, you create a HashMap of attribute name and
EncryptionFlags value pairs.

For example, the following Java code creates an actions HashMap that encrypts and signs all
attributes in the record item, except for the partition key and sort key attributes, which are
signed, but not encrypted, and the test attribute, which is not signed or encrypted.

final EnumSet<EncryptionFlags> signOnly = EnumSet.of(EncryptionFlags.SIGN);
final EnumSet<EncryptionFlags> encryptAndSign = EnumSet.of(EncryptionFlags.ENCRYPT,
 EncryptionFlags.SIGN);
final Map<String, Set<EncryptionFlags>> actions = new HashMap<>();

Programming languages 296

AWS Database Encryption SDK Developer Guide

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName: // fall through to the next case
 case sortKeyName:
 // Partition and sort keys must not be encrypted, but should be signed
 actions.put(attributeName, signOnly);
 break;
 case "test":
 // Neither encrypted nor signed
 break;
 default:
 // Encrypt and sign all other attributes
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

Step 6: Encrypt and sign the item

To encrypt and sign the table item, call the encryptRecord method on the instance of the
DynamoDBEncryptor. Specify the table item (record), the attribute actions (actions), and
the encryption context (encryptionContext).

final Map<String, AttributeValue> encrypted_record = encryptor.encryptRecord(record,
 actions, encryptionContext);

Step 7: Put the item in the DynamoDB table

Finally, put the encrypted and signed item in the DynamoDB table.

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();
ddb.putItem(tableName, encrypted_record);

Using the DynamoDBMapper

The following example shows you how to use the DynamoDB mapper helper class with the Direct
KMS Provider. The Direct KMS Provider generates and protects its cryptographic materials under an
AWS KMS key in AWS Key Management Service (AWS KMS) that you specify.

You can use any compatible cryptographic materials provider (CMP) with the DynamoDBMapper,
and you can use the Direct KMS Provider with the lower-level DynamoDBEncryptor.

Programming languages 297

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS Database Encryption SDK Developer Guide

See the complete code sample: AwsKmsEncryptedObject.java

Step 1: Create the Direct KMS Provider

Create an instance of the AWS KMS client with the specified region. Then, use the client
instance to create an instance of the Direct KMS Provider with your preferred AWS KMS key.

This example uses the Amazon Resource Name (ARN) to identify the AWS KMS key, but you can
use any valid key identifier.

final String keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
final String region = "us-west-2";

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Step 2: Create the DynamoDB Encryptor and DynamoDBMapper

Use the Direct KMS Provider that you created in the previous step to create an instance of the
DynamoDB Encryptor. You need to instantiate the lower-level DynamoDB Encryptor to use the
DynamoDB Mapper.

Next, create an instance of your DynamoDB database and a mapper configuration, and use
them to create an instance of the DynamoDB Mapper.

Important

When using the DynamoDBMapper to add or edit signed (or encrypted and signed)
items, configure it to use a save behavior, such as PUT, that includes all attributes, as
shown in the following example. Otherwise, you might not be able to decrypt your data.

final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp)
final AmazonDynamoDB ddb =
 AmazonDynamoDBClientBuilder.standard().withRegion(region).build();

DynamoDBMapperConfig mapperConfig =
 DynamoDBMapperConfig.builder().withSaveBehavior(SaveBehavior.PUT).build();
DynamoDBMapper mapper = new DynamoDBMapper(ddb, mapperConfig, new
 AttributeEncryptor(encryptor));

Programming languages 298

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedObject.java
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Database Encryption SDK Developer Guide

Step 3: Define your DynamoDB table

Next, define your DynamoDB table. Use annotations to specify the attribute actions. This
example creates a DynamoDB table, ExampleTable, and a DataPoJo class that represents
table items.

In this sample table, the primary key attributes will be signed but not encrypted. This applies
to the partition_attribute, which is annotated with @DynamoDBHashKey, and the
sort_attribute, which is annotated with @DynamoDBRangeKey.

Attributes that are annotated with @DynamoDBAttribute, such as some numbers, will be
encrypted and signed. The exceptions are attributes that use the @DoNotEncrypt (sign only)
or @DoNotTouch (do not encrypt or sign) encryption annotations defined by the DynamoDB
Encryption Client. For example, because the leave me attribute has a @DoNotTouch
annotation, it will not be encrypted or signed.

@DynamoDBTable(tableName = "ExampleTable")
public static final class DataPoJo {
 private String partitionAttribute;
 private int sortAttribute;
 private String example;
 private long someNumbers;
 private byte[] someBinary;
 private String leaveMe;

 @DynamoDBHashKey(attributeName = "partition_attribute")
 public String getPartitionAttribute() {
 return partitionAttribute;
 }

 public void setPartitionAttribute(String partitionAttribute) {
 this.partitionAttribute = partitionAttribute;
 }

 @DynamoDBRangeKey(attributeName = "sort_attribute")
 public int getSortAttribute() {
 return sortAttribute;
 }

 public void setSortAttribute(int sortAttribute) {
 this.sortAttribute = sortAttribute;
 }

Programming languages 299

AWS Database Encryption SDK Developer Guide

 @DynamoDBAttribute(attributeName = "example")
 public String getExample() {
 return example;
 }

 public void setExample(String example) {
 this.example = example;
 }

 @DynamoDBAttribute(attributeName = "some numbers")
 public long getSomeNumbers() {
 return someNumbers;
 }

 public void setSomeNumbers(long someNumbers) {
 this.someNumbers = someNumbers;
 }

 @DynamoDBAttribute(attributeName = "and some binary")
 public byte[] getSomeBinary() {
 return someBinary;
 }

 public void setSomeBinary(byte[] someBinary) {
 this.someBinary = someBinary;
 }

 @DynamoDBAttribute(attributeName = "leave me")
 @DoNotTouch
 public String getLeaveMe() {
 return leaveMe;
 }

 public void setLeaveMe(String leaveMe) {
 this.leaveMe = leaveMe;
 }

 @Override
 public String toString() {
 return "DataPoJo [partitionAttribute=" + partitionAttribute + ", sortAttribute="
 + sortAttribute + ", example=" + example + ", someNumbers=" + someNumbers
 + ", someBinary=" + Arrays.toString(someBinary) + ", leaveMe=" + leaveMe +
 "]";

Programming languages 300

AWS Database Encryption SDK Developer Guide

 }
}

Step 4: Encrypt and save a table item

Now, when you create a table item and use the DynamoDB Mapper to save it, the item is
automatically encrypted and signed before it is added to the table.

