clang 21.0.0git
CGObjCGNU.cpp
Go to the documentation of this file.
1//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides Objective-C code generation targeting the GNU runtime. The
10// class in this file generates structures used by the GNU Objective-C runtime
11// library. These structures are defined in objc/objc.h and objc/objc-api.h in
12// the GNU runtime distribution.
13//
14//===----------------------------------------------------------------------===//
15
16#include "CGCXXABI.h"
17#include "CGCleanup.h"
18#include "CGObjCRuntime.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "CodeGenTypes.h"
22#include "SanitizerMetadata.h"
24#include "clang/AST/Attr.h"
25#include "clang/AST/Decl.h"
26#include "clang/AST/DeclObjC.h"
28#include "clang/AST/StmtObjC.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/StringMap.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Module.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/ConvertUTF.h"
39#include <cctype>
40
41using namespace clang;
42using namespace CodeGen;
43
44namespace {
45
46/// Class that lazily initialises the runtime function. Avoids inserting the
47/// types and the function declaration into a module if they're not used, and
48/// avoids constructing the type more than once if it's used more than once.
49class LazyRuntimeFunction {
50 CodeGenModule *CGM = nullptr;
51 llvm::FunctionType *FTy = nullptr;
52 const char *FunctionName = nullptr;
53 llvm::FunctionCallee Function = nullptr;
54
55public:
56 LazyRuntimeFunction() = default;
57
58 /// Initialises the lazy function with the name, return type, and the types
59 /// of the arguments.
60 template <typename... Tys>
61 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
62 Tys *... Types) {
63 CGM = Mod;
64 FunctionName = name;
65 Function = nullptr;
66 if(sizeof...(Tys)) {
67 SmallVector<llvm::Type *, 8> ArgTys({Types...});
68 FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
69 }
70 else {
71 FTy = llvm::FunctionType::get(RetTy, {}, false);
72 }
73 }
74
75 llvm::FunctionType *getType() { return FTy; }
76
77 /// Overloaded cast operator, allows the class to be implicitly cast to an
78 /// LLVM constant.
79 operator llvm::FunctionCallee() {
80 if (!Function) {
81 if (!FunctionName)
82 return nullptr;
83 Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
84 }
85 return Function;
86 }
87};
88
89
90/// GNU Objective-C runtime code generation. This class implements the parts of
91/// Objective-C support that are specific to the GNU family of runtimes (GCC,
92/// GNUstep and ObjFW).
93class CGObjCGNU : public CGObjCRuntime {
94protected:
95 /// The LLVM module into which output is inserted
96 llvm::Module &TheModule;
97 /// strut objc_super. Used for sending messages to super. This structure
98 /// contains the receiver (object) and the expected class.
99 llvm::StructType *ObjCSuperTy;
100 /// struct objc_super*. The type of the argument to the superclass message
101 /// lookup functions.
102 llvm::PointerType *PtrToObjCSuperTy;
103 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
104 /// SEL is included in a header somewhere, in which case it will be whatever
105 /// type is declared in that header, most likely {i8*, i8*}.
106 llvm::PointerType *SelectorTy;
107 /// Element type of SelectorTy.
108 llvm::Type *SelectorElemTy;
109 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
110 /// places where it's used
111 llvm::IntegerType *Int8Ty;
112 /// Pointer to i8 - LLVM type of char*, for all of the places where the
113 /// runtime needs to deal with C strings.
114 llvm::PointerType *PtrToInt8Ty;
115 /// struct objc_protocol type
116 llvm::StructType *ProtocolTy;
117 /// Protocol * type.
118 llvm::PointerType *ProtocolPtrTy;
119 /// Instance Method Pointer type. This is a pointer to a function that takes,
120 /// at a minimum, an object and a selector, and is the generic type for
121 /// Objective-C methods. Due to differences between variadic / non-variadic
122 /// calling conventions, it must always be cast to the correct type before
123 /// actually being used.
124 llvm::PointerType *IMPTy;
125 /// Type of an untyped Objective-C object. Clang treats id as a built-in type
126 /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
127 /// but if the runtime header declaring it is included then it may be a
128 /// pointer to a structure.
129 llvm::PointerType *IdTy;
130 /// Element type of IdTy.
131 llvm::Type *IdElemTy;
132 /// Pointer to a pointer to an Objective-C object. Used in the new ABI
133 /// message lookup function and some GC-related functions.
134 llvm::PointerType *PtrToIdTy;
135 /// The clang type of id. Used when using the clang CGCall infrastructure to
136 /// call Objective-C methods.
137 CanQualType ASTIdTy;
138 /// LLVM type for C int type.
139 llvm::IntegerType *IntTy;
140 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
141 /// used in the code to document the difference between i8* meaning a pointer
142 /// to a C string and i8* meaning a pointer to some opaque type.
143 llvm::PointerType *PtrTy;
144 /// LLVM type for C long type. The runtime uses this in a lot of places where
145 /// it should be using intptr_t, but we can't fix this without breaking
146 /// compatibility with GCC...
147 llvm::IntegerType *LongTy;
148 /// LLVM type for C size_t. Used in various runtime data structures.
149 llvm::IntegerType *SizeTy;
150 /// LLVM type for C intptr_t.
151 llvm::IntegerType *IntPtrTy;
152 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
153 llvm::IntegerType *PtrDiffTy;
154 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
155 /// variables.
156 llvm::PointerType *PtrToIntTy;
157 /// LLVM type for Objective-C BOOL type.
158 llvm::Type *BoolTy;
159 /// 32-bit integer type, to save us needing to look it up every time it's used.
160 llvm::IntegerType *Int32Ty;
161 /// 64-bit integer type, to save us needing to look it up every time it's used.
162 llvm::IntegerType *Int64Ty;
163 /// The type of struct objc_property.
164 llvm::StructType *PropertyMetadataTy;
165 /// Metadata kind used to tie method lookups to message sends. The GNUstep
166 /// runtime provides some LLVM passes that can use this to do things like
167 /// automatic IMP caching and speculative inlining.
168 unsigned msgSendMDKind;
169 /// Does the current target use SEH-based exceptions? False implies
170 /// Itanium-style DWARF unwinding.
171 bool usesSEHExceptions;
172 /// Does the current target uses C++-based exceptions?
173 bool usesCxxExceptions;
174
175 /// Helper to check if we are targeting a specific runtime version or later.
176 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
177 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
178 return (R.getKind() == kind) &&
179 (R.getVersion() >= VersionTuple(major, minor));
180 }
181
182 std::string ManglePublicSymbol(StringRef Name) {
183 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str();
184 }
185
186 std::string SymbolForProtocol(Twine Name) {
187 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str();
188 }
189
190 std::string SymbolForProtocolRef(StringRef Name) {
191 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str();
192 }
193
194
195 /// Helper function that generates a constant string and returns a pointer to
196 /// the start of the string. The result of this function can be used anywhere
197 /// where the C code specifies const char*.
198 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
199 ConstantAddress Array =
200 CGM.GetAddrOfConstantCString(std::string(Str), Name);
201 return Array.getPointer();
202 }
203
204 /// Emits a linkonce_odr string, whose name is the prefix followed by the
205 /// string value. This allows the linker to combine the strings between
206 /// different modules. Used for EH typeinfo names, selector strings, and a
207 /// few other things.
208 llvm::Constant *ExportUniqueString(const std::string &Str,
209 const std::string &prefix,
210 bool Private=false) {
211 std::string name = prefix + Str;
212 auto *ConstStr = TheModule.getGlobalVariable(name);
213 if (!ConstStr) {
214 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
215 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
216 llvm::GlobalValue::LinkOnceODRLinkage, value, name);
217 GV->setComdat(TheModule.getOrInsertComdat(name));
218 if (Private)
219 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
220 ConstStr = GV;
221 }
222 return ConstStr;
223 }
224
225 /// Returns a property name and encoding string.
226 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
227 const Decl *Container) {
228 assert(!isRuntime(ObjCRuntime::GNUstep, 2));
229 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
230 std::string NameAndAttributes;
231 std::string TypeStr =
232 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
233 NameAndAttributes += '\0';
234 NameAndAttributes += TypeStr.length() + 3;
235 NameAndAttributes += TypeStr;
236 NameAndAttributes += '\0';
237 NameAndAttributes += PD->getNameAsString();
238 return MakeConstantString(NameAndAttributes);
239 }
240 return MakeConstantString(PD->getNameAsString());
241 }
242
243 /// Push the property attributes into two structure fields.
244 void PushPropertyAttributes(ConstantStructBuilder &Fields,
245 const ObjCPropertyDecl *property, bool isSynthesized=true, bool
246 isDynamic=true) {
247 int attrs = property->getPropertyAttributes();
248 // For read-only properties, clear the copy and retain flags
250 attrs &= ~ObjCPropertyAttribute::kind_copy;
251 attrs &= ~ObjCPropertyAttribute::kind_retain;
252 attrs &= ~ObjCPropertyAttribute::kind_weak;
253 attrs &= ~ObjCPropertyAttribute::kind_strong;
254 }
255 // The first flags field has the same attribute values as clang uses internally
256 Fields.addInt(Int8Ty, attrs & 0xff);
257 attrs >>= 8;
258 attrs <<= 2;
259 // For protocol properties, synthesized and dynamic have no meaning, so we
260 // reuse these flags to indicate that this is a protocol property (both set
261 // has no meaning, as a property can't be both synthesized and dynamic)
262 attrs |= isSynthesized ? (1<<0) : 0;
263 attrs |= isDynamic ? (1<<1) : 0;
264 // The second field is the next four fields left shifted by two, with the
265 // low bit set to indicate whether the field is synthesized or dynamic.
266 Fields.addInt(Int8Ty, attrs & 0xff);
267 // Two padding fields
268 Fields.addInt(Int8Ty, 0);
269 Fields.addInt(Int8Ty, 0);
270 }
271
272 virtual llvm::Constant *GenerateCategoryProtocolList(const
273 ObjCCategoryDecl *OCD);
274 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
275 int count) {
276 // int count;
277 Fields.addInt(IntTy, count);
278 // int size; (only in GNUstep v2 ABI.
279 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
280 const llvm::DataLayout &DL = TheModule.getDataLayout();
281 Fields.addInt(IntTy, DL.getTypeSizeInBits(PropertyMetadataTy) /
282 CGM.getContext().getCharWidth());
283 }
284 // struct objc_property_list *next;
285 Fields.add(NULLPtr);
286 // struct objc_property properties[]
287 return Fields.beginArray(PropertyMetadataTy);
288 }
289 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
290 const ObjCPropertyDecl *property,
291 const Decl *OCD,
292 bool isSynthesized=true, bool
293 isDynamic=true) {
294 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
295 ASTContext &Context = CGM.getContext();
296 Fields.add(MakePropertyEncodingString(property, OCD));
297 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
298 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
299 if (accessor) {
300 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
301 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
302 Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
303 Fields.add(TypeEncoding);
304 } else {
305 Fields.add(NULLPtr);
306 Fields.add(NULLPtr);
307 }
308 };
309 addPropertyMethod(property->getGetterMethodDecl());
310 addPropertyMethod(property->getSetterMethodDecl());
311 Fields.finishAndAddTo(PropertiesArray);
312 }
313
314 /// Ensures that the value has the required type, by inserting a bitcast if
315 /// required. This function lets us avoid inserting bitcasts that are
316 /// redundant.
317 llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
318 if (V->getType() == Ty)
319 return V;
320 return B.CreateBitCast(V, Ty);
321 }
322
323 // Some zeros used for GEPs in lots of places.
324 llvm::Constant *Zeros[2];
325 /// Null pointer value. Mainly used as a terminator in various arrays.
326 llvm::Constant *NULLPtr;
327 /// LLVM context.
328 llvm::LLVMContext &VMContext;
329
330protected:
331
332 /// Placeholder for the class. Lots of things refer to the class before we've
333 /// actually emitted it. We use this alias as a placeholder, and then replace
334 /// it with a pointer to the class structure before finally emitting the
335 /// module.
336 llvm::GlobalAlias *ClassPtrAlias;
337 /// Placeholder for the metaclass. Lots of things refer to the class before
338 /// we've / actually emitted it. We use this alias as a placeholder, and then
339 /// replace / it with a pointer to the metaclass structure before finally
340 /// emitting the / module.
341 llvm::GlobalAlias *MetaClassPtrAlias;
342 /// All of the classes that have been generated for this compilation units.
343 std::vector<llvm::Constant*> Classes;
344 /// All of the categories that have been generated for this compilation units.
345 std::vector<llvm::Constant*> Categories;
346 /// All of the Objective-C constant strings that have been generated for this
347 /// compilation units.
348 std::vector<llvm::Constant*> ConstantStrings;
349 /// Map from string values to Objective-C constant strings in the output.
350 /// Used to prevent emitting Objective-C strings more than once. This should
351 /// not be required at all - CodeGenModule should manage this list.
352 llvm::StringMap<llvm::Constant*> ObjCStrings;
353 /// All of the protocols that have been declared.
354 llvm::StringMap<llvm::Constant*> ExistingProtocols;
355 /// For each variant of a selector, we store the type encoding and a
356 /// placeholder value. For an untyped selector, the type will be the empty
357 /// string. Selector references are all done via the module's selector table,
358 /// so we create an alias as a placeholder and then replace it with the real
359 /// value later.
360 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
361 /// Type of the selector map. This is roughly equivalent to the structure
362 /// used in the GNUstep runtime, which maintains a list of all of the valid
363 /// types for a selector in a table.
364 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
365 SelectorMap;
366 /// A map from selectors to selector types. This allows us to emit all
367 /// selectors of the same name and type together.
368 SelectorMap SelectorTable;
369
370 /// Selectors related to memory management. When compiling in GC mode, we
371 /// omit these.
372 Selector RetainSel, ReleaseSel, AutoreleaseSel;
373 /// Runtime functions used for memory management in GC mode. Note that clang
374 /// supports code generation for calling these functions, but neither GNU
375 /// runtime actually supports this API properly yet.
376 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
377 WeakAssignFn, GlobalAssignFn;
378
379 typedef std::pair<std::string, std::string> ClassAliasPair;
380 /// All classes that have aliases set for them.
381 std::vector<ClassAliasPair> ClassAliases;
382
383protected:
384 /// Function used for throwing Objective-C exceptions.
385 LazyRuntimeFunction ExceptionThrowFn;
386 /// Function used for rethrowing exceptions, used at the end of \@finally or
387 /// \@synchronize blocks.
388 LazyRuntimeFunction ExceptionReThrowFn;
389 /// Function called when entering a catch function. This is required for
390 /// differentiating Objective-C exceptions and foreign exceptions.
391 LazyRuntimeFunction EnterCatchFn;
392 /// Function called when exiting from a catch block. Used to do exception
393 /// cleanup.
394 LazyRuntimeFunction ExitCatchFn;
395 /// Function called when entering an \@synchronize block. Acquires the lock.
396 LazyRuntimeFunction SyncEnterFn;
397 /// Function called when exiting an \@synchronize block. Releases the lock.
398 LazyRuntimeFunction SyncExitFn;
399
400private:
401 /// Function called if fast enumeration detects that the collection is
402 /// modified during the update.
403 LazyRuntimeFunction EnumerationMutationFn;
404 /// Function for implementing synthesized property getters that return an
405 /// object.
406 LazyRuntimeFunction GetPropertyFn;
407 /// Function for implementing synthesized property setters that return an
408 /// object.
409 LazyRuntimeFunction SetPropertyFn;
410 /// Function used for non-object declared property getters.
411 LazyRuntimeFunction GetStructPropertyFn;
412 /// Function used for non-object declared property setters.
413 LazyRuntimeFunction SetStructPropertyFn;
414
415protected:
416 /// The version of the runtime that this class targets. Must match the
417 /// version in the runtime.
418 int RuntimeVersion;
419 /// The version of the protocol class. Used to differentiate between ObjC1
420 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
421 /// components and can not contain declared properties. We always emit
422 /// Objective-C 2 property structures, but we have to pretend that they're
423 /// Objective-C 1 property structures when targeting the GCC runtime or it
424 /// will abort.
