Skip to content

Commit 43cb7e7

Browse files
committed
Pushing the docs to dev/ for branch: master, commit f647c4ed28d297c99b919c436585a8139ac1abab
1 parent d09d032 commit 43cb7e7

File tree

126 files changed

+423
-352
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

126 files changed

+423
-352
lines changed
Binary file not shown.
Binary file not shown.
1.6 KB
Binary file not shown.

dev/_modules/skopt/plots.html

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1484,8 +1484,6 @@ <h1>Source code for skopt.plots</h1><div class="highlight"><pre>
14841484
<span class="c1"># Use standard of 10^n_parameters. Note this</span>
14851485
<span class="c1"># becomes very slow for many parameters</span>
14861486
<span class="n">n_minimum_search</span> <span class="o">=</span> <span class="mi">10</span> <span class="o">**</span> <span class="nb">len</span><span class="p">(</span><span class="n">result</span><span class="o">.</span><span class="n">x</span><span class="p">)</span>
1487-
<span class="k">if</span> <span class="n">n_minimum_search</span> <span class="o">&gt;</span> <span class="mi">100000</span><span class="p">:</span>
1488-
<span class="n">n_minimum_search</span> <span class="o">=</span> <span class="mi">100000</span>
14891487
<span class="n">x_vals</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">expected_minimum_random_sampling</span><span class="p">(</span>
14901488
<span class="n">result</span><span class="p">,</span>
14911489
<span class="n">n_random_starts</span><span class="o">=</span><span class="n">n_minimum_search</span><span class="p">,</span>

dev/_sources/auto_examples/ask-and-tell.rst.txt

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -180,9 +180,9 @@ and report the value back to the optimizer:
180180
fun: 0.2071864923643295
181181
func_vals: array([0.20718649])
182182
models: []
183-
random_state: RandomState(MT19937) at 0x7F9A515CCD40
183+
random_state: RandomState(MT19937) at 0x7FAA32E7DD40
184184
space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')])
185-
specs: {'args': {'self': <skopt.optimizer.optimizer.Optimizer object at 0x7f9a34044cd0>, 'dimensions': [(-2.0, 2.0)], 'base_estimator': 'GP', 'n_random_starts': None, 'n_initial_points': 10, 'initial_point_generator': 'lhs', 'n_jobs': 1, 'acq_func': 'EI', 'acq_optimizer': 'sampling', 'random_state': None, 'model_queue_size': None, 'acq_func_kwargs': None, 'acq_optimizer_kwargs': None}, 'function': 'Optimizer'}
185+
specs: {'args': {'self': <skopt.optimizer.optimizer.Optimizer object at 0x7faa1c54c7c0>, 'dimensions': [(-2.0, 2.0)], 'base_estimator': 'GP', 'n_random_starts': None, 'n_initial_points': 10, 'initial_point_generator': 'lhs', 'n_jobs': 1, 'acq_func': 'EI', 'acq_optimizer': 'sampling', 'random_state': None, 'model_queue_size': None, 'acq_func_kwargs': None, 'acq_optimizer_kwargs': None}, 'function': 'Optimizer'}
186186
x: [-0.7315058981975282]
187187
x_iters: [[-0.7315058981975282]]
188188
@@ -286,9 +286,9 @@ meantime:
286286
287287
.. rst-class:: sphx-glr-timing
288288

289-
**Total running time of the script:** ( 0 minutes 2.818 seconds)
289+
**Total running time of the script:** ( 0 minutes 2.968 seconds)
290290

291-
**Estimated memory usage:** 9 MB
291+
**Estimated memory usage:** 11 MB
292292

293293

294294
.. _sphx_glr_download_auto_examples_ask-and-tell.py:

dev/_sources/auto_examples/bayesian-optimization.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -265,13 +265,13 @@ provide the following information:
265265
n_restarts_optimizer=2, noise=0.010000000000000002,
266266
normalize_y=True, optimizer='fmin_l_bfgs_b',
267267
random_state=822569775)]
268-
random_state: RandomState(MT19937) at 0x7F9A2F6FFC40
268+
random_state: RandomState(MT19937) at 0x7FAA1505AC40
269269
space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')])
270-
specs: {'args': {'func': <function f at 0x7f9a2faf1c10>, 'dimensions': Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
270+
specs: {'args': {'func': <function f at 0x7faa0e7c3ee0>, 'dimensions': Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
271271
kernel=1**2 * Matern(length_scale=1, nu=2.5),
272272
n_restarts_optimizer=2, noise=0.010000000000000002,
273273
normalize_y=True, optimizer='fmin_l_bfgs_b',
274-
random_state=822569775), 'n_calls': 15, 'n_random_starts': 5, 'n_initial_points': 10, 'initial_point_generator': 'random', 'acq_func': 'EI', 'acq_optimizer': 'auto', 'x0': None, 'y0': None, 'random_state': RandomState(MT19937) at 0x7F9A2F6FFC40, 'verbose': False, 'callback': None, 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
274+
random_state=822569775), 'n_calls': 15, 'n_random_starts': 5, 'n_initial_points': 10, 'initial_point_generator': 'random', 'acq_func': 'EI', 'acq_optimizer': 'auto', 'x0': None, 'y0': None, 'random_state': RandomState(MT19937) at 0x7FAA1505AC40, 'verbose': False, 'callback': None, 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
275275
x: [-0.35076964188527904]
276276
x_iters: [[-0.009345334109402526], [1.2713537644662787], [0.4484475787090836], [1.0854396754496047], [1.4426790855107496], [0.9698921802985794], [-0.4464493263345517], [-0.6474638284799423], [-0.35076964188527904], [-0.28714767658880325], [-0.2968537755362253], [-2.0], [2.0], [-1.3149517825054502], [-0.32181607448732485]]
277277
@@ -303,7 +303,7 @@ the last iteration:
303303
.. code-block:: none
304304
305305
306-
<matplotlib.axes._subplots.AxesSubplot object at 0x7f9a2d087700>
306+
<matplotlib.axes._subplots.AxesSubplot object at 0x7faa0e89dd90>
307307
308308
309309
@@ -415,7 +415,7 @@ because the GP does not gain anything more by further exploration:
415415