This example defines a table item called record. Before it is saved in the table, its attributes
are encrypted and signed based on the annotations in the DataPoJo class. In this case, all
attributes except for PartitionAttribute, SortAttribute, and LeaveMe are encrypted
and signed. PartitionAttribute and SortAttributes are only signed. The LeaveMe
attribute is not encrypted or signed.

To encrypt and sign the record item, and then add it to the ExampleTable, call the save
method of the DynamoDBMapper class. Because your DynamoDB Mapper is configured to
use the PUT save behavior, the item replaces any item with the same primary keys, instead of
updating it. This ensures that the signatures match and you can decrypt the item when you get
it from the table.

DataPoJo record = new DataPoJo();
record.setPartitionAttribute("is this");
record.setSortAttribute(55);
record.setExample("data");
record.setSomeNumbers(99);
record.setSomeBinary(new byte[]{0x00, 0x01, 0x02});
record.setLeaveMe("alone");

mapper.save(record);

DynamoDB Encryption Client for Python

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

Programming languages 301

AWS Database Encryption SDK Developer Guide

This topic explains how to install and use the DynamoDB Encryption Client for Python. You can find
the code in the aws-dynamodb-encryption-python repository on GitHub, including complete and
tested sample code to help you get started.

Note

Versions 1.x.x and 2.x.x of the DynamoDB Encryption Client for Python are in end-of-
support phase effective July 2022. Upgrade to a newer version as soon as possible.

Topics

• Prerequisites

• Installation

• Using the DynamoDB Encryption Client for Python

• Example code for the DynamoDB Encryption Client for Python

Prerequisites

Before you install the Amazon DynamoDB Encryption Client for Python, be sure you have the
following prerequisites.

A supported version of Python

Python 3.8 or later is required by the Amazon DynamoDB Encryption Client for Python versions
3.3.0 and later. To download Python, see Python downloads.

Earlier versions of the Amazon DynamoDB Encryption Client for Python support Python 2.7
and Python 3.4 and later, but we recommend that you use the latest version of the DynamoDB
Encryption Client.

The pip installation tool for Python

Python 3.6 and later include pip, although you might want to upgrade it. For more information
about upgrading or installing pip, see Installation in the pip documentation.

Installation

Use pip to install the Amazon DynamoDB Encryption Client for Python, as shown in the following
examples.

Programming languages 302

https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/

AWS Database Encryption SDK Developer Guide

To install the latest version

pip install dynamodb-encryption-sdk

For more details about using pip to install and upgrade packages, see Installing Packages.

The DynamoDB Encryption Client requires the cryptography library on all platforms. All versions
of pip install and build the cryptography library on Windows. pip 8.1 and later installs and builds
cryptography on Linux. If you are using an earlier version of pip and your Linux environment
doesn't have the tools needed to build the cryptography library, you need to install them. For
more information, see Building cryptography on Linux.

You can get the latest development version of the DynamoDB Encryption Client from the aws-
dynamodb-encryption-python repository on GitHub.

After you install the DynamoDB Encryption Client, get started by looking at the example Python
code in this guide.

Using the DynamoDB Encryption Client for Python

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

This topic explains some of the features of the DynamoDB Encryption Client for Python that might
not be found in other programming language implementations. These features are designed to
make it easier to use the DynamoDB Encryption Client in the most secure way. Unless you have an
unusual use case, we recommend that you use them.

For details about programming with the DynamoDB Encryption Client, see the Python examples in
this guide, the examples in the aws-dynamodb-encryption-python repository on GitHub, and the
Python documentation for the DynamoDB Encryption Client.

Topics

Programming languages 303

https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation/#building-cryptography-on-linux
https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/

AWS Database Encryption SDK Developer Guide

• Client helper classes

• TableInfo class

• Attribute actions in Python

Client helper classes

The DynamoDB Encryption Client for Python includes several client helper classes that mirror
the Boto 3 classes for DynamoDB. These helper classes are designed to make it easier to add
encryption and signing to your existing DynamoDB application and avoid the most common
problems, as follows:

• Prevent you from encrypting the primary key in your item, either by adding an override
action for the primary key to the AttributeActions object, or by throwing an exception if your
AttributeActions object explicitly tells the client to encrypt the primary key. If the default
action in your AttributeActions object is DO_NOTHING, the client helper classes use that
action for the primary key. Otherwise, they use SIGN_ONLY.

• Create a TableInfo object and populate the DynamoDB encryption context based on a call to
DynamoDB. This helps to ensure that your DynamoDB encryption context is accurate and the
client can identify the primary key.

• Support methods, such as put_item and get_item, that transparently encrypt and decrypt
your table items when you write to or read from a DynamoDB table. Only the update_item
method is unsupported.

You can use the client helper classes instead of interacting directly with the lower-level item
encryptor. Use these classes unless you need to set advanced options in the item encryptor.

The client helper classes include:

• EncryptedTable for applications that use the Table resource in DynamoDB to process one table at
a time.

• EncryptedResource for applications that use the Service Resource class in DynamoDB for batch
processing.

• EncryptedClient for applications that use the lower-level client in DynamoDB.

To use the client helper classes, the caller must have permission to call the DynamoDB
DescribeTable operation on the target table.

Programming languages 304

https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/table.html#module-dynamodb_encryption_sdk.encrypted.table
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#table
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/resource.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#service-resource
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/client.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#client
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS Database Encryption SDK Developer Guide

TableInfo class

The TableInfo class is a helper class that represents a DynamoDB table, complete with fields for its
primary key and secondary indexes. It helps you to get accurate, real-time information about the
table.

If you use a client helper class, it creates and uses a TableInfo object for you. Otherwise, you can
create one explicitly. For an example, see Use the item encryptor.

When you call the refresh_indexed_attributes method on a TableInfo object, it populates
the property values of the object by calling the DynamoDB DescribeTable operation. Querying the
table is much more reliable than hard-coding index names. The TableInfo class also includes an
encryption_context_values property that provides the required values for the DynamoDB
encryption context.

To use the refresh_indexed_attributes method, the caller must have permission to call the
DynamoDB DescribeTable operation on the target table.

Attribute actions in Python

Attribute actions tell the item encryptor which actions to perform on each attribute of the item.
To specify attribute actions in Python, create an AttributeActions object with a default action
and any exceptions for particular attributes. The valid values are defined in the CryptoAction
enumerated type.

Important

After you use your attribute actions to encrypt your table items, adding or removing
attributes from your data model might cause a signature validation error that prevents you
from decrypting your data. For a detailed explanation, see Changing your data model.