425 const int ProtocolVersion;
426 /// The version of the class ABI. This value is used in the class structure
427 /// and indicates how various fields should be interpreted.
428 const int ClassABIVersion;
429 /// Generates an instance variable list structure. This is a structure
430 /// containing a size and an array of structures containing instance variable
431 /// metadata. This is used purely for introspection in the fragile ABI. In
432 /// the non-fragile ABI, it's used for instance variable fixup.
433 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
435 ArrayRef<llvm::Constant *> IvarOffsets,
438
439 /// Generates a method list structure. This is a structure containing a size
440 /// and an array of structures containing method metadata.
441 ///
442 /// This structure is used by both classes and categories, and contains a next
443 /// pointer allowing them to be chained together in a linked list.
444 llvm::Constant *GenerateMethodList(StringRef ClassName,
445 StringRef CategoryName,
447 bool isClassMethodList);
448
449 /// Emits an empty protocol. This is used for \@protocol() where no protocol
450 /// is found. The runtime will (hopefully) fix up the pointer to refer to the
451 /// real protocol.
452 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
453
454 /// Generates a list of property metadata structures. This follows the same
455 /// pattern as method and instance variable metadata lists.
456 llvm::Constant *GeneratePropertyList(const Decl *Container,
457 const ObjCContainerDecl *OCD,
458 bool isClassProperty=false,
459 bool protocolOptionalProperties=false);
460
461 /// Generates a list of referenced protocols. Classes, categories, and
462 /// protocols all use this structure.
463 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
464
465 /// To ensure that all protocols are seen by the runtime, we add a category on
466 /// a class defined in the runtime, declaring no methods, but adopting the
467 /// protocols. This is a horribly ugly hack, but it allows us to collect all
468 /// of the protocols without changing the ABI.
469 void GenerateProtocolHolderCategory();
470
471 /// Generates a class structure.
472 llvm::Constant *GenerateClassStructure(
473 llvm::Constant *MetaClass,
474 llvm::Constant *SuperClass,
475 unsigned info,
476 const char *Name,
477 llvm::Constant *Version,
478 llvm::Constant *InstanceSize,
479 llvm::Constant *IVars,
480 llvm::Constant *Methods,
481 llvm::Constant *Protocols,
482 llvm::Constant *IvarOffsets,
483 llvm::Constant *Properties,
484 llvm::Constant *StrongIvarBitmap,
485 llvm::Constant *WeakIvarBitmap,
486 bool isMeta=false);
487
488 /// Generates a method list. This is used by protocols to define the required
489 /// and optional methods.
490 virtual llvm::Constant *GenerateProtocolMethodList(
492 /// Emits optional and required method lists.
493 template<class T>
494 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
495 llvm::Constant *&Optional) {
498 for (const auto *I : Methods)
499 if (I->isOptional())
500 OptionalMethods.push_back(I);
501 else
502 RequiredMethods.push_back(I);
503 Required = GenerateProtocolMethodList(RequiredMethods);
504 Optional = GenerateProtocolMethodList(OptionalMethods);
505 }
506
507 /// Returns a selector with the specified type encoding. An empty string is
508 /// used to return an untyped selector (with the types field set to NULL).
509 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
510 const std::string &TypeEncoding);
511
512 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this
513 /// contains the class and ivar names, in the v2 ABI this contains the type
514 /// encoding as well.
515 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
516 const ObjCIvarDecl *Ivar) {
517 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
518 + '.' + Ivar->getNameAsString();
519 return Name;
520 }
521 /// Returns the variable used to store the offset of an instance variable.
522 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
523 const ObjCIvarDecl *Ivar);
524 /// Emits a reference to a class. This allows the linker to object if there
525 /// is no class of the matching name.
526 void EmitClassRef(const std::string &className);
527
528 /// Emits a pointer to the named class
529 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
530 const std::string &Name, bool isWeak);
531
532 /// Looks up the method for sending a message to the specified object. This
533 /// mechanism differs between the GCC and GNU runtimes, so this method must be
534 /// overridden in subclasses.
535 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
536 llvm::Value *&Receiver,
537 llvm::Value *cmd,
538 llvm::MDNode *node,
539 MessageSendInfo &MSI) = 0;
540
541 /// Looks up the method for sending a message to a superclass. This
542 /// mechanism differs between the GCC and GNU runtimes, so this method must
543 /// be overridden in subclasses.
544 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
545 Address ObjCSuper,
546 llvm::Value *cmd,
547 MessageSendInfo &MSI) = 0;
548
549 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
550 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
551 /// bits set to their values, LSB first, while larger ones are stored in a
552 /// structure of this / form:
553 ///
554 /// struct { int32_t length; int32_t values[length]; };
555 ///
556 /// The values in the array are stored in host-endian format, with the least
557 /// significant bit being assumed to come first in the bitfield. Therefore,
558 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
559 /// while a bitfield / with the 63rd bit set will be 1<<64.
560 llvm::Constant *MakeBitField(ArrayRef<bool> bits);
561
562public:
563 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
564 unsigned protocolClassVersion, unsigned classABI=1);
565
567
568 RValue
570 QualType ResultType, Selector Sel,
571 llvm::Value *Receiver, const CallArgList &CallArgs,
572 const ObjCInterfaceDecl *Class,
573 const ObjCMethodDecl *Method) override;
574 RValue
576 QualType ResultType, Selector Sel,
577 const ObjCInterfaceDecl *Class,
578 bool isCategoryImpl, llvm::Value *Receiver,
579 bool IsClassMessage, const CallArgList &CallArgs,
580 const ObjCMethodDecl *Method) override;
581 llvm::Value *GetClass(CodeGenFunction &CGF,
582 const ObjCInterfaceDecl *OID) override;
583 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
585 llvm::Value *GetSelector(CodeGenFunction &CGF,
586 const ObjCMethodDecl *Method) override;
587 virtual llvm::Constant *GetConstantSelector(Selector Sel,
588 const std::string &TypeEncoding) {
589 llvm_unreachable("Runtime unable to generate constant selector");
590 }
591 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
592 return GetConstantSelector(M->getSelector(),
594 }
595 llvm::Constant *GetEHType(QualType T) override;
596
597 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
598 const ObjCContainerDecl *CD) override;
599
600 // Map to unify direct method definitions.
601 llvm::DenseMap<const ObjCMethodDecl *, llvm::Function *>
602 DirectMethodDefinitions;
603 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
604 const ObjCMethodDecl *OMD,
605 const ObjCContainerDecl *CD) override;
606 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
607 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
608 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
609 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
610 const ObjCProtocolDecl *PD) override;
611 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
612
613 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD);
614
615 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override {
616 return GenerateProtocolRef(PD);
617 }
618
619 llvm::Function *ModuleInitFunction() override;
620 llvm::FunctionCallee GetPropertyGetFunction() override;
621 llvm::FunctionCallee GetPropertySetFunction() override;
622 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
623 bool copy) override;
624 llvm::FunctionCallee GetSetStructFunction() override;
625 llvm::FunctionCallee GetGetStructFunction() override;
626 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
627 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
628 llvm::FunctionCallee EnumerationMutationFunction() override;
629
631 const ObjCAtTryStmt &S) override;
633 const ObjCAtSynchronizedStmt &S) override;
635 const ObjCAtThrowStmt &S,
636 bool ClearInsertionPoint=true) override;
637 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
638 Address AddrWeakObj) override;
640 llvm::Value *src, Address dst) override;
642 llvm::Value *src, Address dest,
643 bool threadlocal=false) override;
644 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
645 Address dest, llvm::Value *ivarOffset) override;
647 llvm::Value *src, Address dest) override;
649 Address SrcPtr,
650 llvm::Value *Size) override;
652 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
653 unsigned CVRQualifiers) override;
654 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
656 const ObjCIvarDecl *Ivar) override;
657 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
658 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
659 const CGBlockInfo &blockInfo) override {
660 return NULLPtr;
661 }
662 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
663 const CGBlockInfo &blockInfo) override {
664 return NULLPtr;
665 }
666
667 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
668 return NULLPtr;
669 }
670};
671
672/// Class representing the legacy GCC Objective-C ABI. This is the default when
673/// -fobjc-nonfragile-abi is not specified.
674///
675/// The GCC ABI target actually generates code that is approximately compatible
676/// with the new GNUstep runtime ABI, but refrains from using any features that
677/// would not work with the GCC runtime. For example, clang always generates
678/// the extended form of the class structure, and the extra fields are simply
679/// ignored by GCC libobjc.
680class CGObjCGCC : public CGObjCGNU {
681 /// The GCC ABI message lookup function. Returns an IMP pointing to the
682 /// method implementation for this message.
683 LazyRuntimeFunction MsgLookupFn;
684 /// The GCC ABI superclass message lookup function. Takes a pointer to a
685 /// structure describing the receiver and the class, and a selector as
686 /// arguments. Returns the IMP for the corresponding method.
687 LazyRuntimeFunction MsgLookupSuperFn;
688
689protected:
690 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
691 llvm::Value *cmd, llvm::MDNode *node,
692 MessageSendInfo &MSI) override {
693 CGBuilderTy &Builder = CGF.Builder;
694 llvm::Value *args[] = {
695 EnforceType(Builder, Receiver, IdTy),
696 EnforceType(Builder, cmd, SelectorTy) };
697 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
698 imp->setMetadata(msgSendMDKind, node);
699 return imp;
700 }
701
702 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
703 llvm::Value *cmd, MessageSendInfo &MSI) override {
704 CGBuilderTy &Builder = CGF.Builder;
705 llvm::Value *lookupArgs[] = {
706 EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy),
707 cmd};
708 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
709 }
710
711public:
712 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
713 // IMP objc_msg_lookup(id, SEL);
714 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
715 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
716 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
717 PtrToObjCSuperTy, SelectorTy);
718 }
719};
720
721/// Class used when targeting the new GNUstep runtime ABI.
722class CGObjCGNUstep : public CGObjCGNU {
723 /// The slot lookup function. Returns a pointer to a cacheable structure
724 /// that contains (among other things) the IMP.
725 LazyRuntimeFunction SlotLookupFn;
726 /// The GNUstep ABI superclass message lookup function. Takes a pointer to
727 /// a structure describing the receiver and the class, and a selector as
728 /// arguments. Returns the slot for the corresponding method. Superclass
729 /// message lookup rarely changes, so this is a good caching opportunity.
730 LazyRuntimeFunction SlotLookupSuperFn;
731 /// Specialised function for setting atomic retain properties
732 LazyRuntimeFunction SetPropertyAtomic;
733 /// Specialised function for setting atomic copy properties
734 LazyRuntimeFunction SetPropertyAtomicCopy;
735 /// Specialised function for setting nonatomic retain properties
736 LazyRuntimeFunction SetPropertyNonAtomic;
737 /// Specialised function for setting nonatomic copy properties
738 LazyRuntimeFunction SetPropertyNonAtomicCopy;
739 /// Function to perform atomic copies of C++ objects with nontrivial copy
740 /// constructors from Objective-C ivars.
741 LazyRuntimeFunction CxxAtomicObjectGetFn;
742 /// Function to perform atomic copies of C++ objects with nontrivial copy
743 /// constructors to Objective-C ivars.
744 LazyRuntimeFunction CxxAtomicObjectSetFn;
745 /// Type of a slot structure pointer. This is returned by the various
746 /// lookup functions.
747 llvm::Type *SlotTy;
748 /// Type of a slot structure.
749 llvm::Type *SlotStructTy;
750
751 public:
752 llvm::Constant *GetEHType(QualType T) override;
753
754 protected:
755 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
756 llvm::Value *cmd, llvm::MDNode *node,
757 MessageSendInfo &MSI) override {
758 CGBuilderTy &Builder = CGF.Builder;
759 llvm::FunctionCallee LookupFn = SlotLookupFn;
760
761 // Store the receiver on the stack so that we can reload it later
762 RawAddress ReceiverPtr =
763 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
764 Builder.CreateStore(Receiver, ReceiverPtr);
765
766 llvm::Value *self;
767
768 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
769 self = CGF.LoadObjCSelf();
770 } else {
771 self = llvm::ConstantPointerNull::get(IdTy);
772 }
773
774 // The lookup function is guaranteed not to capture the receiver pointer.
775 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee()))
776 LookupFn2->addParamAttr(
777 0, llvm::Attribute::getWithCaptureInfo(CGF.getLLVMContext(),
778 llvm::CaptureInfo::none()));
779
780 llvm::Value *args[] = {
781 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
782 EnforceType(Builder, cmd, SelectorTy),
783 EnforceType(Builder, self, IdTy)};
784 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
785 slot->setOnlyReadsMemory();
786 slot->setMetadata(msgSendMDKind, node);
787
788 // Load the imp from the slot
789 llvm::Value *imp = Builder.CreateAlignedLoad(
790 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
791 CGF.getPointerAlign());
792
793 // The lookup function may have changed the receiver, so make sure we use
794 // the new one.
795 Receiver = Builder.CreateLoad(ReceiverPtr, true);
796 return imp;
797 }
798
799 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
800 llvm::Value *cmd,
801 MessageSendInfo &MSI) override {
802 CGBuilderTy &Builder = CGF.Builder;
803 llvm::Value *lookupArgs[] = {ObjCSuper.emitRawPointer(CGF), cmd};
804
805 llvm::CallInst *slot =
806 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
807 slot->setOnlyReadsMemory();
808
809 return Builder.CreateAlignedLoad(
810 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
811 CGF.getPointerAlign());
812 }
813
814 public:
815 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
816 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
817 unsigned ClassABI) :
818 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
819 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
820
821 SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
822 SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
823 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
824 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
825 SelectorTy, IdTy);
826 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
827 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
828 PtrToObjCSuperTy, SelectorTy);
829 // If we're in ObjC++ mode, then we want to make
830 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
831 if (usesCxxExceptions) {
832 // void *__cxa_begin_catch(void *e)
833 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
834 // void __cxa_end_catch(void)
835 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
836 // void objc_exception_rethrow(void*)
837 ExceptionReThrowFn.init(&CGM, "__cxa_rethrow", PtrTy);
838 } else if (usesSEHExceptions) {
839 // void objc_exception_rethrow(void)
840 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
841 } else if (CGM.getLangOpts().CPlusPlus) {
842 // void *__cxa_begin_catch(void *e)
843 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
844 // void __cxa_end_catch(void)
845 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
846 // void _Unwind_Resume_or_Rethrow(void*)
847 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
848 PtrTy);
849 } else if (R.getVersion() >= VersionTuple(1, 7)) {
850 // id objc_begin_catch(void *e)
851 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
852 // void objc_end_catch(void)
853 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
854 // void _Unwind_Resume_or_Rethrow(void*)
855 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
856 }
857 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
858 SelectorTy, IdTy, PtrDiffTy);
859 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
860 IdTy, SelectorTy, IdTy, PtrDiffTy);
861 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
862 IdTy, SelectorTy, IdTy, PtrDiffTy);
863 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
864 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
865 // void objc_setCppObjectAtomic(void *dest, const void *src, void
866 // *helper);
867 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
868 PtrTy, PtrTy);
869 // void objc_getCppObjectAtomic(void *dest, const void *src, void
870 // *helper);
871 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
872 PtrTy, PtrTy);
873 }
874
875 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
876 // The optimised functions were added in version 1.7 of the GNUstep
877 // runtime.
878 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
879 VersionTuple(1, 7));
880 return CxxAtomicObjectGetFn;
881 }
882
883 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
884 // The optimised functions were added in version 1.7 of the GNUstep
885 // runtime.
886 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
887 VersionTuple(1, 7));
888 return CxxAtomicObjectSetFn;
889 }
890
891 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
892 bool copy) override {
893 // The optimised property functions omit the GC check, and so are not
894 // safe to use in GC mode. The standard functions are fast in GC mode,
895 // so there is less advantage in using them.
896 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
897 // The optimised functions were added in version 1.7 of the GNUstep
898 // runtime.
899 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
900 VersionTuple(1, 7));
901
902 if (atomic) {
903 if (copy) return SetPropertyAtomicCopy;
904 return SetPropertyAtomic;
905 }
906
907 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
908 }
909};
910
911/// GNUstep Objective-C ABI version 2 implementation.