416416
.. rst-class:: sphx-glr-timing
417417

418-
**Total running time of the script:** ( 0 minutes 3.401 seconds)
418+
**Total running time of the script:** ( 0 minutes 3.333 seconds)
419419

420420
**Estimated memory usage:** 8 MB
421421

dev/_sources/auto_examples/exploration-vs-exploitation.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -526,7 +526,7 @@ recalculated.
526526

527527
.. rst-class:: sphx-glr-timing
528528

529-
**Total running time of the script:** ( 0 minutes 29.238 seconds)
529+
**Total running time of the script:** ( 0 minutes 36.596 seconds)
530530

531531
**Estimated memory usage:** 8 MB
532532

dev/_sources/auto_examples/hyperparameter-optimization.rst.txt

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -207,16 +207,16 @@ Convergence plot
207207
.. code-block:: none
208208
209209
210-
<matplotlib.axes._subplots.AxesSubplot object at 0x7f9a3403e310>
210+
<matplotlib.axes._subplots.AxesSubplot object at 0x7faa154553d0>
211211
212212
213213
214214
215215
.. rst-class:: sphx-glr-timing
216216

217-
**Total running time of the script:** ( 0 minutes 31.438 seconds)
217+
**Total running time of the script:** ( 0 minutes 29.919 seconds)
218218

219-
**Estimated memory usage:** 38 MB
219+
**Estimated memory usage:** 37 MB
220220

221221

222222
.. _sphx_glr_download_auto_examples_hyperparameter-optimization.py:

dev/_sources/auto_examples/interruptible-optimization.rst.txt

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -163,13 +163,13 @@ and pass it to the minimizer:
163163
n_restarts_optimizer=2, noise='gaussian',
164164
normalize_y=True, optimizer='fmin_l_bfgs_b',
165165
random_state=655685735)]
166-
random_state: RandomState(MT19937) at 0x7F9A357D5540
166+
random_state: RandomState(MT19937) at 0x7FAA1709C540
167167
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
168-
specs: {'args': {'func': <function obj_fun at 0x7f9a2f715d30>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
168+
specs: {'args': {'func': <function obj_fun at 0x7faa1506cd30>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
169169
kernel=1**2 * Matern(length_scale=1, nu=2.5),
170170
n_restarts_optimizer=2, noise='gaussian',
171171
normalize_y=True, optimizer='fmin_l_bfgs_b',
172-
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'n_initial_points': 10, 'initial_point_generator': 'random', 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [-20.0], 'y0': None, 'random_state': RandomState(MT19937) at 0x7F9A357D5540, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7f9a2d6eb460>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
172+
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'n_initial_points': 10, 'initial_point_generator': 'random', 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [-20.0], 'y0': None, 'random_state': RandomState(MT19937) at 0x7FAA1709C540, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7faa0ea7b9d0>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
173173
x: [20.0]
174174
x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0]]
175175
@@ -321,14 +321,14 @@ The previous results can then be used to continue the optimization process:
321321
n_restarts_optimizer=2, noise='gaussian',
322322
normalize_y=True, optimizer='fmin_l_bfgs_b',
323323
random_state=655685735)]
324-
random_state: RandomState(MT19937) at 0x7F9A2F863B40
324+
random_state: RandomState(MT19937) at 0x7FAA1712DB40
325325
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
326-
specs: {'args': {'func': <function obj_fun at 0x7f9a2f715d30>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
326+
specs: {'args': {'func': <function obj_fun at 0x7faa1506cd30>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
327327
kernel=1**2 * Matern(length_scale=1, nu=2.5),
328328
n_restarts_optimizer=2, noise='gaussian',
329329
normalize_y=True, optimizer='fmin_l_bfgs_b',
330330
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'n_initial_points': 10, 'initial_point_generator': 'random', 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0]], 'y0': array([-0.04682088, -0.08228249, -0.00653801, -0.07133619, 0.09063509,
331-
0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491]), 'random_state': RandomState(MT19937) at 0x7F9A2F863B40, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7f9a2d6eb460>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
331+
0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491]), 'random_state': RandomState(MT19937) at 0x7FAA1712DB40, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7faa0ea7b9d0>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
332332
x: [20.0]
333333
x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0], [20.0], [20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0]]
334334
@@ -350,7 +350,7 @@ for more information on how the results get saved and possible caveats
350350

351351
.. rst-class:: sphx-glr-timing
352352

353-
**Total running time of the script:** ( 0 minutes 3.102 seconds)
353+
**Total running time of the script:** ( 0 minutes 3.008 seconds)
354354

355355
**Estimated memory usage:** 8 MB
356356

dev/_sources/auto_examples/optimizer-with-different-base-estimator.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -254,9 +254,9 @@ Test different kernels
254254

255255
.. rst-class:: sphx-glr-timing
256256

257-
**Total running time of the script:** ( 0 minutes 8.553 seconds)
257+
**Total running time of the script:** ( 0 minutes 10.126 seconds)
258258

259-
**Estimated memory usage:** 14 MB
259+
**Estimated memory usage:** 13 MB
260260

261261

262262
.. _sphx_glr_download_auto_examples_optimizer-with-different-base-estimator.py:

0 commit comments

Comments
 (0)