DO_NOTHING = 0
SIGN_ONLY = 1
ENCRYPT_AND_SIGN = 2

For example, this AttributeActions object establishes ENCRYPT_AND_SIGN as the default for
all attributes, and specifies exceptions for the ISBN and PublicationYear attributes.

actions = AttributeActions(

Programming languages 305

https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/tools/structures.html#dynamodb_encryption_sdk.structures.TableInfo
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS Database Encryption SDK Developer Guide

 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={
 'ISBN': CryptoAction.DO_NOTHING,
 'PublicationYear': CryptoAction.SIGN_ONLY
 }
)

If you use a client helper class, you don't need to specify an attribute action for the primary key
attributes. The client helper classes prevent you from encrypting your primary key.

If you do not use a client helper class and the default action is ENCRYPT_AND_SIGN, you must
specify an action for the primary key. The recommended action for primary keys is SIGN_ONLY.
To make this easy, use the set_index_keys method, which uses SIGN_ONLY for primary keys, or
DO_NOTHING, when that is the default action.

Warning

Do not encrypt the primary key attributes. They must remain in plaintext so DynamoDB can
find the item without running a full table scan.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
)
actions.set_index_keys(*table_info.protected_index_keys())

Example code for the DynamoDB Encryption Client for Python

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

The following examples show you how to use the DynamoDB Encryption Client for Python to
protect DynamoDB data in your application. You can find more examples (and contribute your own)
in the examples directory of the aws-dynamodb-encryption-python repository on GitHub.

Programming languages 306

https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://github.com/aws/aws-dynamodb-encryption-python/

AWS Database Encryption SDK Developer Guide

Topics

• Use the EncryptedTable client helper class

• Use the item encryptor

Use the EncryptedTable client helper class

The following example shows you how to use the Direct KMS Provider with the EncryptedTable
client helper class. This example uses the same cryptographic materials provider as the Use the
item encryptor example that follows. However, it uses the EncryptedTable class instead of
interacting directly with the lower-level item encryptor.

By comparing these examples, you can see the work that the client helper class does for you. This
includes creating the DynamoDB encryption context and making sure the primary key attributes
are always signed, but never encrypted. To create the encryption context and discover the primary
key, the client helper classes call the DynamoDB DescribeTable operation. To run this code, you
must have permission to call this operation.

See the complete code sample: aws_kms_encrypted_table.py

Step 1: Create the table

Start by creating an instance of a standard DynamoDB table with the table name.

table_name='test-table'
table = boto3.resource('dynamodb').Table(table_name)

Step 2: Create a cryptographic materials provider

Create an instance of the cryptographic materials provider (CMP) that you selected.

This example uses the Direct KMS Provider, but you can use any compatible CMP. To create a
Direct KMS Provider, specify an AWS KMS key. This example uses the Amazon Resource Name
(ARN) of the AWS KMS key, but you can use any valid key identifier.

kms_key_id='arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Programming languages 307

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_table.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS Database Encryption SDK Developer Guide

Step 3: Create the attribute actions object

Attribute actions tell the item encryptor which actions to perform on each attribute of the item.
The AttributeActions object in this example encrypts and signs all items except for the
test attribute, which is ignored.

Do not specify attribute actions for the primary key attributes when you use a client helper
class. The EncryptedTable class signs, but never encrypts, the primary key attributes.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={'test': CryptoAction.DO_NOTHING}
)

Step 4: Create the encrypted table

Create the encrypted table using the standard table, the Direct KMS Provider, and the attribute
actions. This step completes the configuration.

encrypted_table = EncryptedTable(
 table=table,
 materials_provider=kms_cmp,
 attribute_actions=actions
)

Step 5: Put the plaintext item in the table

When you call the put_item method on the encrypted_table, your table items are
transparently encrypted, signed, and added to your DynamoDB table.

First, define the table item.

plaintext_item = {
 'partition_attribute': 'value1',
 'sort_attribute': 55
 'example': 'data',
 'numbers': 99,
 'binary': Binary(b'\x00\x01\x02'),
 'test': 'test-value'
}

Then, put it in the table.

Programming languages 308

AWS Database Encryption SDK Developer Guide

encrypted_table.put_item(Item=plaintext_item)

To get the item from the DynamoDB table in its encrypted form, call the get_item method on the
table object. To get the decrypted item, call the get_item method on the encrypted_table
object.

Use the item encryptor

This example shows you how to interact directly with the item encryptor in the DynamoDB
Encryption Client when encrypting table items, instead of using the client helper classes that
interact with the item encryptor for you.

When you use this technique, you create the DynamoDB encryption context and configuration
object (CryptoConfig) manually. Also, you encrypt the items in one call and put them in your
DynamoDB table in a separate call. This allows you to customize your put_item calls and use the
DynamoDB Encryption Client to encrypt and sign structured data that is never sent to DynamoDB.

This example uses the Direct KMS Provider, but you can use any compatible CMP.

See the complete code sample: aws_kms_encrypted_item.py

Step 1: Create the table

Start by creating an instance of a standard DynamoDB table resource with the table name.

table_name='test-table'
table = boto3.resource('dynamodb').Table(table_name)

Step 2: Create a cryptographic materials provider

Create an instance of the cryptographic materials provider (CMP) that you selected.

This example uses the Direct KMS Provider, but you can use any compatible CMP. To create a
Direct KMS Provider, specify an AWS KMS key. This example uses the Amazon Resource Name
(ARN) of the AWS KMS key, but you can use any valid key identifier.

kms_key_id='arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Programming languages 309

https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_item.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS Database Encryption SDK Developer Guide

Step 3: Use the TableInfo helper class

To get information about the table from DynamoDB, create an instance of the TableInfo
helper class. When you work directly with the item encryptor, you need to create a TableInfo
instance and call its methods. The client helper classes do this for you.

The refresh_indexed_attributes method of TableInfo uses the DescribeTable
DynamoDB operation to get real-time, accurate information about the table. This includes its
primary key and its local and global secondary indexes. The caller needs to have permission to
call DescribeTable.

table_info = TableInfo(name=table_name)
table_info.refresh_indexed_attributes(table.meta.client)

Step 4: Create the DynamoDB encryption context

The DynamoDB encryption context contains information about the table structure and how it is
encrypted and signed. This example creates a DynamoDB encryption context explicitly, because
it interacts with the item encryptor. The client helper classes create the DynamoDB encryption
context for you.