912/// This is the ABI that provides a clean break with the legacy GCC ABI and
913/// cleans up a number of things that were added to work around 1980s linkers.
914class CGObjCGNUstep2 : public CGObjCGNUstep {
915 enum SectionKind
916 {
917 SelectorSection = 0,
918 ClassSection,
919 ClassReferenceSection,
920 CategorySection,
921 ProtocolSection,
922 ProtocolReferenceSection,
923 ClassAliasSection,
924 ConstantStringSection
925 };
926 /// The subset of `objc_class_flags` used at compile time.
927 enum ClassFlags {
928 /// This is a metaclass
929 ClassFlagMeta = (1 << 0),
930 /// This class has been initialised by the runtime (+initialize has been
931 /// sent if necessary).
932 ClassFlagInitialized = (1 << 8),
933 };
934 static const char *const SectionsBaseNames[8];
935 static const char *const PECOFFSectionsBaseNames[8];
936 template<SectionKind K>
937 std::string sectionName() {
938 if (CGM.getTriple().isOSBinFormatCOFF()) {
939 std::string name(PECOFFSectionsBaseNames[K]);
940 name += "$m";
941 return name;
942 }
943 return SectionsBaseNames[K];
944 }
945 /// The GCC ABI superclass message lookup function. Takes a pointer to a
946 /// structure describing the receiver and the class, and a selector as
947 /// arguments. Returns the IMP for the corresponding method.
948 LazyRuntimeFunction MsgLookupSuperFn;
949 /// Function to ensure that +initialize is sent to a class.
950 LazyRuntimeFunction SentInitializeFn;
951 /// A flag indicating if we've emitted at least one protocol.
952 /// If we haven't, then we need to emit an empty protocol, to ensure that the
953 /// __start__objc_protocols and __stop__objc_protocols sections exist.
954 bool EmittedProtocol = false;
955 /// A flag indicating if we've emitted at least one protocol reference.
956 /// If we haven't, then we need to emit an empty protocol, to ensure that the
957 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
958 /// exist.
959 bool EmittedProtocolRef = false;
960 /// A flag indicating if we've emitted at least one class.
961 /// If we haven't, then we need to emit an empty protocol, to ensure that the
962 /// __start__objc_classes and __stop__objc_classes sections / exist.
963 bool EmittedClass = false;
964 /// Generate the name of a symbol for a reference to a class. Accesses to
965 /// classes should be indirected via this.
966
967 typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>>
968 EarlyInitPair;
969 std::vector<EarlyInitPair> EarlyInitList;
970
971 std::string SymbolForClassRef(StringRef Name, bool isWeak) {
972 if (isWeak)
973 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str();
974 else
975 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str();
976 }
977 /// Generate the name of a class symbol.
978 std::string SymbolForClass(StringRef Name) {
979 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str();
980 }
981 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
984 for (auto *Arg : Args)
985 Types.push_back(Arg->getType());
986 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
987 false);
988 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
989 B.CreateCall(Fn, Args);
990 }
991
992 ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
993
994 auto Str = SL->getString();
995 CharUnits Align = CGM.getPointerAlign();
996
997 // Look for an existing one
998 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
999 if (old != ObjCStrings.end())
1000 return ConstantAddress(old->getValue(), IdElemTy, Align);
1001
1002 bool isNonASCII = SL->containsNonAscii();
1003
1004 auto LiteralLength = SL->getLength();
1005
1006 if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) &&
1007 (LiteralLength < 9) && !isNonASCII) {
1008 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit
1009 // ASCII characters in the high 56 bits, followed by a 4-bit length and a
1010 // 3-bit tag (which is always 4).
1011 uint64_t str = 0;
1012 // Fill in the characters
1013 for (unsigned i=0 ; i<LiteralLength ; i++)
1014 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
1015 // Fill in the length
1016 str |= LiteralLength << 3;
1017 // Set the tag
1018 str |= 4;
1019 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
1020 llvm::ConstantInt::get(Int64Ty, str), IdTy);
1021 ObjCStrings[Str] = ObjCStr;
1022 return ConstantAddress(ObjCStr, IdElemTy, Align);
1023 }
1024
1025 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1026
1027 if (StringClass.empty()) StringClass = "NSConstantString";
1028
1029 std::string Sym = SymbolForClass(StringClass);
1030
1031 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1032
1033 if (!isa) {
1034 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1035 llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1036 if (CGM.getTriple().isOSBinFormatCOFF()) {
1037 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1038 }
1039 }
1040
1041 // struct
1042 // {
1043 // Class isa;
1044 // uint32_t flags;
1045 // uint32_t length; // Number of codepoints
1046 // uint32_t size; // Number of bytes
1047 // uint32_t hash;
1048 // const char *data;
1049 // };
1050
1051 ConstantInitBuilder Builder(CGM);
1052 auto Fields = Builder.beginStruct();
1053 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1054 Fields.add(isa);
1055 } else {
1056 Fields.addNullPointer(PtrTy);
1057 }
1058 // For now, all non-ASCII strings are represented as UTF-16. As such, the
1059 // number of bytes is simply double the number of UTF-16 codepoints. In
1060 // ASCII strings, the number of bytes is equal to the number of non-ASCII
1061 // codepoints.
1062 if (isNonASCII) {
1063 unsigned NumU8CodeUnits = Str.size();
1064 // A UTF-16 representation of a unicode string contains at most the same
1065 // number of code units as a UTF-8 representation. Allocate that much
1066 // space, plus one for the final null character.
1067 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1068 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1069 llvm::UTF16 *ToPtr = &ToBuf[0];
1070 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1071 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1072 uint32_t StringLength = ToPtr - &ToBuf[0];
1073 // Add null terminator
1074 *ToPtr = 0;
1075 // Flags: 2 indicates UTF-16 encoding
1076 Fields.addInt(Int32Ty, 2);
1077 // Number of UTF-16 codepoints
1078 Fields.addInt(Int32Ty, StringLength);
1079 // Number of bytes
1080 Fields.addInt(Int32Ty, StringLength * 2);
1081 // Hash. Not currently initialised by the compiler.
1082 Fields.addInt(Int32Ty, 0);
1083 // pointer to the data string.
1084 auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1);
1085 auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1086 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1087 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1088 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1089 Fields.add(Buffer);
1090 } else {
1091 // Flags: 0 indicates ASCII encoding
1092 Fields.addInt(Int32Ty, 0);
1093 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1094 Fields.addInt(Int32Ty, Str.size());
1095 // Number of bytes
1096 Fields.addInt(Int32Ty, Str.size());
1097 // Hash. Not currently initialised by the compiler.
1098 Fields.addInt(Int32Ty, 0);
1099 // Data pointer
1100 Fields.add(MakeConstantString(Str));
1101 }
1102 std::string StringName;
1103 bool isNamed = !isNonASCII;
1104 if (isNamed) {
1105 StringName = ".objc_str_";
1106 for (int i=0,e=Str.size() ; i<e ; ++i) {
1107 unsigned char c = Str[i];
1108 if (isalnum(c))
1109 StringName += c;
1110 else if (c == ' ')
1111 StringName += '_';
1112 else {
1113 isNamed = false;
1114 break;
1115 }
1116 }
1117 }
1118 llvm::GlobalVariable *ObjCStrGV =
1119 Fields.finishAndCreateGlobal(
1120 isNamed ? StringRef(StringName) : ".objc_string",
1121 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1122 : llvm::GlobalValue::PrivateLinkage);
1123 ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1124 if (isNamed) {
1125 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1126 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1127 }
1128 if (CGM.getTriple().isOSBinFormatCOFF()) {
1129 std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0};
1130 EarlyInitList.emplace_back(Sym, v);
1131 }
1132 ObjCStrings[Str] = ObjCStrGV;
1133 ConstantStrings.push_back(ObjCStrGV);
1134 return ConstantAddress(ObjCStrGV, IdElemTy, Align);
1135 }
1136
1137 void PushProperty(ConstantArrayBuilder &PropertiesArray,
1138 const ObjCPropertyDecl *property,
1139 const Decl *OCD,
1140 bool isSynthesized=true, bool
1141 isDynamic=true) override {
1142 // struct objc_property
1143 // {
1144 // const char *name;
1145 // const char *attributes;
1146 // const char *type;
1147 // SEL getter;
1148 // SEL setter;
1149 // };
1150 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1151 ASTContext &Context = CGM.getContext();
1152 Fields.add(MakeConstantString(property->getNameAsString()));
1153 std::string TypeStr =
1154 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1155 Fields.add(MakeConstantString(TypeStr));
1156 std::string typeStr;
1157 Context.getObjCEncodingForType(property->getType(), typeStr);
1158 Fields.add(MakeConstantString(typeStr));
1159 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1160 if (accessor) {
1161 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1162 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1163 } else {
1164 Fields.add(NULLPtr);
1165 }
1166 };
1167 addPropertyMethod(property->getGetterMethodDecl());
1168 addPropertyMethod(property->getSetterMethodDecl());
1169 Fields.finishAndAddTo(PropertiesArray);
1170 }
1171
1172 llvm::Constant *
1173 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1174 // struct objc_protocol_method_description
1175 // {
1176 // SEL selector;
1177 // const char *types;
1178 // };
1179 llvm::StructType *ObjCMethodDescTy =
1180 llvm::StructType::get(CGM.getLLVMContext(),
1181 { PtrToInt8Ty, PtrToInt8Ty });
1182 ASTContext &Context = CGM.getContext();
1183 ConstantInitBuilder Builder(CGM);
1184 // struct objc_protocol_method_description_list
1185 // {
1186 // int count;
1187 // int size;
1188 // struct objc_protocol_method_description methods[];
1189 // };
1190 auto MethodList = Builder.beginStruct();
1191 // int count;
1192 MethodList.addInt(IntTy, Methods.size());
1193 // int size; // sizeof(struct objc_method_description)
1194 const llvm::DataLayout &DL = TheModule.getDataLayout();
1195 MethodList.addInt(IntTy, DL.getTypeSizeInBits(ObjCMethodDescTy) /
1196 CGM.getContext().getCharWidth());
1197 // struct objc_method_description[]
1198 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1199 for (auto *M : Methods) {
1200 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1201 Method.add(CGObjCGNU::GetConstantSelector(M));
1202 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1203 Method.finishAndAddTo(MethodArray);
1204 }
1205 MethodArray.finishAndAddTo(MethodList);
1206 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1207 CGM.getPointerAlign());
1208 }
1209 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD)
1210 override {
1211 const auto &ReferencedProtocols = OCD->getReferencedProtocols();
1212 auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(),
1213 ReferencedProtocols.end());
1215 for (const auto *PI : RuntimeProtocols)
1216 Protocols.push_back(GenerateProtocolRef(PI));
1217 return GenerateProtocolList(Protocols);
1218 }
1219
1220 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1221 llvm::Value *cmd, MessageSendInfo &MSI) override {
1222 // Don't access the slot unless we're trying to cache the result.
1223 CGBuilderTy &Builder = CGF.Builder;
1224 llvm::Value *lookupArgs[] = {
1225 CGObjCGNU::EnforceType(Builder, ObjCSuper.emitRawPointer(CGF),
1226 PtrToObjCSuperTy),
1227 cmd};
1228 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1229 }
1230
1231 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1232 std::string SymbolName = SymbolForClassRef(Name, isWeak);
1233 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1234 if (ClassSymbol)
1235 return ClassSymbol;
1236 ClassSymbol = new llvm::GlobalVariable(TheModule,
1237 IdTy, false, llvm::GlobalValue::ExternalLinkage,
1238 nullptr, SymbolName);
1239 // If this is a weak symbol, then we are creating a valid definition for
1240 // the symbol, pointing to a weak definition of the real class pointer. If
1241 // this is not a weak reference, then we are expecting another compilation
1242 // unit to provide the real indirection symbol.
1243 if (isWeak)
1244 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1245 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1246 nullptr, SymbolForClass(Name)));
1247 else {
1248 if (CGM.getTriple().isOSBinFormatCOFF()) {
1249 IdentifierInfo &II = CGM.getContext().Idents.get(Name);
1252
1253 const ObjCInterfaceDecl *OID = nullptr;
1254 for (const auto *Result : DC->lookup(&II))
1255 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result)))
1256 break;
1257
1258 // The first Interface we find may be a @class,
1259 // which should only be treated as the source of
1260 // truth in the absence of a true declaration.
1261 assert(OID && "Failed to find ObjCInterfaceDecl");
1262 const ObjCInterfaceDecl *OIDDef = OID->getDefinition();
1263 if (OIDDef != nullptr)
1264 OID = OIDDef;
1265
1266 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1267 if (OID->hasAttr<DLLImportAttr>())
1268 Storage = llvm::GlobalValue::DLLImportStorageClass;
1269 else if (OID->hasAttr<DLLExportAttr>())
1270 Storage = llvm::GlobalValue::DLLExportStorageClass;
1271
1272 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage);
1273 }
1274 }
1275 assert(ClassSymbol->getName() == SymbolName);
1276 return ClassSymbol;
1277 }
1278 llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1279 const std::string &Name,
1280 bool isWeak) override {
1281 return CGF.Builder.CreateLoad(
1282 Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign()));
1283 }
1284 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1285 // typedef enum {
1286 // ownership_invalid = 0,
1287 // ownership_strong = 1,
1288 // ownership_weak = 2,
1289 // ownership_unsafe = 3
1290 // } ivar_ownership;
1291 int Flag;
1292 switch (Ownership) {
1294 Flag = 1;
1295 break;
1297 Flag = 2;
1298 break;
1300 Flag = 3;
1301 break;
1304 assert(Ownership != Qualifiers::OCL_Autoreleasing);
1305 Flag = 0;
1306 }
1307 return Flag;
1308 }
1309 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1311 ArrayRef<llvm::Constant *> IvarOffsets,
1313 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1314 llvm_unreachable("Method should not be called!");
1315 }
1316
1317 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1318 std::string Name = SymbolForProtocol(ProtocolName);
1319 auto *GV = TheModule.getGlobalVariable(Name);
1320 if (!GV) {
1321 // Emit a placeholder symbol.
1322 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1323 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1324 GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1325 }
1326 return GV;
1327 }
1328
1329 /// Existing protocol references.
1330 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1331
1332 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1333 const ObjCProtocolDecl *PD) override {
1334 auto Name = PD->getNameAsString();
1335 auto *&Ref = ExistingProtocolRefs[Name];
1336 if (!Ref) {
1337 auto *&Protocol = ExistingProtocols[Name];
1338 if (!Protocol)
1339 Protocol = GenerateProtocolRef(PD);
1340 std::string RefName = SymbolForProtocolRef(Name);
1341 assert(!TheModule.getGlobalVariable(RefName));
1342 // Emit a reference symbol.
1343 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, false,
1344 llvm::GlobalValue::LinkOnceODRLinkage,
1345 Protocol, RefName);
1346 GV->setComdat(TheModule.getOrInsertComdat(RefName));
1347 GV->setSection(sectionName<ProtocolReferenceSection>());
1348 GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1349 Ref = GV;
1350 }
1351 EmittedProtocolRef = true;
1352 return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref,
1353 CGM.getPointerAlign());
1354 }
1355
1356 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1357 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1358 Protocols.size());
1359 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1360 Protocols);
1361 ConstantInitBuilder builder(CGM);
1362 auto ProtocolBuilder = builder.beginStruct();
1363 ProtocolBuilder.addNullPointer(PtrTy);
1364 ProtocolBuilder.addInt(SizeTy, Protocols.size());
1365 ProtocolBuilder.add(ProtocolArray);
1366 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1367 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1368 }
1369
1370 void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1371 // Do nothing - we only emit referenced protocols.
1372 }
1373 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override {
1374 std::string ProtocolName = PD->getNameAsString();
1375 auto *&Protocol = ExistingProtocols[ProtocolName];
1376 if (Protocol)
1377 return Protocol;
1378
1379 EmittedProtocol = true;
1380
1381 auto SymName = SymbolForProtocol(ProtocolName);
1382 auto *OldGV = TheModule.getGlobalVariable(SymName);
1383
1384 // Use the protocol definition, if there is one.