To get the partition key and sort key, you can use the properties of the TableInfo helper class.

index_key = {
 'partition_attribute': 'value1',
 'sort_attribute': 55
}

encryption_context = EncryptionContext(
 table_name=table_name,
 partition_key_name=table_info.primary_index.partition,
 sort_key_name=table_info.primary_index.sort,
 attributes=dict_to_ddb(index_key)
)

Step 5: Create the attribute actions object

Attribute actions tell the item encryptor which actions to perform on each attribute of the item.
The AttributeActions object in this example encrypts and signs all items except for the
primary key attributes, which are signed, but not encrypted, and the test attribute, which is
ignored.

Programming languages 310

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS Database Encryption SDK Developer Guide

When you interact directly with the item encryptor and your default action is
ENCRYPT_AND_SIGN, you must specify an alternative action for the primary key. You can
use the set_index_keys method, which uses SIGN_ONLY for the primary key, or it uses
DO_NOTHING if it's the default action.

To specify the primary key, this example uses the index keys in the TableInfo object, which is
populated by a call to DynamoDB. This technique is safer than hard-coding primary key names.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={'test': CryptoAction.DO_NOTHING}
)
actions.set_index_keys(*table_info.protected_index_keys())

Step 6: Create the configuration for the item

To configure the DynamoDB Encryption Client, use the objects that you just created in a
CryptoConfig configuration for the table item. The client helper classes create the CryptoConfig
for you.

crypto_config = CryptoConfig(
 materials_provider=kms_cmp,
 encryption_context=encryption_context,
 attribute_actions=actions
)

Step 7: Encrypt the item

This step encrypts and signs the item, but it doesn't put it in the DynamoDB table.

When you use a client helper class, your items are transparently encrypted and signed, and then
added to your DynamoDB table when you call the put_item method of the helper class. When
you use the item encryptor directly, the encrypt and put actions are independent.

First, create a plaintext item.

plaintext_item = {
 'partition_attribute': 'value1',
 'sort_key': 55,
 'example': 'data',
 'numbers': 99,
 'binary': Binary(b'\x00\x01\x02'),

Programming languages 311

https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/config.html

AWS Database Encryption SDK Developer Guide

 'test': 'test-value'
}

Then, encrypt and sign it. The encrypt_python_item method requires the CryptoConfig
configuration object.

encrypted_item = encrypt_python_item(plaintext_item, crypto_config)

Step 8: Put the item in the table

This step puts the encrypted and signed item in the DynamoDB table.

table.put_item(Item=encrypted_item)

To view the encrypted item, call the get_item method on the original table object, instead of
the encrypted_table object. It gets the item from the DynamoDB table without verifying and
decrypting it.

encrypted_item = table.get_item(Key=partition_key)['Item']

The following image shows part of an example encrypted and signed table item.

The encrypted attribute values are binary data. The names and values of the primary key attributes
(partition_attribute and sort_attribute) and the test attribute remain in plaintext.
The output also shows the attribute that contains the signature (*amzn-ddb-map-sig*) and the
materials description attribute (*amzn-ddb-map-desc*).

Programming languages 312

AWS Database Encryption SDK Developer Guide

Changing your data model

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

Every time you encrypt or decrypt an item, you need to provide attribute actions that tell the
DynamoDB Encryption Client which attributes to encrypt and sign, which attributes to sign (but
not encrypt), and which to ignore. Attribute actions are not saved in the encrypted item and the
DynamoDB Encryption Client does not update your attribute actions automatically.

Important

The DynamoDB Encryption Client does not support the encryption of existing, unencrypted
DynamoDB table data.

Whenever you change your data model, that is, when you add or remove attributes from your table
items, you risk an error. If the attribute actions that you specify do not account for all attributes in
the item, the item might not be encrypted and signed the way that you intend. More importantly,
if the attribute actions that you provide when decrypting an item differ from the attribute actions
that you provided when encrypting the item, the signature verification might fail.

For example, if the attribute actions used to encrypt the item tell it to sign the test attribute, the
signature in the item will include the test attribute. But if the attribute actions used to decrypt
the item do not account for the test attribute, the verification will fail because the client will try
to verify a signature that does not include the test attribute.

This is a particular problem when multiple applications read and write the same DynamoDB
items because the DynamoDB Encryption Client must calculate the same signature for items in
all applications. It's also a problem for any distributed application because changes in attribute
actions must propagate to all hosts. Even if your DynamoDB tables are accessed by one host in one
process, establishing a best practice process will help prevent errors if the project ever becomes
more complex.

Changing your data model 313

AWS Database Encryption SDK Developer Guide

To avoid signature validation errors that prevent you from reading your table items, use the
following guidance.

• Adding an attribute — If the new attribute changes your attribute actions, fully deploy the
attribute action change before including the new attribute in an item.

• Removing an attribute — If you stop using an attribute in your items, do not change your
attribute actions.

• Changing the action — After you have used an attribute actions configuration to encrypt your
table items, you cannot safely change the default action or the action for an existing attribute
without re-encrypting every item in your table.

Signature validation errors can be extremely difficult to resolve, so the best approach is to prevent
them.

Topics

• Adding an attribute

• Removing an attribute

Adding an attribute

When you add a new attribute to table items, you might need to change your attribute actions. To
prevent signature validation errors, we recommend that you implement this change in a two-stage
process. Verify that the first stage is complete before starting the second stage.

1. Change the attribute actions in all applications that read or write to the table. Deploy these
changes and confirm that the update has been propagated to all destination hosts.

2. Write values to the new attribute in your table items.

This two-stage approach ensures that all applications and hosts have the same attribute actions,
and will calculate the same signature, before any encounter the new attribute. This is important
even when the action for the attribute is Do nothing (don't encrypt or sign), because the default for
some encryptors is to encrypt and sign.

The following examples show the code for the first stage in this process. They add a new item
attribute, link, which stores a link to another table item. Because this link must remain in plain
text, the example assigns it the sign-only action. After fully deploying this change and then

Changing your data model 314

AWS Database Encryption SDK Developer Guide

verifying that all applications and hosts have the new attribute actions, you can begin to use the
link attribute in your table items.

Java DynamoDB Mapper

When using the DynamoDB Mapper and AttributeEncryptor, by default, all attributes are
encrypted and signed except for primary keys, which are signed but not encrypted. To specify a
sign-only action, use the @DoNotEncrypt annotation.

This example uses the @DoNotEncrypt annotation for the new link attribute.

@DynamoDBTable(tableName = "ExampleTable")
public static final class DataPoJo {
 private String partitionAttribute;
 private int sortAttribute;
 private String link;

 @DynamoDBHashKey(attributeName = "partition_attribute")
 public String getPartitionAttribute() {
 return partitionAttribute;
 }

 public void setPartitionAttribute(String partitionAttribute) {
 this.partitionAttribute = partitionAttribute;
 }

 @DynamoDBRangeKey(attributeName = "sort_attribute")
 public int getSortAttribute() {
 return sortAttribute;
 }

 public void setSortAttribute(int sortAttribute) {
 this.sortAttribute = sortAttribute;
 }

 @DynamoDBAttribute(attributeName = "link")
 @DoNotEncrypt
 public String getLink() {
 return link;
 }

 public void setLink(String link) {
 this.link = link;

Changing your data model 315

AWS Database Encryption SDK Developer Guide

 }

 @Override
 public String toString() {
 return "DataPoJo [partitionAttribute=" + partitionAttribute + ",
 sortAttribute=" + sortAttribute + ",
 link=" + link + "]";
 }
}

Java DynamoDB encryptor

In the lower-level DynamoDB encryptor, you must set actions for each attribute. This example
uses a switch statement where the default is encryptAndSign and exceptions are specified for
the partition key, sort key, and the new link attribute. In this example, if the link attribute code
was not fully deployed before it was used, the link attribute would be encrypted and signed by
some applications, but only signed by others.

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName:
 // fall through to the next case
 case sortKeyName:
 // partition and sort keys must be signed, but not encrypted
 actions.put(attributeName, signOnly);
 break;
 case "link":
 // only signed
 actions.put(attributeName, signOnly);
 break;
 default:
 // Encrypt and sign all other attributes
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

Python

In the DynamoDB Encryption Client for Python, you can specify a default action for all
attributes and then specify exceptions.

Changing your data model 316

AWS Database Encryption SDK Developer Guide

If you use a Python client helper class, you don't need to specify an attribute action for the
primary key attributes. The client helper classes prevent you from encrypting your primary key.
However, if you are not using a client helper class, you must set the SIGN_ONLY action on your
partition key and sort key. If you accidentally encrypt your partition or sort key, you won't be
able to recover your data without a full table scan.

This example specifies an exception for the new link attribute, which gets the SIGN_ONLY
action.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={
 'example': CryptoAction.DO_NOTHING,
 'link': CryptoAction.SIGN_ONLY
 }
)

Removing an attribute

If you no longer need an attribute in items that have been encrypted with the DynamoDB
Encryption Client, you can stop using the attribute. However, do not delete or change the action
for that attribute. If you do, and then encounter an item with that attribute, the signature
calculated for the item will not match the original signature, and the signature validation will fail.

Although you might be tempted to remove all traces of the attribute from your code, add a
comment that the item is no longer used instead of deleting it. Even if you do a full table scan to
delete all instances of the attribute, an encrypted item with that attribute might be cached or in
process somewhere in your configuration.

Troubleshooting issues in your DynamoDB Encryption Client
application

Note

Our client-side encryption library was renamed to AWS Database Encryption SDK. The
following topic provides information on versions 1.x—2.x of the DynamoDB Encryption
Client for Java and versions 1.x—3.x of the DynamoDB Encryption Client for Python. For
more information, see AWS Database Encryption SDK for DynamoDB version support.

Troubleshooting 317

AWS Database Encryption SDK Developer Guide

This section describes problems that you might encounter when using the DynamoDB Encryption
Client and offers suggestions for resolving them.

To provide feedback on the DynamoDB Encryption Client, file an issue in the aws-dynamodb-
encryption-java or aws-dynamodb-encryption-python GitHub repository.

To provide feedback on this documentation, use the feedback link on any page.

Topics

• Access denied

• Signature verification fails

• Issues with older version global tables

• Poor performance of the Most Recent Provider

Access denied

Problem: Your application is denied access to a resource that it needs.

Suggestion: Learn about the required permissions and add them to the security context in which
your application runs.

Details

To run an application that uses the a DynamoDB Encryption Client library, the caller must have
permission to use its components. Otherwise, they will be denied access to the required elements.

• The DynamoDB Encryption Client does not require an Amazon Web Services (AWS) account or
depend on any AWS service. However, if your application uses AWS, you need an AWS account
and users who have permission to use the account.

• The DynamoDB Encryption Client does not require Amazon DynamoDB. However, If the
application that uses the client creates DynamoDB tables, puts items into a table, or gets items
from a table, the caller must have permission to use the required DynamoDB operations in your
AWS account. For details, see the access control topics in the Amazon DynamoDB Developer
Guide.

• If your application uses a client helper class in the DynamoDB Encryption Client for Python, the
caller must have permission to call the DynamoDB DescribeTable operation.

• The DynamoDB Encryption Client does not require AWS Key Management Service (AWS KMS).
However, if your application uses a Direct KMS Materials Provider, or it uses a Most Recent

Troubleshooting 318

https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-python/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/access-control-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS Database Encryption SDK Developer Guide

Provider with a provider store that uses AWS KMS, the caller must have permission to use the
AWS KMS GenerateDataKey and Decrypt operations.

Signature verification fails

Problem: An item cannot be decrypted because signature verification fails. The item also might not
be encrypted and signed as you intend.

Suggestion: Be sure that the attribute actions that you provide account for all attributes in the
item. When decrypting an item, be sure to provide attribute actions that match the actions used to
encrypt the item.

Details

The attribute actions that you provide tell the DynamoDB Encryption Client which attributes to
encrypt and sign, which attributes to sign (but not encrypt), and which to ignore.

If the attribute actions that you specify do not account for all attributes in the item, the item might
not be encrypted and signed the way that you intend. If the attribute actions that you provide
when decrypting an item differ from the attribute actions that you provided when encrypting the
item, the signature verification might fail. This is a particular problem for distributed applications
in which new attribute actions might not have propagated to all hosts.

Signature validation errors are difficult to resolve. For help preventing them, take extra precautions
when changing your data model. For details, see Changing your data model.

Issues with older version global tables

Problem: Items in an older version Amazon DynamoDB global table cannot be decrypted because
signature verification fails.

Suggestion: Set attribute actions so the reserved replication fields are not encrypted or signed.

Details

You can use the DynamoDB Encryption Client with DynamoDB global tables. We recommend that
you use global tables with a multi-Region KMS key and replicate the KMS key into all AWS Regions
where the global table is replicated.

Troubleshooting 319

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Database Encryption SDK Developer Guide

Beginning with global tables version 2019.11.21, you can use global tables with the DynamoDB
Encryption Client without any special configuration. However, if you use global tables version
2017.11.29, you must ensure that reserved replication fields are not encrypted or signed.

If you are using the global tables version 2017.11.29, you must set the attribute actions for the
following attributes to DO_NOTHING in Java or @DoNotTouch in Python.