1385 if (const ObjCProtocolDecl *Def = PD->getDefinition())
1386 PD = Def;
1387 else {
1388 // If there is no definition, then create an external linkage symbol and
1389 // hope that someone else fills it in for us (and fail to link if they
1390 // don't).
1391 assert(!OldGV);
1392 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1393 /*isConstant*/false,
1394 llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1395 return Protocol;
1396 }
1397
1399 auto RuntimeProtocols =
1400 GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end());
1401 for (const auto *PI : RuntimeProtocols)
1402 Protocols.push_back(GenerateProtocolRef(PI));
1403 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1404
1405 // Collect information about methods
1406 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1407 llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1408 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1409 OptionalInstanceMethodList);
1410 EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1411 OptionalClassMethodList);
1412
1413 // The isa pointer must be set to a magic number so the runtime knows it's
1414 // the correct layout.
1415 ConstantInitBuilder builder(CGM);
1416 auto ProtocolBuilder = builder.beginStruct();
1417 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1418 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1419 ProtocolBuilder.add(MakeConstantString(ProtocolName));
1420 ProtocolBuilder.add(ProtocolList);
1421 ProtocolBuilder.add(InstanceMethodList);
1422 ProtocolBuilder.add(ClassMethodList);
1423 ProtocolBuilder.add(OptionalInstanceMethodList);
1424 ProtocolBuilder.add(OptionalClassMethodList);
1425 // Required instance properties
1426 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1427 // Optional instance properties
1428 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1429 // Required class properties
1430 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1431 // Optional class properties
1432 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1433
1434 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1435 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1436 GV->setSection(sectionName<ProtocolSection>());
1437 GV->setComdat(TheModule.getOrInsertComdat(SymName));
1438 if (OldGV) {
1439 OldGV->replaceAllUsesWith(GV);
1440 OldGV->removeFromParent();
1441 GV->setName(SymName);
1442 }
1443 Protocol = GV;
1444 return GV;
1445 }
1446 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1447 const std::string &TypeEncoding) override {
1448 return GetConstantSelector(Sel, TypeEncoding);
1449 }
1450 std::string GetSymbolNameForTypeEncoding(const std::string &TypeEncoding) {
1451 std::string MangledTypes = std::string(TypeEncoding);
1452 // @ is used as a special character in ELF symbol names (used for symbol
1453 // versioning), so mangle the name to not include it. Replace it with a
1454 // character that is not a valid type encoding character (and, being
1455 // non-printable, never will be!)
1456 if (CGM.getTriple().isOSBinFormatELF())
1457 std::replace(MangledTypes.begin(), MangledTypes.end(), '@', '\1');
1458 // = in dll exported names causes lld to fail when linking on Windows.
1459 if (CGM.getTriple().isOSWindows())
1460 std::replace(MangledTypes.begin(), MangledTypes.end(), '=', '\2');
1461 return MangledTypes;
1462 }
1463 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) {
1464 if (TypeEncoding.empty())
1465 return NULLPtr;
1466 std::string MangledTypes =
1467 GetSymbolNameForTypeEncoding(std::string(TypeEncoding));
1468 std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1469 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1470 if (!TypesGlobal) {
1471 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1472 TypeEncoding);
1473 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1474 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1475 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1476 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1477 TypesGlobal = GV;
1478 }
1479 return TypesGlobal;
1480 }
1481 llvm::Constant *GetConstantSelector(Selector Sel,
1482 const std::string &TypeEncoding) override {
1483 std::string MangledTypes = GetSymbolNameForTypeEncoding(TypeEncoding);
1484 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1485 MangledTypes).str();
1486 if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1487 return GV;
1488 ConstantInitBuilder builder(CGM);
1489 auto SelBuilder = builder.beginStruct();
1490 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1491 true));
1492 SelBuilder.add(GetTypeString(TypeEncoding));
1493 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1494 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1495 GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1496 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1497 GV->setSection(sectionName<SelectorSection>());
1498 return GV;
1499 }
1500 llvm::StructType *emptyStruct = nullptr;
1501
1502 /// Return pointers to the start and end of a section. On ELF platforms, we
1503 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1504 /// to the start and end of section names, as long as those section names are
1505 /// valid identifiers and the symbols are referenced but not defined. On
1506 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1507 /// by subsections and place everything that we want to reference in a middle
1508 /// subsection and then insert zero-sized symbols in subsections a and z.
1509 std::pair<llvm::Constant*,llvm::Constant*>
1510 GetSectionBounds(StringRef Section) {
1511 if (CGM.getTriple().isOSBinFormatCOFF()) {
1512 if (emptyStruct == nullptr) {
1513 emptyStruct = llvm::StructType::create(
1514 VMContext, {}, ".objc_section_sentinel", /*isPacked=*/true);
1515 }
1516 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1517 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1518 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1519 /*isConstant*/false,
1520 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1521 Section);
1522 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1523 Sym->setSection((Section + SecSuffix).str());
1524 Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1525 Section).str()));
1526 Sym->setAlignment(CGM.getPointerAlign().getAsAlign());
1527 return Sym;
1528 };
1529 return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1530 }
1531 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1532 /*isConstant*/false,
1533 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1534 Section);
1535 Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1536 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1537 /*isConstant*/false,
1538 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1539 Section);
1540 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1541 return { Start, Stop };
1542 }
1543 CatchTypeInfo getCatchAllTypeInfo() override {
1544 return CGM.getCXXABI().getCatchAllTypeInfo();
1545 }
1546 llvm::Function *ModuleInitFunction() override {
1547 llvm::Function *LoadFunction = llvm::Function::Create(
1548 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1549 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1550 &TheModule);
1551 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1552 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1553
1554 llvm::BasicBlock *EntryBB =
1555 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1556 CGBuilderTy B(CGM, VMContext);
1557 B.SetInsertPoint(EntryBB);
1558 ConstantInitBuilder builder(CGM);
1559 auto InitStructBuilder = builder.beginStruct();
1560 InitStructBuilder.addInt(Int64Ty, 0);
1561 auto &sectionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames;
1562 for (auto *s : sectionVec) {
1563 auto bounds = GetSectionBounds(s);
1564 InitStructBuilder.add(bounds.first);
1565 InitStructBuilder.add(bounds.second);
1566 }
1567 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1568 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1569 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1570 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1571
1572 CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1573 B.CreateRetVoid();
1574 // Make sure that the optimisers don't delete this function.
1575 CGM.addCompilerUsedGlobal(LoadFunction);
1576 // FIXME: Currently ELF only!
1577 // We have to do this by hand, rather than with @llvm.ctors, so that the
1578 // linker can remove the duplicate invocations.
1579 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1580 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage,
1581 LoadFunction, ".objc_ctor");
1582 // Check that this hasn't been renamed. This shouldn't happen, because
1583 // this function should be called precisely once.
1584 assert(InitVar->getName() == ".objc_ctor");
1585 // In Windows, initialisers are sorted by the suffix. XCL is for library
1586 // initialisers, which run before user initialisers. We are running
1587 // Objective-C loads at the end of library load. This means +load methods
1588 // will run before any other static constructors, but that static
1589 // constructors can see a fully initialised Objective-C state.
1590 if (CGM.getTriple().isOSBinFormatCOFF())
1591 InitVar->setSection(".CRT$XCLz");
1592 else
1593 {
1594 if (CGM.getCodeGenOpts().UseInitArray)
1595 InitVar->setSection(".init_array");
1596 else
1597 InitVar->setSection(".ctors");
1598 }
1599 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1600 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1601 CGM.addUsedGlobal(InitVar);
1602 for (auto *C : Categories) {
1603 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1604 Cat->setSection(sectionName<CategorySection>());
1605 CGM.addUsedGlobal(Cat);
1606 }
1607 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1608 StringRef Section) {
1609 auto nullBuilder = builder.beginStruct();
1610 for (auto *F : Init)
1611 nullBuilder.add(F);
1612 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1613 false, llvm::GlobalValue::LinkOnceODRLinkage);
1614 GV->setSection(Section);
1615 GV->setComdat(TheModule.getOrInsertComdat(Name));
1616 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1617 CGM.addUsedGlobal(GV);
1618 return GV;
1619 };
1620 for (auto clsAlias : ClassAliases)
1621 createNullGlobal(std::string(".objc_class_alias") +
1622 clsAlias.second, { MakeConstantString(clsAlias.second),
1623 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1624 // On ELF platforms, add a null value for each special section so that we
1625 // can always guarantee that the _start and _stop symbols will exist and be
1626 // meaningful. This is not required on COFF platforms, where our start and
1627 // stop symbols will create the section.
1628 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1629 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1630 sectionName<SelectorSection>());
1631 if (Categories.empty())
1632 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1633 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1634 sectionName<CategorySection>());
1635 if (!EmittedClass) {
1636 createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1637 sectionName<ClassSection>());
1638 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1639 sectionName<ClassReferenceSection>());
1640 }
1641 if (!EmittedProtocol)
1642 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1643 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1644 NULLPtr}, sectionName<ProtocolSection>());
1645 if (!EmittedProtocolRef)
1646 createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1647 sectionName<ProtocolReferenceSection>());
1648 if (ClassAliases.empty())
1649 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1650 sectionName<ClassAliasSection>());
1651 if (ConstantStrings.empty()) {
1652 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1653 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1654 i32Zero, i32Zero, i32Zero, NULLPtr },
1655 sectionName<ConstantStringSection>());
1656 }
1657 }
1658 ConstantStrings.clear();
1659 Categories.clear();
1660 Classes.clear();
1661
1662 if (EarlyInitList.size() > 0) {
1663 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy,
1664 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init",
1665 &CGM.getModule());
1666 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry",
1667 Init));
1668 for (const auto &lateInit : EarlyInitList) {
1669 auto *global = TheModule.getGlobalVariable(lateInit.first);
1670 if (global) {
1671 llvm::GlobalVariable *GV = lateInit.second.first;
1672 b.CreateAlignedStore(
1673 global,
1674 b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second),
1675 CGM.getPointerAlign().getAsAlign());
1676 }
1677 }
1678 b.CreateRetVoid();
1679 // We can't use the normal LLVM global initialisation array, because we
1680 // need to specify that this runs early in library initialisation.
1681 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
1682 /*isConstant*/true, llvm::GlobalValue::InternalLinkage,
1683 Init, ".objc_early_init_ptr");
1684 InitVar->setSection(".CRT$XCLb");
1685 CGM.addUsedGlobal(InitVar);
1686 }
1687 return nullptr;
1688 }
1689 /// In the v2 ABI, ivar offset variables use the type encoding in their name
1690 /// to trigger linker failures if the types don't match.
1691 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1692 const ObjCIvarDecl *Ivar) override {
1693 std::string TypeEncoding;
1694 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1695 TypeEncoding = GetSymbolNameForTypeEncoding(TypeEncoding);
1696 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1697 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1698 return Name;
1699 }
1700 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1702 const ObjCIvarDecl *Ivar) override {
1703 const ObjCInterfaceDecl *ContainingInterface =
1704 Ivar->getContainingInterface();
1705 const std::string Name =
1706 GetIVarOffsetVariableName(ContainingInterface, Ivar);
1707 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1708 if (!IvarOffsetPointer) {
1709 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1710 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1711 if (Ivar->getAccessControl() != ObjCIvarDecl::Private &&
1713 CGM.setGVProperties(IvarOffsetPointer, ContainingInterface);
1714 }
1715 CharUnits Align = CGM.getIntAlign();
1716 llvm::Value *Offset =
1717 CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align);
1718 if (Offset->getType() != PtrDiffTy)
1719 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1720 return Offset;
1721 }
1722 void GenerateClass(const ObjCImplementationDecl *OID) override {
1723 ASTContext &Context = CGM.getContext();
1724 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF();
1725
1726 // Get the class name
1727 ObjCInterfaceDecl *classDecl =
1728 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1729 std::string className = classDecl->getNameAsString();
1730 auto *classNameConstant = MakeConstantString(className);
1731
1732 ConstantInitBuilder builder(CGM);
1733 auto metaclassFields = builder.beginStruct();
1734 // struct objc_class *isa;
1735 metaclassFields.addNullPointer(PtrTy);
1736 // struct objc_class *super_class;
1737 metaclassFields.addNullPointer(PtrTy);
1738 // const char *name;
1739 metaclassFields.add(classNameConstant);
1740 // long version;
1741 metaclassFields.addInt(LongTy, 0);
1742 // unsigned long info;
1743 // objc_class_flag_meta
1744 metaclassFields.addInt(LongTy, ClassFlags::ClassFlagMeta);
1745 // long instance_size;
1746 // Setting this to zero is consistent with the older ABI, but it might be
1747 // more sensible to set this to sizeof(struct objc_class)
1748 metaclassFields.addInt(LongTy, 0);
1749 // struct objc_ivar_list *ivars;
1750 metaclassFields.addNullPointer(PtrTy);
1751 // struct objc_method_list *methods
1752 // FIXME: Almost identical code is copied and pasted below for the
1753 // class, but refactoring it cleanly requires C++14 generic lambdas.
1754 if (OID->classmeth_begin() == OID->classmeth_end())
1755 metaclassFields.addNullPointer(PtrTy);
1756 else {
1758 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1759 OID->classmeth_end());
1760 metaclassFields.add(
1761 GenerateMethodList(className, "", ClassMethods, true));
1762 }
1763 // void *dtable;
1764 metaclassFields.addNullPointer(PtrTy);
1765 // IMP cxx_construct;
1766 metaclassFields.addNullPointer(PtrTy);
1767 // IMP cxx_destruct;
1768 metaclassFields.addNullPointer(PtrTy);
1769 // struct objc_class *subclass_list
1770 metaclassFields.addNullPointer(PtrTy);
1771 // struct objc_class *sibling_class
1772 metaclassFields.addNullPointer(PtrTy);
1773 // struct objc_protocol_list *protocols;
1774 metaclassFields.addNullPointer(PtrTy);
1775 // struct reference_list *extra_data;
1776 metaclassFields.addNullPointer(PtrTy);
1777 // long abi_version;
1778 metaclassFields.addInt(LongTy, 0);
1779 // struct objc_property_list *properties
1780 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1781
1782 auto *metaclass = metaclassFields.finishAndCreateGlobal(
1783 ManglePublicSymbol("OBJC_METACLASS_") + className,
1784 CGM.getPointerAlign());
1785
1786 auto classFields = builder.beginStruct();
1787 // struct objc_class *isa;
1788 classFields.add(metaclass);
1789 // struct objc_class *super_class;
1790 // Get the superclass name.
1791 const ObjCInterfaceDecl * SuperClassDecl =
1793 llvm::Constant *SuperClass = nullptr;
1794 if (SuperClassDecl) {
1795 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1796 SuperClass = TheModule.getNamedGlobal(SuperClassName);
1797 if (!SuperClass)
1798 {
1799 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1800 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1801 if (IsCOFF) {
1802 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1803 if (SuperClassDecl->hasAttr<DLLImportAttr>())
1804 Storage = llvm::GlobalValue::DLLImportStorageClass;
1805 else if (SuperClassDecl->hasAttr<DLLExportAttr>())
1806 Storage = llvm::GlobalValue::DLLExportStorageClass;
1807
1808 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage);
1809 }
1810 }
1811 if (!IsCOFF)
1812 classFields.add(SuperClass);
1813 else
1814 classFields.addNullPointer(PtrTy);
1815 } else
1816 classFields.addNullPointer(PtrTy);
1817 // const char *name;
1818 classFields.add(classNameConstant);
1819 // long version;
1820 classFields.addInt(LongTy, 0);
1821 // unsigned long info;
1822 // !objc_class_flag_meta
1823 classFields.addInt(LongTy, 0);
1824 // long instance_size;
1825 int superInstanceSize = !SuperClassDecl ? 0 :
1826 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1827 // Instance size is negative for classes that have not yet had their ivar
1828 // layout calculated.
1829 classFields.addInt(LongTy,
1830 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() -
1831 superInstanceSize));
1832
1833 if (classDecl->all_declared_ivar_begin() == nullptr)
1834 classFields.addNullPointer(PtrTy);
1835 else {
1836 int ivar_count = 0;
1837 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1838 IVD = IVD->getNextIvar()) ivar_count++;
1839 const llvm::DataLayout &DL = TheModule.getDataLayout();
1840 // struct objc_ivar_list *ivars;
1842 auto ivarListBuilder = b.beginStruct();
1843 // int count;
1844 ivarListBuilder.addInt(IntTy, ivar_count);
1845 // size_t size;
1846 llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1847 PtrToInt8Ty,
1848 PtrToInt8Ty,
1849 PtrToInt8Ty,
1850 Int32Ty,
1851 Int32Ty);
1852 ivarListBuilder.addInt(SizeTy, DL.getTypeSizeInBits(ObjCIvarTy) /
1853 CGM.getContext().getCharWidth());
1854 // struct objc_ivar ivars[]
1855 auto ivarArrayBuilder = ivarListBuilder.beginArray();
1856 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1857 IVD = IVD->getNextIvar()) {
1858 auto ivarTy = IVD->getType();
1859 auto ivarBuilder = ivarArrayBuilder.beginStruct();
1860 // const char *name;
1861 ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1862 // const char *type;
1863 std::string TypeStr;
1864 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1865 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1866 ivarBuilder.add(MakeConstantString(TypeStr));
1867 // int *offset;
1868 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1869 uint64_t Offset = BaseOffset - superInstanceSize;
1870 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1871 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1872 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1873 if (OffsetVar)
1874 OffsetVar->setInitializer(OffsetValue);
1875 else
1876 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1877 false, llvm::GlobalValue::ExternalLinkage,
1878 OffsetValue, OffsetName);
1879 auto ivarVisibility =
1880 (IVD->getAccessControl() == ObjCIvarDecl::Private ||
1881 IVD->getAccessControl() == ObjCIvarDecl::Package ||
1882 classDecl->getVisibility() == HiddenVisibility) ?
1883 llvm::GlobalValue::HiddenVisibility :
1884 llvm::GlobalValue::DefaultVisibility;
1885 OffsetVar->setVisibility(ivarVisibility);
1886 if (ivarVisibility != llvm::GlobalValue::HiddenVisibility)
1887 CGM.setGVProperties(OffsetVar, OID->getClassInterface());
1888 ivarBuilder.add(OffsetVar);
1889 // Ivar size
1890 ivarBuilder.addInt(Int32Ty,
1891 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity());
1892 // Alignment will be stored as a base-2 log of the alignment.
1893 unsigned align =
1894 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
1895 // Objects that require more than 2^64-byte alignment should be impossible!
1896 assert(align < 64);
1897 // uint32_t flags;
1898 // Bits 0-1 are ownership.
1899 // Bit 2 indicates an extended type encoding
1900 // Bits 3-8 contain log2(aligment)
1901 ivarBuilder.addInt(Int32Ty,
1902 (align << 3) | (1<<2) |
1903 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1904 ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1905 }
1906 ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1907 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1908 CGM.getPointerAlign(), /*constant*/ false,
1909 llvm::GlobalValue::PrivateLinkage);
1910 classFields.add(ivarList);
1911 }
1912 // struct objc_method_list *methods
1914 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1915 OID->instmeth_end());
1916 for (auto *propImpl : OID->property_impls())
1917 if (propImpl->getPropertyImplementation() ==
1919 auto addIfExists = [&](const ObjCMethodDecl *OMD) {
1920 if (OMD && OMD->hasBody())
1921 InstanceMethods.push_back(OMD);
1922 };
1923 addIfExists(propImpl->getGetterMethodDecl());
1924 addIfExists(propImpl->getSetterMethodDecl());
1925 }
1926
1927 if (InstanceMethods.size() == 0)
1928 classFields.addNullPointer(PtrTy);
1929 else
1930 classFields.add(
1931 GenerateMethodList(className, "", InstanceMethods, false));
1932
1933 // void *dtable;
1934 classFields.addNullPointer(PtrTy);
1935 // IMP cxx_construct;
1936 classFields.addNullPointer(PtrTy);
1937 // IMP cxx_destruct;
1938 classFields.addNullPointer(PtrTy);
1939 // struct objc_class *subclass_list
1940 classFields.addNullPointer(PtrTy);
1941 // struct objc_class *sibling_class
1942 classFields.addNullPointer(PtrTy);
1943 // struct objc_protocol_list *protocols;
1944 auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(),
1945 classDecl->protocol_end());
1947 for (const auto *I : RuntimeProtocols)
1948 Protocols.push_back(GenerateProtocolRef(I));
1949
1950 if (Protocols.empty())
1951 classFields.addNullPointer(PtrTy);
1952 else
1953 classFields.add(GenerateProtocolList(Protocols));
1954 // struct reference_list *extra_data;
1955 classFields.addNullPointer(PtrTy);
1956 // long abi_version;
1957 classFields.addInt(LongTy, 0);
1958 // struct objc_property_list *properties
1959 classFields.add(GeneratePropertyList(OID, classDecl));
1960
1961 llvm::GlobalVariable *classStruct =
1962 classFields.finishAndCreateGlobal(SymbolForClass(className),
1963 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1964
1965 auto *classRefSymbol = GetClassVar(className);
1966 classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1967 classRefSymbol->setInitializer(classStruct);
1968
1969 if (IsCOFF) {
1970 // we can't import a class struct.
1971 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) {
1972 classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1973 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1974 }
1975
1976 if (SuperClass) {
1977 std::pair<llvm::GlobalVariable*, int> v{classStruct, 1};
1978 EarlyInitList.emplace_back(std::string(SuperClass->getName()),
1979 std::move(v));
1980 }
1981
1982 }
1983
1984
1985 // Resolve the class aliases, if they exist.
1986 // FIXME: Class pointer aliases shouldn't exist!
1987 if (ClassPtrAlias) {
1988 ClassPtrAlias->replaceAllUsesWith(classStruct);
1989 ClassPtrAlias->eraseFromParent();
1990 ClassPtrAlias = nullptr;
1991 }
1992 if (auto Placeholder =
1993 TheModule.getNamedGlobal(SymbolForClass(className)))
1994 if (Placeholder != classStruct) {
1995 Placeholder->replaceAllUsesWith(classStruct);
1996 Placeholder->eraseFromParent();
1997 classStruct->setName(SymbolForClass(className));
1998 }
1999 if (MetaClassPtrAlias) {
2000 MetaClassPtrAlias->replaceAllUsesWith(metaclass);
2001 MetaClassPtrAlias->eraseFromParent();
2002 MetaClassPtrAlias = nullptr;
2003 }
2004 assert(classStruct->getName() == SymbolForClass(className));
2005
2006 auto classInitRef = new llvm::GlobalVariable(TheModule,
2007 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
2008 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className);
2009 classInitRef->setSection(sectionName<ClassSection>());
2010 CGM.addUsedGlobal(classInitRef);
2011
2012 EmittedClass = true;
2013 }
2014 public:
2015 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
2016 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2017 PtrToObjCSuperTy, SelectorTy);
2018 SentInitializeFn.init(&CGM, "objc_send_initialize",
2019 llvm::Type::getVoidTy(VMContext), IdTy);
2020 // struct objc_property
2021 // {
2022 // const char *name;
2023 // const char *attributes;
2024 // const char *type;
2025 // SEL getter;
2026 // SEL setter;
2027 // }
2028 PropertyMetadataTy =
2029 llvm::StructType::get(CGM.getLLVMContext(),
2030 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
2031 }
2032
2033 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
2034 const ObjCMethodDecl *OMD,
2035 const ObjCContainerDecl *CD) override {
2036 auto &Builder = CGF.Builder;
2037 bool ReceiverCanBeNull = true;
2038 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl());
2039 auto selfValue = Builder.CreateLoad(selfAddr);
2040
2041 // Generate:
2042 //
2043 // /* unless the receiver is never NULL */
2044 // if (self == nil) {
2045 // return (ReturnType){ };
2046 // }
2047 //
2048 // /* for class methods only to force class lazy initialization */
2049 // if (!__objc_{class}_initialized)
2050 // {
2051 // objc_send_initialize(class);
2052 // __objc_{class}_initialized = 1;
2053 // }
2054 //
2055 // _cmd = @selector(...)
2056 // ...
2057
2058 if (OMD->isClassMethod()) {
2059 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD);
2060
2061 // Nullable `Class` expressions cannot be messaged with a direct method
2062 // so the only reason why the receive can be null would be because
2063 // of weak linking.
2064 ReceiverCanBeNull = isWeakLinkedClass(OID);
2065 }
2066
2067 llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2068 if (ReceiverCanBeNull) {
2069 llvm::BasicBlock *SelfIsNilBlock =
2070 CGF.createBasicBlock("objc_direct_method.self_is_nil");
2071 llvm::BasicBlock *ContBlock =
2072 CGF.createBasicBlock("objc_direct_method.cont");
2073
2074 // if (self == nil) {
2075 auto selfTy = cast<llvm::PointerType>(selfValue->getType());
2076 auto Zero = llvm::ConstantPointerNull::get(selfTy);
2077
2078 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero),
2079 SelfIsNilBlock, ContBlock,
2080 MDHelper.createUnlikelyBranchWeights());
2081
2082 CGF.EmitBlock(SelfIsNilBlock);
2083
2084 // return (ReturnType){ };
2085 auto retTy = OMD->getReturnType();
2086 Builder.SetInsertPoint(SelfIsNilBlock);
2087 if (!retTy->isVoidType()) {
2088 CGF.EmitNullInitialization(CGF.ReturnValue, retTy);
2089 }
2091 // }
2092
2093 // rest of the body
2094 CGF.EmitBlock(ContBlock);
2095 Builder.SetInsertPoint(ContBlock);
2096 }
2097
2098 if (OMD->isClassMethod()) {
2099 // Prefix of the class type.
2100 auto *classStart =
2101 llvm::StructType::get(PtrTy, PtrTy, PtrTy, LongTy, LongTy);
2102 auto &astContext = CGM.getContext();
2103 // FIXME: The following few lines up to and including the call to
2104 // `CreateLoad` were known to miscompile when MSVC 19.40.33813 is used
2105 // to build Clang. When the bug is fixed in future MSVC releases, we
2106 // should revert these lines to their previous state. See discussion in
2107 // https://github.com/llvm/llvm-project/pull/102681
2108 llvm::Value *Val = Builder.CreateStructGEP(classStart, selfValue, 4);
2109 auto Align = CharUnits::fromQuantity(
2110 astContext.getTypeAlign(astContext.UnsignedLongTy));
2111 auto flags = Builder.CreateLoad(Address{Val, LongTy, Align});
2112 auto isInitialized =
2113 Builder.CreateAnd(flags, ClassFlags::ClassFlagInitialized);
2114 llvm::BasicBlock *notInitializedBlock =
2115 CGF.createBasicBlock("objc_direct_method.class_uninitialized");
2116 llvm::BasicBlock *initializedBlock =
2117 CGF.createBasicBlock("objc_direct_method.class_initialized");
2118 Builder.CreateCondBr(Builder.CreateICmpEQ(isInitialized, Zeros[0]),
2119 notInitializedBlock, initializedBlock,
2120 MDHelper.createUnlikelyBranchWeights());
2121 CGF.EmitBlock(notInitializedBlock);
2122 Builder.SetInsertPoint(notInitializedBlock);
2123 CGF.EmitRuntimeCall(SentInitializeFn, selfValue);
2124 Builder.CreateBr(initializedBlock);
2125 CGF.EmitBlock(initializedBlock);
2126 Builder.SetInsertPoint(initializedBlock);
2127 }
2128
2129 // only synthesize _cmd if it's referenced
2130 if (OMD->getCmdDecl()->isUsed()) {
2131 // `_cmd` is not a parameter to direct methods, so storage must be
2132 // explicitly declared for it.
2133 CGF.EmitVarDecl(*OMD->getCmdDecl());
2134 Builder.CreateStore(GetSelector(CGF, OMD),
2135 CGF.GetAddrOfLocalVar(OMD->getCmdDecl()));
2136 }
2137 }
2138};
2139
2140const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
2141{
2142"__objc_selectors",
2143"__objc_classes",
2144"__objc_class_refs",
2145"__objc_cats",
2146"__objc_protocols",
2147"__objc_protocol_refs",
2148"__objc_class_aliases",
2149"__objc_constant_string"
2150};
2151
2152const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] =
2153{
2154".objcrt$SEL",
2155".objcrt$CLS",
2156".objcrt$CLR",
2157".objcrt$CAT",
2158".objcrt$PCL",
2159".objcrt$PCR",
2160".objcrt$CAL",
2161".objcrt$STR"
2162};
2163
2164/// Support for the ObjFW runtime.
2165class CGObjCObjFW: public CGObjCGNU {
2166protected:
2167 /// The GCC ABI message lookup function. Returns an IMP pointing to the
2168 /// method implementation for this message.
2169 LazyRuntimeFunction MsgLookupFn;
2170 /// stret lookup function. While this does not seem to make sense at the
2171 /// first look, this is required to call the correct forwarding function.
2172 LazyRuntimeFunction MsgLookupFnSRet;
2173 /// The GCC ABI superclass message lookup function. Takes a pointer to a
2174 /// structure describing the receiver and the class, and a selector as
2175 /// arguments. Returns the IMP for the corresponding method.
2176 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
2177
2178 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
2179 llvm::Value *cmd, llvm::MDNode *node,
2180 MessageSendInfo &MSI) override {
2181 CGBuilderTy &Builder = CGF.Builder;
2182 llvm::Value *args[] = {
2183 EnforceType(Builder, Receiver, IdTy),
2184 EnforceType(Builder, cmd, SelectorTy) };
2185
2186 llvm::CallBase *imp;
2187 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2188 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
2189 else
2190 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
2191
2192 imp->setMetadata(msgSendMDKind, node);
2193 return imp;
2194 }
2195
2196 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
2197 llvm::Value *cmd, MessageSendInfo &MSI) override {
2198 CGBuilderTy &Builder = CGF.Builder;
2199 llvm::Value *lookupArgs[] = {
2200 EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy),
2201 cmd,
2202 };
2203
2204 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2205 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
2206 else
2207 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
2208 }
2209
2210 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
2211 bool isWeak) override {
2212 if (isWeak)
2213 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
2214
2215 EmitClassRef(Name);
2216 std::string SymbolName = "_OBJC_CLASS_" + Name;
2217 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
2218 if (!ClassSymbol)
2219 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2220 llvm::GlobalValue::ExternalLinkage,
2221 nullptr, SymbolName);
2222 return ClassSymbol;
2223 }
2224
2225public:
2226 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
2227 // IMP objc_msg_lookup(id, SEL);
2228 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
2229 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
2230 SelectorTy);
2231 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
2232 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2233 PtrToObjCSuperTy, SelectorTy);
2234 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
2235 PtrToObjCSuperTy, SelectorTy);
2236 }
2237};
2238} // end anonymous namespace
2239
2240/// Emits a reference to a dummy variable which is emitted with each class.
2241/// This ensures that a linker error will be generated when trying to link
2242/// together modules where a referenced class is not defined.
2243void CGObjCGNU::EmitClassRef(const std::string &className) {
2244 std::string symbolRef = "__objc_class_ref_" + className;
2245 // Don't emit two copies of the same symbol
2246 if (TheModule.getGlobalVariable(symbolRef))
2247 return;
2248 std::string symbolName = "__objc_class_name_" + className;
2249 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
2250 if (!ClassSymbol) {
2251 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2252 llvm::GlobalValue::ExternalLinkage,
2253 nullptr, symbolName);
2254 }
2255 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
2256 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2257}
2258
2259CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2260 unsigned protocolClassVersion, unsigned classABI)
2261 : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2262 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2263 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2264 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2265
2266 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2267 usesSEHExceptions =
2268 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2269 usesCxxExceptions =
2270 cgm.getContext().getTargetInfo().getTriple().isOSCygMing() &&
2271 isRuntime(ObjCRuntime::GNUstep, 2);
2272
2273 CodeGenTypes &Types = CGM.getTypes();
2274 IntTy = cast<llvm::IntegerType>(
2275 Types.ConvertType(CGM.getContext().IntTy));
2276 LongTy = cast<llvm::IntegerType>(
2277 Types.ConvertType(CGM.getContext().LongTy));
2278 SizeTy = cast<llvm::IntegerType>(
2279 Types.ConvertType(CGM.getContext().getSizeType()));
2280 PtrDiffTy = cast<llvm::IntegerType>(
2281 Types.ConvertType(CGM.getContext().getPointerDiffType()));
2282 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2283
2284 Int8Ty = llvm::Type::getInt8Ty(VMContext);
2285 // C string type. Used in lots of places.