• aws:rep:deleting

• aws:rep:updatetime

• aws:rep:updateregion

If you are using any other version of global tables, no action is required.

Poor performance of the Most Recent Provider

Problem: Your application is less responsive, especially after updating to a newer version of the
DynamoDB Encryption Client.

Suggestion: Adjust the time-to-live value and cache size.

Details

The Most Recent Provider is designed to improve the performance of applications that use
the DynamoDB Encryption Client by allowing limited reuse of cryptographic materials. When
you configure the Most Recent Provider for your application, you have to balance improved
performance with the security concerns that arise from caching and reuse.

In newer versions of the DynamoDB Encryption Client, the time-to-live (TTL) value determines how
long cached cryptographic material providers (CMPs) can be used. The TTL also determines how
often the Most Recent Provider checks for a new version of the CMP.

If your TTL is too long, your application might violate your business rules or security standards. If
your TTL is too brief, frequent calls to the provider store can cause your provider store to throttle
requests from your application and other applications that share your service account. To resolve
this issue, adjust the TTL and cache size to a value that meets your latency and availability goals
and conforms to your security standards. For details, see Setting a time-to-live value.

Troubleshooting 320

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V2.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html

AWS Database Encryption SDK Developer Guide

Amazon DynamoDB Encryption Client rename

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

On June 9, 2023, our client-side encryption library was renamed to AWS Database Encryption SDK.
The AWS Database Encryption SDK is compatible with Amazon DynamoDB. It can decrypt and read
items encrypted by the legacy DynamoDB Encryption Client. For more information on the legacy
DynamoDB Encryption Client versions, see AWS Database Encryption SDK for DynamoDB version
support.

The AWS Database Encryption SDK provides version 3.x of the Java client-side encryption library
for DynamoDB, which is a major rewrite of the DynamoDB Encryption Client for Java. It includes
many updates, such as a new structured data format, improved multitenancy support, seamless
schema changes, and searchable encryption support.

To learn more about the new features introduced with the AWS Database Encryption SDK, see the
following topics.

Searchable encryption

You can design databases that can search encrypted records without decrypting the entire
database. Depending on your threat model and query requirements, you can use searchable
encryption to perform exact match searches or more customized complex queries on your
encrypted records.

Keyrings

The AWS Database Encryption SDK uses keyrings to perform envelope encryption. Keyrings
generate, encrypt, and decrypt the data keys that protect your records. The AWS Database
Encryption SDK supports AWS KMS keyrings that use symmetric encryption or asymmetric
RSA AWS KMS keys to protect your data keys, and AWS KMS Hierarchical keyrings that enable
you to protect your cryptographic materials under a symmetric encryption KMS key without
calling AWS KMS every time you encrypt or decrypt a record. You can also specify your own key
material with Raw AES keyrings and Raw RSA keyrings.

321

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS Database Encryption SDK Developer Guide

Seamless schema changes

When you configure the AWS Database Encryption SDK, you provide cryptographic actions that
tell the client which fields to encrypt and sign, which fields to sign (but not encrypt), and which
to ignore. After you have used the AWS Database Encryption SDK to protect your records, you
can still make changes to your data model. You can update your cryptographic actions, such as
adding or removing encrypted fields, in a single deployment.

Configure existing DynamoDB tables for client-side encryption

Legacy versions of the DynamoDB Encryption Client were designed to be implemented in new,
unpopulated tables. With the AWS Database Encryption SDK for DynamoDB, you can migrate
your existing Amazon DynamoDB tables to version 3.x of the Java client-side encryption library
for DynamoDB.

322

AWS Database Encryption SDK Developer Guide

Reference

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The following topics provide technical details for the AWS Database Encryption SDK.

Material description format

The material description serves as the header for an encrypted record. When you encrypt and
sign fields with the AWS Database Encryption SDK, the encryptor records the material description
as it assembles the cryptographic materials and stores the material description in a new field
(aws_dbe_head) that the encryptor adds to your record. The material description is a portable
formatted data structure that contains the encrypted data key and information about how the
record was encrypted and signed. The following table describes the values that form the material
description. The bytes are appended in the order shown.

Value Length in bytes

Version 1

Signatures Enabled 1

Record ID 32

Encrypt Legend Variable

Encryption Context Length 2

??? Variable

Encrypted Data Key Count 1

Encrypted Data Keys Variable

Record Commitment 1

Material description format 323

AWS Database Encryption SDK Developer Guide

Version

The version of this aws_dbe_head field's format.

Signatures Enabled

Encodes whether ECDSA digital signatures are enabled for this record.

Byte value Meaning

0x01 ECDSA digital signatures enabled (default)

0x00 ECDSA digital signatures disabled

Record ID

A randomly generated 256-bit value that identifies the record. The Record ID:

• Uniquely identifies the encrypted record.

• Binds the material description to the encrypted record.

Encrypt Legend

A serialized description of which authenticated fields were encrypted. The Encrypt Legend is
used to determine what fields the decryption method should attempt to decrypt.

Byte value Meaning

0x65 ENCRYPT_AND_SIGN

0x73 SIGN_ONLY

The Encrypt Legend is serialized as follows:

1. Lexicographically by the byte sequence that represents their canonical path.

2. For each field, in order, append one of the byte values specified above to indicate whether
that field should be encrypted.

Encryption Context Length

The length of the encryption context. It is a 2-byte value interpreted as a 16-bit unsigned
integer. The maximum length is 65,535 bytes.

Material description format 324

AWS Database Encryption SDK Developer Guide

Encryption Context

A set of name-value pairs that contain arbitrary, non-secret additional authenticated data.

When ECDSA digital signatures are enabled, the encryption context contains the key-value pair
{"aws-crypto-footer-ecdsa-key": Qtxt}. Qtxt represents the elliptic curve point Q
compressed according to SEC 1 version 2.0 and then base64-encoded.

Encrypted Data Key Count

The number of encrypted data keys. It is a 1-byte value interpreted as a 8-bit unsigned integer
that specifies the number of encrypted data keys. The maximum number of encrypted data
keys in each record is 255.

Encrypted Data Keys

A sequence of encrypted data keys. The length of the sequence is determined by the number of
encrypted data keys and the length of each. The sequence contains at least one encrypted data
key.

The following table describes the fields that form each encrypted data key. The bytes are
appended in the order shown.

Encrypted Data Key Structure

Field Length in bytes

Key Provider ID Length 2

Key Provider ID Variable. Equal to the value specified in the
previous 2 bytes (Key Provider ID Length).