2286 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
2287 ProtocolPtrTy = llvm::PointerType::getUnqual(
2288 Types.ConvertType(CGM.getContext().getObjCProtoType()));
2289
2290 Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2291 Zeros[1] = Zeros[0];
2292 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2293 // Get the selector Type.
2294 QualType selTy = CGM.getContext().getObjCSelType();
2295 if (QualType() == selTy) {
2296 SelectorTy = PtrToInt8Ty;
2297 SelectorElemTy = Int8Ty;
2298 } else {
2299 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2300 SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType());
2301 }
2302
2303 PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
2304 PtrTy = PtrToInt8Ty;
2305
2306 Int32Ty = llvm::Type::getInt32Ty(VMContext);
2307 Int64Ty = llvm::Type::getInt64Ty(VMContext);
2308
2309 IntPtrTy =
2310 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2311
2312 // Object type
2313 QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2314 ASTIdTy = CanQualType();
2315 if (UnqualIdTy != QualType()) {
2316 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2317 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2318 IdElemTy = CGM.getTypes().ConvertTypeForMem(
2319 ASTIdTy.getTypePtr()->getPointeeType());
2320 } else {
2321 IdTy = PtrToInt8Ty;
2322 IdElemTy = Int8Ty;
2323 }
2324 PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
2325 ProtocolTy = llvm::StructType::get(IdTy,
2326 PtrToInt8Ty, // name
2327 PtrToInt8Ty, // protocols
2328 PtrToInt8Ty, // instance methods
2329 PtrToInt8Ty, // class methods
2330 PtrToInt8Ty, // optional instance methods
2331 PtrToInt8Ty, // optional class methods
2332 PtrToInt8Ty, // properties
2333 PtrToInt8Ty);// optional properties
2334
2335 // struct objc_property_gsv1
2336 // {
2337 // const char *name;
2338 // char attributes;
2339 // char attributes2;
2340 // char unused1;
2341 // char unused2;
2342 // const char *getter_name;
2343 // const char *getter_types;
2344 // const char *setter_name;
2345 // const char *setter_types;
2346 // }
2347 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2348 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2349 PtrToInt8Ty, PtrToInt8Ty });
2350
2351 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2352 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
2353
2354 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2355
2356 // void objc_exception_throw(id);
2357 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2358 ExceptionReThrowFn.init(&CGM,
2359 usesCxxExceptions ? "objc_exception_rethrow"
2360 : "objc_exception_throw",
2361 VoidTy, IdTy);
2362 // int objc_sync_enter(id);
2363 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2364 // int objc_sync_exit(id);
2365 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2366
2367 // void objc_enumerationMutation (id)
2368 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2369
2370 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2371 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2372 PtrDiffTy, BoolTy);
2373 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2374 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2375 PtrDiffTy, IdTy, BoolTy, BoolTy);
2376 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2377 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2378 PtrDiffTy, BoolTy, BoolTy);
2379 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2380 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2381 PtrDiffTy, BoolTy, BoolTy);
2382
2383 // IMP type
2384 llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
2385 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
2386 true));
2387
2388 const LangOptions &Opts = CGM.getLangOpts();
2389 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2390 RuntimeVersion = 10;
2391
2392 // Don't bother initialising the GC stuff unless we're compiling in GC mode
2393 if (Opts.getGC() != LangOptions::NonGC) {
2394 // This is a bit of an hack. We should sort this out by having a proper
2395 // CGObjCGNUstep subclass for GC, but we may want to really support the old
2396 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2397 // Get selectors needed in GC mode
2398 RetainSel = GetNullarySelector("retain", CGM.getContext());
2399 ReleaseSel = GetNullarySelector("release", CGM.getContext());
2400 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2401
2402 // Get functions needed in GC mode
2403
2404 // id objc_assign_ivar(id, id, ptrdiff_t);
2405 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2406 // id objc_assign_strongCast (id, id*)
2407 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2408 PtrToIdTy);
2409 // id objc_assign_global(id, id*);
2410 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2411 // id objc_assign_weak(id, id*);
2412 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2413 // id objc_read_weak(id*);
2414 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2415 // void *objc_memmove_collectable(void*, void *, size_t);
2416 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2417 SizeTy);
2418 }
2419}
2420
2421llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2422 const std::string &Name, bool isWeak) {
2423 llvm::Constant *ClassName = MakeConstantString(Name);
2424 // With the incompatible ABI, this will need to be replaced with a direct
2425 // reference to the class symbol. For the compatible nonfragile ABI we are
2426 // still performing this lookup at run time but emitting the symbol for the
2427 // class externally so that we can make the switch later.
2428 //
2429 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2430 // with memoized versions or with static references if it's safe to do so.
2431 if (!isWeak)
2432 EmitClassRef(Name);
2433
2434 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction(
2435 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class");
2436 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2437}
2438
2439// This has to perform the lookup every time, since posing and related
2440// techniques can modify the name -> class mapping.
2441llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2442 const ObjCInterfaceDecl *OID) {
2443 auto *Value =
2444 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2445 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2446 CGM.setGVProperties(ClassSymbol, OID);
2447 return Value;
2448}
2449
2450llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2451 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false);
2452 if (CGM.getTriple().isOSBinFormatCOFF()) {
2453 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2454 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2457
2458 const VarDecl *VD = nullptr;
2459 for (const auto *Result : DC->lookup(&II))
2460 if ((VD = dyn_cast<VarDecl>(Result)))
2461 break;
2462
2463 CGM.setGVProperties(ClassSymbol, VD);
2464 }
2465 }
2466 return Value;
2467}
2468
2469llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2470 const std::string &TypeEncoding) {
2472 llvm::GlobalAlias *SelValue = nullptr;
2473
2474 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2475 e = Types.end() ; i!=e ; i++) {
2476 if (i->first == TypeEncoding) {
2477 SelValue = i->second;
2478 break;
2479 }
2480 }
2481 if (!SelValue) {
2482 SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0,
2483 llvm::GlobalValue::PrivateLinkage,
2484 ".objc_selector_" + Sel.getAsString(),
2485 &TheModule);
2486 Types.emplace_back(TypeEncoding, SelValue);
2487 }
2488
2489 return SelValue;
2490}
2491
2492Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2493 llvm::Value *SelValue = GetSelector(CGF, Sel);
2494
2495 // Store it to a temporary. Does this satisfy the semantics of
2496 // GetAddrOfSelector? Hopefully.
2497 Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2498 CGF.getPointerAlign());
2499 CGF.Builder.CreateStore(SelValue, tmp);
2500 return tmp;
2501}
2502
2503llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2504 return GetTypedSelector(CGF, Sel, std::string());
2505}
2506
2507llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2508 const ObjCMethodDecl *Method) {
2509 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2510 return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2511}
2512
2513llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2514 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
2515 // With the old ABI, there was only one kind of catchall, which broke
2516 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
2517 // a pointer indicating object catchalls, and NULL to indicate real
2518 // catchalls
2519 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2520 return MakeConstantString("@id");
2521 } else {
2522 return nullptr;
2523 }
2524 }
2525
2526 // All other types should be Objective-C interface pointer types.
2528 assert(OPT && "Invalid @catch type.");
2529 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
2530 assert(IDecl && "Invalid @catch type.");
2531 return MakeConstantString(IDecl->getIdentifier()->getName());
2532}
2533
2534llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2535 if (usesSEHExceptions)
2536 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2537
2538 if (!CGM.getLangOpts().CPlusPlus && !usesCxxExceptions)
2539 return CGObjCGNU::GetEHType(T);
2540
2541 // For Objective-C++, we want to provide the ability to catch both C++ and
2542 // Objective-C objects in the same function.
2543
2544 // There's a particular fixed type info for 'id'.
2545 if (T->isObjCIdType() ||
2547 llvm::Constant *IDEHType =
2548 CGM.getModule().getGlobalVariable("__objc_id_type_info");
2549 if (!IDEHType)
2550 IDEHType =
2551 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2552 false,
2553 llvm::GlobalValue::ExternalLinkage,
2554 nullptr, "__objc_id_type_info");
2555 return IDEHType;
2556 }
2557
2558 const ObjCObjectPointerType *PT =
2560 assert(PT && "Invalid @catch type.");
2561 const ObjCInterfaceType *IT = PT->getInterfaceType();
2562 assert(IT && "Invalid @catch type.");
2563 std::string className =
2564 std::string(IT->getDecl()->getIdentifier()->getName());
2565
2566 std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2567
2568 // Return the existing typeinfo if it exists
2569 if (llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName))
2570 return typeinfo;
2571
2572 // Otherwise create it.
2573
2574 // vtable for gnustep::libobjc::__objc_class_type_info
2575 // It's quite ugly hard-coding this. Ideally we'd generate it using the host
2576 // platform's name mangling.
2577 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2578 auto *Vtable = TheModule.getGlobalVariable(vtableName);
2579 if (!Vtable) {
2580 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2581 llvm::GlobalValue::ExternalLinkage,
2582 nullptr, vtableName);
2583 }
2584 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2585 auto *BVtable =
2586 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two);
2587
2588 llvm::Constant *typeName =
2589 ExportUniqueString(className, "__objc_eh_typename_");
2590
2591 ConstantInitBuilder builder(CGM);
2592 auto fields = builder.beginStruct();
2593 fields.add(BVtable);
2594 fields.add(typeName);
2595 llvm::Constant *TI =
2596 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2597 CGM.getPointerAlign(),
2598 /*constant*/ false,
2599 llvm::GlobalValue::LinkOnceODRLinkage);
2600 return TI;
2601}
2602
2603/// Generate an NSConstantString object.
2604ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2605
2606 std::string Str = SL->getString().str();
2607 CharUnits Align = CGM.getPointerAlign();
2608
2609 // Look for an existing one
2610 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2611 if (old != ObjCStrings.end())
2612 return ConstantAddress(old->getValue(), Int8Ty, Align);
2613
2614 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2615
2616 if (StringClass.empty()) StringClass = "NSConstantString";
2617
2618 std::string Sym = "_OBJC_CLASS_";
2619 Sym += StringClass;
2620
2621 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2622
2623 if (!isa)
2624 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */ false,
2625 llvm::GlobalValue::ExternalWeakLinkage,
2626 nullptr, Sym);
2627
2628 ConstantInitBuilder Builder(CGM);
2629 auto Fields = Builder.beginStruct();
2630 Fields.add(isa);
2631 Fields.add(MakeConstantString(Str));
2632 Fields.addInt(IntTy, Str.size());
2633 llvm::Constant *ObjCStr = Fields.finishAndCreateGlobal(".objc_str", Align);
2634 ObjCStrings[Str] = ObjCStr;
2635 ConstantStrings.push_back(ObjCStr);
2636 return ConstantAddress(ObjCStr, Int8Ty, Align);
2637}
2638
2639///Generates a message send where the super is the receiver. This is a message
2640///send to self with special delivery semantics indicating which class's method
2641///should be called.
2642RValue
2643CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2644 ReturnValueSlot Return,
2645 QualType ResultType,
2646 Selector Sel,
2647 const ObjCInterfaceDecl *Class,
2648 bool isCategoryImpl,
2649 llvm::Value *Receiver,
2650 bool IsClassMessage,
2651 const CallArgList &CallArgs,
2652 const ObjCMethodDecl *Method) {
2653 CGBuilderTy &Builder = CGF.Builder;
2654 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2655 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2656 return RValue::get(EnforceType(Builder, Receiver,
2657 CGM.getTypes().ConvertType(ResultType)));
2658 }
2659 if (Sel == ReleaseSel) {
2660 return RValue::get(nullptr);
2661 }
2662 }
2663
2664 llvm::Value *cmd = GetSelector(CGF, Sel);
2665 CallArgList ActualArgs;
2666
2667 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2668 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2669 ActualArgs.addFrom(CallArgs);
2670
2671 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2672
2673 llvm::Value *ReceiverClass = nullptr;
2674 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2675 if (isV2ABI) {
2676 ReceiverClass = GetClassNamed(CGF,
2677 Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2678 if (IsClassMessage) {
2679 // Load the isa pointer of the superclass is this is a class method.
2680 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2681 llvm::PointerType::getUnqual(IdTy));
2682 ReceiverClass =
2683 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2684 }
2685 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2686 } else {
2687 if (isCategoryImpl) {
2688 llvm::FunctionCallee classLookupFunction = nullptr;
2689 if (IsClassMessage) {
2690 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2691 IdTy, PtrTy, true), "objc_get_meta_class");
2692 } else {
2693 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2694 IdTy, PtrTy, true), "objc_get_class");
2695 }
2696 ReceiverClass = Builder.CreateCall(classLookupFunction,
2697 MakeConstantString(Class->getNameAsString()));
2698 } else {
2699 // Set up global aliases for the metaclass or class pointer if they do not
2700 // already exist. These will are forward-references which will be set to
2701 // pointers to the class and metaclass structure created for the runtime
2702 // load function. To send a message to super, we look up the value of the
2703 // super_class pointer from either the class or metaclass structure.
2704 if (IsClassMessage) {
2705 if (!MetaClassPtrAlias) {
2706 MetaClassPtrAlias = llvm::GlobalAlias::create(
2707 IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2708 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2709 }
2710 ReceiverClass = MetaClassPtrAlias;
2711 } else {
2712 if (!ClassPtrAlias) {
2713 ClassPtrAlias = llvm::GlobalAlias::create(
2714 IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2715 ".objc_class_ref" + Class->getNameAsString(), &TheModule);
2716 }
2717 ReceiverClass = ClassPtrAlias;
2718 }
2719 }
2720 // Cast the pointer to a simplified version of the class structure
2721 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2722 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2723 llvm::PointerType::getUnqual(CastTy));
2724 // Get the superclass pointer
2725 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2726 // Load the superclass pointer
2727 ReceiverClass =
2728 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2729 }
2730 // Construct the structure used to look up the IMP
2731 llvm::StructType *ObjCSuperTy =
2732 llvm::StructType::get(Receiver->getType(), IdTy);
2733
2734 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2735 CGF.getPointerAlign());
2736
2737 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
2738 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
2739
2740 // Get the IMP
2741 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2742 imp = EnforceType(Builder, imp, MSI.MessengerType);
2743
2744 llvm::Metadata *impMD[] = {
2745 llvm::MDString::get(VMContext, Sel.getAsString()),
2746 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2747 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2748 llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2749 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2750
2751 CGCallee callee(CGCalleeInfo(), imp);
2752
2753 llvm::CallBase *call;
2754 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2755 call->setMetadata(msgSendMDKind, node);
2756 return msgRet;
2757}
2758
2759/// Generate code for a message send expression.
2760RValue
2761CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2762 ReturnValueSlot Return,
2763 QualType ResultType,
2764 Selector Sel,
2765 llvm::Value *Receiver,
2766 const CallArgList &CallArgs,
2767 const ObjCInterfaceDecl *Class,
2768 const ObjCMethodDecl *Method) {
2769 CGBuilderTy &Builder = CGF.Builder;
2770
2771 // Strip out message sends to retain / release in GC mode
2772 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2773 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2774 return RValue::get(EnforceType(Builder, Receiver,
2775 CGM.getTypes().ConvertType(ResultType)));
2776 }
2777 if (Sel == ReleaseSel) {
2778 return RValue::get(nullptr);
2779 }
2780 }
2781
2782 bool isDirect = Method && Method->isDirectMethod();
2783
2784 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2785 llvm::Value *cmd;
2786 if (!isDirect) {
2787 if (Method)
2788 cmd = GetSelector(CGF, Method);
2789 else
2790 cmd = GetSelector(CGF, Sel);
2791 cmd = EnforceType(Builder, cmd, SelectorTy);
2792 }
2793
2794 Receiver = EnforceType(Builder, Receiver, IdTy);
2795
2796 llvm::Metadata *impMD[] = {
2797 llvm::MDString::get(VMContext, Sel.getAsString()),
2798 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2799 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2800 llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2801 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2802
2803 CallArgList ActualArgs;
2804 ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2805 if (!isDirect)
2806 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2807 ActualArgs.addFrom(CallArgs);
2808
2809 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2810
2811 // Message sends are expected to return a zero value when the
2812 // receiver is nil. At one point, this was only guaranteed for
2813 // simple integer and pointer types, but expectations have grown
2814 // over time.
2815 //
2816 // Given a nil receiver, the GNU runtime's message lookup will
2817 // return a stub function that simply sets various return-value
2818 // registers to zero and then returns. That's good enough for us
2819 // if and only if (1) the calling conventions of that stub are
2820 // compatible with the signature we're using and (2) the registers
2821 // it sets are sufficient to produce a zero value of the return type.
2822 // Rather than doing a whole target-specific analysis, we assume it
2823 // only works for void, integer, and pointer types, and in all
2824 // other cases we do an explicit nil check is emitted code. In
2825 // addition to ensuring we produce a zero value for other types, this
2826 // sidesteps the few outright CC incompatibilities we know about that
2827 // could otherwise lead to crashes, like when a method is expected to
2828 // return on the x87 floating point stack or adjust the stack pointer
2829 // because of an indirect return.
2830 bool hasParamDestroyedInCallee = false;
2831 bool requiresExplicitZeroResult = false;
2832 bool requiresNilReceiverCheck = [&] {
2833 // We never need a check if we statically know the receiver isn't nil.
2834 if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false,
2835 Class, Receiver))
2836 return false;
2837
2838 // If there's a consumed argument, we need a nil check.
2839 if (Method && Method->hasParamDestroyedInCallee()) {
2840 hasParamDestroyedInCallee = true;
2841 }
2842
2843 // If the return value isn't flagged as unused, and the result
2844 // type isn't in our narrow set where we assume compatibility,
2845 // we need a nil check to ensure a nil value.
2846 if (!Return.isUnused()) {
2847 if (ResultType->isVoidType()) {
2848 // void results are definitely okay.
2849 } else if (ResultType->hasPointerRepresentation() &&
2850 CGM.getTypes().isZeroInitializable(ResultType)) {
2851 // Pointer types should be fine as long as they have
2852 // bitwise-zero null pointers. But do we need to worry
2853 // about unusual address spaces?
2854 } else if (ResultType->isIntegralOrEnumerationType()) {
2855 // Bitwise zero should always be zero for integral types.
2856 // FIXME: we probably need a size limit here, but we've
2857 // never imposed one before
2858 } else {
2859 // Otherwise, use an explicit check just to be sure, unless we're
2860 // calling a direct method, where the implementation does this for us.
2861 requiresExplicitZeroResult = !isDirect;
2862 }
2863 }
2864
2865 return hasParamDestroyedInCallee || requiresExplicitZeroResult;
2866 }();
2867
2868 // We will need to explicitly zero-initialize an aggregate result slot
2869 // if we generally require explicit zeroing and we have an aggregate
2870 // result.
2871 bool requiresExplicitAggZeroing =
2872 requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType);
2873
2874 // The block we're going to end up in after any message send or nil path.
2875 llvm::BasicBlock *continueBB = nullptr;
2876 // The block that eventually branched to continueBB along the nil path.
2877 llvm::BasicBlock *nilPathBB = nullptr;
2878 // The block to do explicit work in along the nil path, if necessary.
2879 llvm::BasicBlock *nilCleanupBB = nullptr;
2880
2881 // Emit the nil-receiver check.
2882 if (requiresNilReceiverCheck) {
2883 llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend");
2884 continueBB = CGF.createBasicBlock("continue");
2885
2886 // If we need to zero-initialize an aggregate result or destroy
2887 // consumed arguments, we'll need a separate cleanup block.
2888 // Otherwise we can just branch directly to the continuation block.
2889 if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) {
2890 nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup");
2891 } else {
2892 nilPathBB = Builder.GetInsertBlock();
2893 }
2894
2895 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2896 llvm::Constant::getNullValue(Receiver->getType()));
2897 Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB,
2898 messageBB);
2899 CGF.EmitBlock(messageBB);
2900 }
2901
2902 // Get the IMP to call
2903 llvm::Value *imp;
2904
2905 // If this is a direct method, just emit it here.
2906 if (isDirect)
2907 imp = GenerateMethod(Method, Method->getClassInterface());
2908 else
2909 // If we have non-legacy dispatch specified, we try using the
2910 // objc_msgSend() functions. These are not supported on all platforms
2911 // (or all runtimes on a given platform), so we
2912 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2914 imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2915 break;
2918 StringRef name = "objc_msgSend";
2919 if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2920 name = "objc_msgSend_fpret";
2921 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
2922 name = "objc_msgSend_stret";
2923
2924 // The address of the memory block is be passed in x8 for POD type,
2925 // or in x0 for non-POD type (marked as inreg).
2926 bool shouldCheckForInReg =
2927 CGM.getContext()
2928 .getTargetInfo()
2929 .getTriple()
2930 .isWindowsMSVCEnvironment() &&
2931 CGM.getContext().getTargetInfo().getTriple().isAArch64();
2932 if (shouldCheckForInReg && CGM.ReturnTypeHasInReg(MSI.CallInfo)) {
2933 name = "objc_msgSend_stret2";
2934 }
2935 }
2936 // The actual types here don't matter - we're going to bitcast the
2937 // function anyway
2938 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2939 name)
2940 .getCallee();
2941 }
2942
2943 // Reset the receiver in case the lookup modified it
2944 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
2945
2946 imp = EnforceType(Builder, imp, MSI.MessengerType);
2947
2948 llvm::CallBase *call;
2949 CGCallee callee(CGCalleeInfo(), imp);
2950 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2951 if (!isDirect)
2952 call->setMetadata(msgSendMDKind, node);
2953
2954 if (requiresNilReceiverCheck) {
2955 llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock();
2956 CGF.Builder.CreateBr(continueBB);
2957
2958 // Emit the nil path if we decided it was necessary above.
2959 if (nilCleanupBB) {
2960 CGF.EmitBlock(nilCleanupBB);
2961
2962 if (hasParamDestroyedInCallee) {
2963 destroyCalleeDestroyedArguments(CGF, Method, CallArgs);
2964 }
2965
2966 if (requiresExplicitAggZeroing) {
2967 assert(msgRet.isAggregate());
2968 Address addr = msgRet.getAggregateAddress();
2969 CGF.EmitNullInitialization(addr, ResultType);
2970 }
2971
2972 nilPathBB = CGF.Builder.GetInsertBlock();
2973 CGF.Builder.CreateBr(continueBB);
2974 }
2975
2976 // Enter the continuation block and emit a phi if required.
2977 CGF.EmitBlock(continueBB);
2978 if (msgRet.isScalar()) {
2979 // If the return type is void, do nothing
2980 if (llvm::Value *v = msgRet.getScalarVal()) {
2981 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
2982 phi->addIncoming(v, nonNilPathBB);
2983 phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB);
2984 msgRet = RValue::get(phi);
2985 }
2986 } else if (msgRet.isAggregate()) {
2987 // Aggregate zeroing is handled in nilCleanupBB when it's required.
2988 } else /* isComplex() */ {
2989 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
2990 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
2991 phi->addIncoming(v.first, nonNilPathBB);
2992 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
2993 nilPathBB);
2994 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
2995 phi2->addIncoming(v.second, nonNilPathBB);
2996 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
2997 nilPathBB);
2998 msgRet = RValue::getComplex(phi, phi2);
2999 }
3000 }
3001 return msgRet;
3002}
3003
3004/// Generates a MethodList. Used in construction of a objc_class and
3005/// objc_category structures.
3006llvm::Constant *CGObjCGNU::
3007GenerateMethodList(StringRef ClassName,
3008 StringRef CategoryName,
3010 bool isClassMethodList) {
3011 if (Methods.empty())
3012 return NULLPtr;
3013
3014 ConstantInitBuilder Builder(CGM);
3015
3016 auto MethodList = Builder.beginStruct();
3017 MethodList.addNullPointer(CGM.Int8PtrTy);
3018 MethodList.addInt(Int32Ty, Methods.size());
3019
3020 // Get the method structure type.
3021 llvm::StructType *ObjCMethodTy =
3022 llvm::StructType::get(CGM.getLLVMContext(), {
3023 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
3024 PtrToInt8Ty, // Method types
3025 IMPTy // Method pointer
3026 });
3027 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
3028 if (isV2ABI) {
3029 // size_t size;
3030 const llvm::DataLayout &DL = TheModule.getDataLayout();
3031 MethodList.addInt(SizeTy, DL.getTypeSizeInBits(ObjCMethodTy) /
3032 CGM.getContext().getCharWidth());
3033 ObjCMethodTy =
3034 llvm::StructType::get(CGM.getLLVMContext(), {
3035 IMPTy, // Method pointer
3036 PtrToInt8Ty, // Selector
3037 PtrToInt8Ty // Extended type encoding
3038 });
3039 } else {
3040 ObjCMethodTy =
3041 llvm::StructType::get(CGM.getLLVMContext(), {
3042 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
3043 PtrToInt8Ty, // Method types
3044 IMPTy // Method pointer
3045 });
3046 }
3047 auto MethodArray = MethodList.beginArray();
3048 ASTContext &Context = CGM.getContext();
3049 for (const auto *OMD : Methods) {
3050 llvm::Constant *FnPtr =
3051 TheModule.getFunction(getSymbolNameForMethod(OMD));
3052 assert(FnPtr && "Can't generate metadata for method that doesn't exist");
3053 auto Method = MethodArray.beginStruct(ObjCMethodTy);
3054 if (isV2ABI) {
3055 Method.add(FnPtr);
3056 Method.add(GetConstantSelector(OMD->getSelector(),
3057 Context.getObjCEncodingForMethodDecl(OMD)));
3058 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
3059 } else {
3060 Method.add(MakeConstantString(OMD->getSelector().getAsString()));
3061 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
3062 Method.add(FnPtr);
3063 }
3064 Method.finishAndAddTo(MethodArray);
3065 }
3066 MethodArray.finishAndAddTo(MethodList);
3067
3068 // Create an instance of the structure
3069 return MethodList.finishAndCreateGlobal(".objc_method_list",
3070 CGM.getPointerAlign());
3071}
3072
3073/// Generates an IvarList. Used in construction of a objc_class.
3074llvm::Constant *CGObjCGNU::
3075GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
3077 ArrayRef<llvm::Constant *> IvarOffsets,
3079 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
3080 if (IvarNames.empty())
3081 return NULLPtr;
3082
3083 ConstantInitBuilder Builder(CGM);
3084
3085 // Structure containing array count followed by array.
3086 auto IvarList = Builder.beginStruct();
3087 IvarList.addInt(IntTy, (int)IvarNames.size());
3088
3089 // Get the ivar structure type.
3090 llvm::StructType *ObjCIvarTy =
3091 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
3092
3093 // Array of ivar structures.
3094 auto Ivars = IvarList.beginArray(ObjCIvarTy);
3095 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
3096 auto Ivar = Ivars.beginStruct(ObjCIvarTy);
3097 Ivar.add(IvarNames[i]);
3098 Ivar.add(IvarTypes[i]);
3099 Ivar.add(IvarOffsets[i]);
3100 Ivar.finishAndAddTo(Ivars);
3101 }
3102 Ivars.finishAndAddTo(IvarList);
3103
3104 // Create an instance of the structure
3105 return IvarList.finishAndCreateGlobal(".objc_ivar_list",
3106 CGM.getPointerAlign());
3107}
3108
3109/// Generate a class structure
3110llvm::Constant *CGObjCGNU::GenerateClassStructure(
3111 llvm::Constant *MetaClass,
3112 llvm::Constant *SuperClass,
3113 unsigned info,
3114 const char *Name,
3115 llvm::Constant *Version,
3116 llvm::Constant *InstanceSize,
3117 llvm::Constant *IVars,
3118 llvm::Constant *Methods,
3119 llvm::Constant *Protocols,
3120 llvm::Constant *IvarOffsets,
3121 llvm::Constant *Properties,
3122 llvm::Constant *StrongIvarBitmap,
3123 llvm::Constant *WeakIvarBitmap,
3124 bool isMeta) {
3125 // Set up the class structure
3126 // Note: Several of these are char*s when they should be ids. This is
3127 // because the runtime performs this translation on load.
3128 //
3129 // Fields marked New ABI are part of the GNUstep runtime. We emit them
3130 // anyway; the classes will still work with the GNU runtime, they will just
3131 // be ignored.
3132 llvm::StructType *ClassTy = llvm::StructType::get(
3133 PtrToInt8Ty, // isa
3134 PtrToInt8Ty, // super_class
3135 PtrToInt8Ty, // name
3136 LongTy, // version
3137 LongTy, // info
3138 LongTy, // instance_size
3139 IVars->getType(), // ivars
3140 Methods->getType(), // methods
3141 // These are all filled in by the runtime, so we pretend
3142 PtrTy, // dtable
3143 PtrTy, // subclass_list
3144 PtrTy, // sibling_class
3145 PtrTy, // protocols
3146 PtrTy, // gc_object_type
3147 // New ABI:
3148 LongTy, // abi_version
3149 IvarOffsets->getType(), // ivar_offsets
3150 Properties->getType(), // properties
3151 IntPtrTy, // strong_pointers
3152 IntPtrTy // weak_pointers
3153 );
3154
3155 ConstantInitBuilder Builder(CGM);
3156 auto Elements = Builder.beginStruct(ClassTy);
3157
3158 // Fill in the structure
3159
3160 // isa
3161 Elements.add(MetaClass);
3162 // super_class
3163 Elements.add(SuperClass);
3164 // name
3165 Elements.add(MakeConstantString(Name, ".class_name"));
3166 // version
3167 Elements.addInt(LongTy, 0);
3168 // info
3169 Elements.addInt(LongTy, info);
3170 // instance_size
3171 if (isMeta) {
3172 const llvm::DataLayout &DL = TheModule.getDataLayout();
3173 Elements.addInt(LongTy, DL.getTypeSizeInBits(ClassTy) /
3174 CGM.getContext().getCharWidth());
3175 } else
3176 Elements.add(InstanceSize);
3177 // ivars
3178 Elements.add(IVars);
3179 // methods
3180 Elements.add(Methods);
3181 // These are all filled in by the runtime, so we pretend
3182 // dtable
3183 Elements.add(NULLPtr);
3184 // subclass_list
3185 Elements.add(NULLPtr);
3186 // sibling_class
3187 Elements.add(NULLPtr);
3188 // protocols
3189 Elements.add(Protocols);
3190 // gc_object_type
3191 Elements.add(NULLPtr);
3192 // abi_version
3193 Elements.addInt(LongTy, ClassABIVersion);
3194 // ivar_offsets
3195 Elements.add(IvarOffsets);
3196 // properties
3197 Elements.add(Properties);
3198 // strong_pointers
3199 Elements.add(StrongIvarBitmap);
3200 // weak_pointers
3201 Elements.add(WeakIvarBitmap);
3202 // Create an instance of the structure
3203 // This is now an externally visible symbol, so that we can speed up class
3204 // messages in the next ABI. We may already have some weak references to
3205 // this, so check and fix them properly.
3206 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
3207 std::string(Name));
3208 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
3209 llvm::Constant *Class =
3210 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
3211 llvm::GlobalValue::ExternalLinkage);
3212 if (ClassRef) {
3213 ClassRef->replaceAllUsesWith(Class);
3214 ClassRef->removeFromParent();
3215 Class->setName(ClassSym);
3216 }
3217 return Class;
3218}
3219
3220llvm::Constant *CGObjCGNU::
3221GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
3222 // Get the method structure type.