Key Provider Information Length 2

Key Provider Information Variable. Equal to the value specified in the
previous 2 bytes (Key Provider Information
Length).

Encrypted Data Key Length 2

Encrypted Data Key Variable. Equal to the value specified in
the previous 2 bytes (Encrypted Data Key
Length).

Material description format 325

https://www.secg.org/sec1-v2.pdf

AWS Database Encryption SDK Developer Guide

Key Provider ID Length

The length of the key provider identifier. It is a 2-byte value interpreted as a 16-bit unsigned
integer that specifies the number of bytes that contain the key provider ID.

Key Provider ID

The key provider identifier. It is used to indicate the provider of the encrypted data key and
intended to be extensible.

Key Provider Information Length

The length of the key provider information. It is a 2-byte value interpreted as a 16-
bit unsigned integer that specifies the number of bytes that contain the key provider
information.

Key Provider Information

The key provider information. It is determined by the key provider.

When you are using an AWS KMS keyring, this value contains the Amazon Resource Name
(ARN) of the AWS KMS key.

Encrypted Data Key Length

The length of the encrypted data key. It is a 2-byte value interpreted as a 16-bit unsigned
integer that specifies the number of bytes that contain the encrypted data key.

Encrypted Data Key

The encrypted data key. It is the data key encrypted by the key provider.

Record Commitment

A distinct 256-bit Hash-Based Message Authentication Code (HMAC) hash calculated over all
preceding material description bytes using the commit key.

AWS KMS Hierarchical keyring technical details

The AWS KMS Hierarchical keyring uses a unqiue data key to encrypt each field and encrypts each
data key with a unique wrapping key derived from an active branch key. It uses a key derivation in
counter mode with a pseudorandom function with HMAC SHA-256 to derive the 32 byte wrapping
key with the following inputs.

AWS KMS Hierarchical keyring technical details 326

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf

AWS Database Encryption SDK Developer Guide

• A 16 byte random salt

• The active branch key

• The UTF-8 encoded value for the key provider identifier "aws-kms-hierarchy"

The Hierarchical keyring uses the derived wrapping key to encrypt a copy of the plaintext data key
using AES-GCM-256 with a 16 byte authentication tag and the following inputs.

• The derived wrapping key is used as the AES-GCM cipher key

• The data key is used as the AES-GCM message

• A 12 byte random initialization vector (IV) is used as the AES-GCM IV

• Additional authenticated data (AAD) containing the following serialized values.

Value Length in bytes Interpreted as

"aws-kms-hierarchy" 17 UTF-8 encoded

The branch key identifier Variable UTF-8 encoded

The branch key version 16 UTF-8 encoded

Encryption context Variable UTF-8 encoded key value
pairs

AWS KMS Hierarchical keyring technical details 327

https://en.wikipedia.org/wiki/UTF-8

AWS Database Encryption SDK Developer Guide

Document history for the AWS Database Encryption SDK
Developer Guide

The following table describes significant changes to this documentation. In addition to these
major changes, we also update the documentation frequently to improve the descriptions and
examples, and to address the feedback that you send to us. To be notified about significant
changes, subscribe to the RSS feed.

Change Description Date

New feature Added documentation for the
AWS KMS ECDH keyring and
Raw ECDH keyring.

June 17, 2024

General Availability (GA)
release

Introducing support for
the .NET client-side encryptio
n library for DynamoDB.

January 17, 2024

General Availability (GA)
release

Updated documentation for
the GA release of version
3.x of the Java client-si
de encryption library for
DynamoDB.

Warning

Branch keys created
during the developer
preview release are no
longer supported.

July 24, 2023

Rebrand of DynamoDB
Encryption Client

The client-side encryption
library is renamed to AWS
Database Encryption SDK.

June 9, 2023

328

https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-net.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-net.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-java.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-java.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html

AWS Database Encryption SDK Developer Guide

Preview release Added and updated
documentation for version
3.x of the Java client-si
de encryption library for
DynamoDB, which includes a
new structured data format,
improved multitenancy
support, seamless schema
changes, and searchable
encryption support.

June 9, 2023

Documentation change Replace the AWS Key
Management Service term
customer master key (CMK)
with AWS KMS key and KMS
key.

August 30, 2021

New feature Added support for AWS Key
Management Service (AWS
KMS) multi-Region keys.
Multi-Region keys are AWS
KMS keys in different AWS
Regions that can be used
interchangeably because they
have the same key ID and key
material.

June 8, 2021

New example Added example of using the
DynamoDBMapper in Java.

September 6, 2018

Python support Added support for Python, in
addition to Java.

May 2, 2018

Initial release Initial release of this
documentation.

May 2, 2018

329

https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html#provider-kms-how-to-use
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/java-examples.html#java-example-dynamodb-mapper
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/python.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/

	AWS Database Encryption SDK
	Table of Contents
	What is the AWS Database Encryption SDK?
	Developed in open-source repositories
	Support and maintenance
	Sending feedback
	AWS Database Encryption SDK concepts
	Envelope encryption
	Data key
	Wrapping key
	Keyrings
	Cryptographic actions
	Material description
	Encryption context
	Cryptographic materials manager
	Symmetric and asymmetric encryption
	Key commitment
	Digital signatures

	How the AWS Database Encryption SDK works
	Encrypt and sign
	Decrypt and verify

	Supported algorithm suites in the AWS Database Encryption SDK
	Default algorithm suite
	AES-GCM without ECDSA digital signatures

	Using the AWS Database Encryption SDK with AWS KMS
	Configuring the AWS Database Encryption SDK
	Selecting a programming language
	Selecting wrapping keys
	Creating a discovery filter
	Working with multitenant databases
	Creating signed beacons

	Key stores in the AWS Database Encryption SDK
	Key store terminology and concepts
	Implementing least privileged permissions
	Create a key store
	Configure key store actions
	Configure your key store actions
	Static configuration
	Discovery configuration

	Create an active branch key
	Rotate your active branch key

	Keyrings
	How keyrings work
	AWS KMS keyrings
	Required permissions for AWS KMS keyrings
	Identifying AWS KMS keys in an AWS KMS keyring
	Creating an AWS KMS keyring
	Using multi-Region AWS KMS keys
	Using an AWS KMS discovery keyring
	Using an AWS KMS regional discovery keyring

	AWS KMS Hierarchical keyrings
	How it works
	Prerequisites
	Required permissions
	Choose a cache
	Default cache
	MultiThreaded cache
	StormTracking cache
	Shared cache

	Create a Hierarchical keyring
	Create a Hierarchical keyring with a static branch key ID
	Create a Hierarchical keyring with a branch key ID supplier

	Using the Hierarchical keyring for searchable encryption
	Defining your beacon key source

	AWS KMS ECDH keyrings
	Required permissions for AWS KMS ECDH keyrings
	Creating an AWS KMS ECDH keyring
	Creating an AWS KMS ECDH discovery keyring

	Raw AES keyrings
	Raw RSA keyrings
	Raw ECDH keyrings
	Creating a Raw ECDH keyring
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	Multi-keyrings

	Searchable encryption
	Are beacons right for my dataset?
	Searchable encryption scenario
	Beacons
	Standard beacons
	Compound beacons

	Planning beacons
	Considerations for multitenant databases
	Choosing a beacon type
	Standard beacons
	Query a single encrypted field
	Examples

	Query a virtual field
	Examples

	Compound beacons
	Query a combination of encrypted fields on a single index
	Examples

	Query a combination of encrypted and plaintext fields on a single index
	Examples

	Choosing a beacon length
	Calculating beacon length
	Example

	Choosing a beacon name

	Configuring beacons
	Configuring standard beacons
	Example configuration syntax
	Creating a virtual field
	Security considerations for virtual fields

	Defining beacon styles

	Configuring compound beacons
	Example configuration syntax

	Example configurations
	Standard beacons
	Compound beacons

	Using beacons
	Querying beacons

	Searchable encryption for multitenant databases
	Querying beacons in a multitenant database

	AWS Database Encryption SDK for DynamoDB
	Client-side and server-side encryption
	Which fields are encrypted and signed?
	Encrypting attribute values
	Signing the item

	Searchable encryption in DynamoDB
	Configuring secondary indexes with beacons
	Testing beacon outputs
	Testing virtual fields
	Testing compound beacons

	Updating your data model
	Add new ENCRYPT_AND_SIGN, SIGN_ONLY, and SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributes
	Remove existing attributes
	Change an existing ENCRYPT_AND_SIGN attribute to SIGN_ONLY or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
	Change an existing SIGN_ONLY or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute to ENCRYPT_AND_SIGN
	Add a new DO_NOTHING attribute
	Change an existing SIGN_ONLY attribute to SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
	Change an existing SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute to SIGN_ONLY

	AWS Database Encryption SDK for DynamoDB available programming languages
	Java
	Prerequisites
	Installation
	Using the Java client-side encryption library for DynamoDB
	Item encryptors
	Attribute actions in the AWS Database Encryption SDK for DynamoDB
	Use an annotated data class
	Manually define your attribute actions

	Encryption configuration in the AWS Database Encryption SDK for DynamoDB
	Updating items with the AWS Database Encryption SDK
	Decrypting signed sets

	Java examples
	Using the DynamoDB enhanced client
	Using the low-level DynamoDB API
	Using the lower-level DynamoDbItemEncryptor

	Configure an existing DynamoDB table to use the AWS Database Encryption SDK for DynamoDB
	Step 1: Prepare to read and write encrypted items
	Step 2: Write encrypted and signed items
	Step 3: Only read encrypted and signed items

	Migrate to version 3.x of the Java client-side encryption library for DynamoDB
	Migrating from version 1.x to 2.x
	Migrating from version 2.x to 3.x
	Step 1. Prepare to read items in the new format
	Step 2. Write items in the new format
	Step 3. Only read and write items in the new format

	.NET
	Installing the .NET client-side encryption library for DynamoDB
	Debugging with .NET
	Using the .NET client-side encryption library for DynamoDB
	Item encryptors
	Attribute actions in the AWS Database Encryption SDK for DynamoDB
	Encryption configuration in the AWS Database Encryption SDK for DynamoDB
	Updating items with the AWS Database Encryption SDK

	.NET examples
	Using the low-level AWS Database Encryption SDK for DynamoDB API
	Using the lower-level DynamoDbItemEncryptor

	Configure an existing DynamoDB table to use the AWS Database Encryption SDK for DynamoDB
	Step 1: Prepare to read and write encrypted items
	Step 2: Write encrypted and signed items
	Step 3: Only read encrypted and signed items

	Rust
	Prerequisites
	Installation
	Using the Rust client-side encryption library for DynamoDB
	Item encryptors
	Attribute actions in the AWS Database Encryption SDK for DynamoDB
	Encryption configuration in the AWS Database Encryption SDK for DynamoDB
	Updating items with the AWS Database Encryption SDK

	Legacy DynamoDB Encryption Client
	AWS Database Encryption SDK for DynamoDB version support
	How the DynamoDB Encryption Client works
	Amazon DynamoDB Encryption Client concepts
	Cryptographic materials provider (CMP)
	Item encryptors
	Attribute actions
	Material description
	DynamoDB encryption context
	Provider store

	Cryptographic materials provider
	Direct KMS Materials Provider
	How to use it
	How it works
	Get encryption materials
	Get decryption materials

	Wrapped Materials Provider
	How to use it
	How it works
	Get encryption materials
	Get decryption materials

	Most Recent Provider
	How to use it
	How it works
	About the Most Recent Provider
	About the MetaStore
	Setting a time-to-live value
	Rotating cryptographic materials
	Get encryption materials
	Get decryption materials

	Updates to the Most Recent Provider

	Static Materials Provider
	How to use it
	How it works
	Get encryption materials
	Get decryption materials

	Amazon DynamoDB Encryption Client available programming languages
	Amazon DynamoDB Encryption Client for Java
	Prerequisites
	Installation
	Using the DynamoDB Encryption Client for Java
	Item encryptors: AttributeEncryptor and DynamoDBEncryptor
	Configuring save behavior
	Attribute actions in Java
	Attribute actions for the DynamoDBMapper
	Attribute actions for the DynamoDBEncryptor

	Overriding table names

	Example code for the DynamoDB Encryption Client for Java
	Using the DynamoDBEncryptor
	Using the DynamoDBMapper

	DynamoDB Encryption Client for Python
	Prerequisites
	Installation
	Using the DynamoDB Encryption Client for Python
	Client helper classes
	TableInfo class
	Attribute actions in Python

	Example code for the DynamoDB Encryption Client for Python
	Use the EncryptedTable client helper class
	Use the item encryptor

	Changing your data model
	Adding an attribute
	Removing an attribute

	Troubleshooting issues in your DynamoDB Encryption Client application
	Access denied
	Signature verification fails
	Issues with older version global tables
	Poor performance of the Most Recent Provider

	Amazon DynamoDB Encryption Client rename
	Reference
	Material description format
	AWS KMS Hierarchical keyring technical details

	Document history for the AWS Database Encryption SDK Developer Guide