3223 llvm::StructType *ObjCMethodDescTy =
3224 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
3225 ASTContext &Context = CGM.getContext();
3226 ConstantInitBuilder Builder(CGM);
3227 auto MethodList = Builder.beginStruct();
3228 MethodList.addInt(IntTy, Methods.size());
3229 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
3230 for (auto *M : Methods) {
3231 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
3232 Method.add(MakeConstantString(M->getSelector().getAsString()));
3233 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
3234 Method.finishAndAddTo(MethodArray);
3235 }
3236 MethodArray.finishAndAddTo(MethodList);
3237 return MethodList.finishAndCreateGlobal(".objc_method_list",
3238 CGM.getPointerAlign());
3239}
3240
3241// Create the protocol list structure used in classes, categories and so on
3242llvm::Constant *
3243CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
3244
3245 ConstantInitBuilder Builder(CGM);
3246 auto ProtocolList = Builder.beginStruct();
3247 ProtocolList.add(NULLPtr);
3248 ProtocolList.addInt(LongTy, Protocols.size());
3249
3250 auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
3251 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
3252 iter != endIter ; iter++) {
3253 llvm::Constant *protocol = nullptr;
3254 llvm::StringMap<llvm::Constant*>::iterator value =
3255 ExistingProtocols.find(*iter);
3256 if (value == ExistingProtocols.end()) {
3257 protocol = GenerateEmptyProtocol(*iter);
3258 } else {
3259 protocol = value->getValue();
3260 }
3261 Elements.add(protocol);
3262 }
3263 Elements.finishAndAddTo(ProtocolList);
3264 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3265 CGM.getPointerAlign());
3266}
3267
3268llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
3269 const ObjCProtocolDecl *PD) {
3270 auto protocol = GenerateProtocolRef(PD);
3271 llvm::Type *T =
3273 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
3274}
3275
3276llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) {
3277 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
3278 if (!protocol)
3279 GenerateProtocol(PD);
3280 assert(protocol && "Unknown protocol");
3281 return protocol;
3282}
3283
3284llvm::Constant *
3285CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
3286 llvm::Constant *ProtocolList = GenerateProtocolList({});
3287 llvm::Constant *MethodList = GenerateProtocolMethodList({});
3288 // Protocols are objects containing lists of the methods implemented and
3289 // protocols adopted.
3290 ConstantInitBuilder Builder(CGM);
3291 auto Elements = Builder.beginStruct();
3292
3293 // The isa pointer must be set to a magic number so the runtime knows it's
3294 // the correct layout.
3295 Elements.add(llvm::ConstantExpr::getIntToPtr(
3296 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3297
3298 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
3299 Elements.add(ProtocolList); /* .protocol_list */
3300 Elements.add(MethodList); /* .instance_methods */
3301 Elements.add(MethodList); /* .class_methods */
3302 Elements.add(MethodList); /* .optional_instance_methods */
3303 Elements.add(MethodList); /* .optional_class_methods */
3304 Elements.add(NULLPtr); /* .properties */
3305 Elements.add(NULLPtr); /* .optional_properties */
3306 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
3307 CGM.getPointerAlign());
3308}
3309
3310void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
3311 if (PD->isNonRuntimeProtocol())
3312 return;
3313
3314 std::string ProtocolName = PD->getNameAsString();
3315
3316 // Use the protocol definition, if there is one.
3317 if (const ObjCProtocolDecl *Def = PD->getDefinition())
3318 PD = Def;
3319
3321 for (const auto *PI : PD->protocols())
3322 Protocols.push_back(PI->getNameAsString());
3324 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
3325 for (const auto *I : PD->instance_methods())
3326 if (I->isOptional())
3327 OptionalInstanceMethods.push_back(I);
3328 else
3329 InstanceMethods.push_back(I);
3330 // Collect information about class methods:
3332 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
3333 for (const auto *I : PD->class_methods())
3334 if (I->isOptional())
3335 OptionalClassMethods.push_back(I);
3336 else
3337 ClassMethods.push_back(I);
3338
3339 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
3340 llvm::Constant *InstanceMethodList =
3341 GenerateProtocolMethodList(InstanceMethods);
3342 llvm::Constant *ClassMethodList =
3343 GenerateProtocolMethodList(ClassMethods);
3344 llvm::Constant *OptionalInstanceMethodList =
3345 GenerateProtocolMethodList(OptionalInstanceMethods);
3346 llvm::Constant *OptionalClassMethodList =
3347 GenerateProtocolMethodList(OptionalClassMethods);
3348
3349 // Property metadata: name, attributes, isSynthesized, setter name, setter
3350 // types, getter name, getter types.
3351 // The isSynthesized value is always set to 0 in a protocol. It exists to
3352 // simplify the runtime library by allowing it to use the same data
3353 // structures for protocol metadata everywhere.
3354
3355 llvm::Constant *PropertyList =
3356 GeneratePropertyList(nullptr, PD, false, false);
3357 llvm::Constant *OptionalPropertyList =
3358 GeneratePropertyList(nullptr, PD, false, true);
3359
3360 // Protocols are objects containing lists of the methods implemented and
3361 // protocols adopted.
3362 // The isa pointer must be set to a magic number so the runtime knows it's
3363 // the correct layout.
3364 ConstantInitBuilder Builder(CGM);
3365 auto Elements = Builder.beginStruct();
3366 Elements.add(
3367 llvm::ConstantExpr::getIntToPtr(
3368 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3369 Elements.add(MakeConstantString(ProtocolName));
3370 Elements.add(ProtocolList);
3371 Elements.add(InstanceMethodList);
3372 Elements.add(ClassMethodList);
3373 Elements.add(OptionalInstanceMethodList);
3374 Elements.add(OptionalClassMethodList);
3375 Elements.add(PropertyList);
3376 Elements.add(OptionalPropertyList);
3377 ExistingProtocols[ProtocolName] =
3378 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign());
3379}
3380void CGObjCGNU::GenerateProtocolHolderCategory() {
3381 // Collect information about instance methods
3382
3383 ConstantInitBuilder Builder(CGM);
3384 auto Elements = Builder.beginStruct();
3385
3386 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3387 const std::string CategoryName = "AnotherHack";
3388 Elements.add(MakeConstantString(CategoryName));
3389 Elements.add(MakeConstantString(ClassName));
3390 // Instance method list
3391 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, false));
3392 // Class method list
3393 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, true));
3394
3395 // Protocol list
3396 ConstantInitBuilder ProtocolListBuilder(CGM);
3397 auto ProtocolList = ProtocolListBuilder.beginStruct();
3398 ProtocolList.add(NULLPtr);
3399 ProtocolList.addInt(LongTy, ExistingProtocols.size());
3400 auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3401 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3402 iter != endIter ; iter++) {
3403 ProtocolElements.add(iter->getValue());
3404 }
3405 ProtocolElements.finishAndAddTo(ProtocolList);
3406 Elements.add(ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3407 CGM.getPointerAlign()));
3408 Categories.push_back(
3409 Elements.finishAndCreateGlobal("", CGM.getPointerAlign()));
3410}
3411
3412/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3413/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3414/// bits set to their values, LSB first, while larger ones are stored in a
3415/// structure of this / form:
3416///
3417/// struct { int32_t length; int32_t values[length]; };
3418///
3419/// The values in the array are stored in host-endian format, with the least
3420/// significant bit being assumed to come first in the bitfield. Therefore, a
3421/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3422/// bitfield / with the 63rd bit set will be 1<<64.
3423llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3424 int bitCount = bits.size();
3425 int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3426 if (bitCount < ptrBits) {
3427 uint64_t val = 1;
3428 for (int i=0 ; i<bitCount ; ++i) {
3429 if (bits[i]) val |= 1ULL<<(i+1);
3430 }
3431 return llvm::ConstantInt::get(IntPtrTy, val);
3432 }
3434 int v=0;
3435 while (v < bitCount) {
3436 int32_t word = 0;
3437 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
3438 if (bits[v]) word |= 1<<i;
3439 v++;
3440 }
3441 values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3442 }
3443
3444 ConstantInitBuilder builder(CGM);
3445 auto fields = builder.beginStruct();
3446 fields.addInt(Int32Ty, values.size());
3447 auto array = fields.beginArray();
3448 for (auto *v : values) array.add(v);
3449 array.finishAndAddTo(fields);
3450
3451 llvm::Constant *GS =
3452 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3453 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3454 return ptr;
3455}
3456
3457llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const
3458 ObjCCategoryDecl *OCD) {
3459 const auto &RefPro = OCD->getReferencedProtocols();
3460 const auto RuntimeProtos =
3461 GetRuntimeProtocolList(RefPro.begin(), RefPro.end());
3463 for (const auto *PD : RuntimeProtos)
3464 Protocols.push_back(PD->getNameAsString());
3465 return GenerateProtocolList(Protocols);
3466}
3467
3468void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3470 std::string ClassName = Class->getNameAsString();
3471 std::string CategoryName = OCD->getNameAsString();
3472
3473 // Collect the names of referenced protocols
3474 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3475
3476 ConstantInitBuilder Builder(CGM);
3477 auto Elements = Builder.beginStruct();
3478 Elements.add(MakeConstantString(CategoryName));
3479 Elements.add(MakeConstantString(ClassName));
3480 // Instance method list
3481 SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3482 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3483 OCD->instmeth_end());
3484 Elements.add(
3485 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false));
3486
3487 // Class method list
3488
3490 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3491 OCD->classmeth_end());
3492 Elements.add(GenerateMethodList(ClassName, CategoryName, ClassMethods, true));
3493
3494 // Protocol list
3495 Elements.add(GenerateCategoryProtocolList(CatDecl));
3496 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3497 const ObjCCategoryDecl *Category =
3498 Class->FindCategoryDeclaration(OCD->getIdentifier());
3499 if (Category) {
3500 // Instance properties
3501 Elements.add(GeneratePropertyList(OCD, Category, false));
3502 // Class properties
3503 Elements.add(GeneratePropertyList(OCD, Category, true));
3504 } else {
3505 Elements.addNullPointer(PtrTy);
3506 Elements.addNullPointer(PtrTy);
3507 }
3508 }
3509
3510 Categories.push_back(Elements.finishAndCreateGlobal(
3511 std::string(".objc_category_") + ClassName + CategoryName,
3512 CGM.getPointerAlign()));
3513}
3514
3515llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3516 const ObjCContainerDecl *OCD,
3517 bool isClassProperty,
3518 bool protocolOptionalProperties) {
3519
3522 bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3523 ASTContext &Context = CGM.getContext();
3524
3525 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3526 = [&](const ObjCProtocolDecl *Proto) {
3527 for (const auto *P : Proto->protocols())
3528 collectProtocolProperties(P);
3529 for (const auto *PD : Proto->properties()) {
3530 if (isClassProperty != PD->isClassProperty())
3531 continue;
3532 // Skip any properties that are declared in protocols that this class
3533 // conforms to but are not actually implemented by this class.
3534 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3535 continue;
3536 if (!PropertySet.insert(PD->getIdentifier()).second)
3537 continue;
3538 Properties.push_back(PD);
3539 }
3540 };
3541
3542 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3543 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3544 for (auto *PD : ClassExt->properties()) {
3545 if (isClassProperty != PD->isClassProperty())
3546 continue;
3547 PropertySet.insert(PD->getIdentifier());
3548 Properties.push_back(PD);
3549 }
3550
3551 for (const auto *PD : OCD->properties()) {
3552 if (isClassProperty != PD->isClassProperty())
3553 continue;
3554 // If we're generating a list for a protocol, skip optional / required ones
3555 // when generating the other list.
3556 if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3557 continue;
3558 // Don't emit duplicate metadata for properties that were already in a
3559 // class extension.
3560 if (!PropertySet.insert(PD->getIdentifier()).second)
3561 continue;
3562
3563 Properties.push_back(PD);
3564 }
3565
3566 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3567 for (const auto *P : OID->all_referenced_protocols())
3568 collectProtocolProperties(P);
3569 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3570 for (const auto *P : CD->protocols())
3571 collectProtocolProperties(P);
3572
3573 auto numProperties = Properties.size();
3574
3575 if (numProperties == 0)
3576 return NULLPtr;
3577
3578 ConstantInitBuilder builder(CGM);
3579 auto propertyList = builder.beginStruct();
3580 auto properties = PushPropertyListHeader(propertyList, numProperties);
3581
3582 // Add all of the property methods need adding to the method list and to the
3583 // property metadata list.
3584 for (auto *property : Properties) {
3585 bool isSynthesized = false;
3586 bool isDynamic = false;
3587 if (!isProtocol) {
3588 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3589 if (propertyImpl) {
3590 isSynthesized = (propertyImpl->getPropertyImplementation() ==
3592 isDynamic = (propertyImpl->getPropertyImplementation() ==
3594 }
3595 }
3596 PushProperty(properties, property, Container, isSynthesized, isDynamic);
3597 }
3598 properties.finishAndAddTo(propertyList);
3599
3600 return propertyList.finishAndCreateGlobal(".objc_property_list",
3601 CGM.getPointerAlign());
3602}
3603
3604void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3605 // Get the class declaration for which the alias is specified.
3606 ObjCInterfaceDecl *ClassDecl =
3607 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3608 ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3609 OAD->getNameAsString());
3610}
3611
3612void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3613 ASTContext &Context = CGM.getContext();
3614
3615 // Get the superclass name.
3616 const ObjCInterfaceDecl * SuperClassDecl =
3618 std::string SuperClassName;
3619 if (SuperClassDecl) {
3620 SuperClassName = SuperClassDecl->getNameAsString();
3621 EmitClassRef(SuperClassName);
3622 }
3623
3624 // Get the class name
3625 ObjCInterfaceDecl *ClassDecl =
3626 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3627 std::string ClassName = ClassDecl->getNameAsString();
3628
3629 // Emit the symbol that is used to generate linker errors if this class is
3630 // referenced in other modules but not declared.
3631 std::string classSymbolName = "__objc_class_name_" + ClassName;
3632 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3633 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3634 } else {
3635 new llvm::GlobalVariable(TheModule, LongTy, false,
3636 llvm::GlobalValue::ExternalLinkage,
3637 llvm::ConstantInt::get(LongTy, 0),
3638 classSymbolName);
3639 }
3640
3641 // Get the size of instances.
3642 int instanceSize =
3644
3645 // Collect information about instance variables.
3651
3652 ConstantInitBuilder IvarOffsetBuilder(CGM);
3653 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3654 SmallVector<bool, 16> WeakIvars;
3655 SmallVector<bool, 16> StrongIvars;
3656
3657 int superInstanceSize = !SuperClassDecl ? 0 :
3658 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3659 // For non-fragile ivars, set the instance size to 0 - {the size of just this
3660 // class}. The runtime will then set this to the correct value on load.
3661 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3662 instanceSize = 0 - (instanceSize - superInstanceSize);
3663 }
3664
3665 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3666 IVD = IVD->getNextIvar()) {
3667 // Store the name
3668 IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3669 // Get the type encoding for this ivar
3670 std::string TypeStr;
3671 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3672 IvarTypes.push_back(MakeConstantString(TypeStr));
3673 IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3674 Context.getTypeSize(IVD->getType())));
3675 // Get the offset
3676 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3677 uint64_t Offset = BaseOffset;
3678 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3679 Offset = BaseOffset - superInstanceSize;
3680 }
3681 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3682 // Create the direct offset value
3683 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3684 IVD->getNameAsString();
3685
3686 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3687 if (OffsetVar) {
3688 OffsetVar->setInitializer(OffsetValue);
3689 // If this is the real definition, change its linkage type so that
3690 // different modules will use this one, rather than their private
3691 // copy.
3692 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3693 } else
3694 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3695 false, llvm::GlobalValue::ExternalLinkage,
3696 OffsetValue, OffsetName);
3697 IvarOffsets.push_back(OffsetValue);
3698 IvarOffsetValues.add(OffsetVar);
3699 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3700 IvarOwnership.push_back(lt);
3701 switch (lt) {
3703 StrongIvars.push_back(true);
3704 WeakIvars.push_back(false);
3705 break;
3707 StrongIvars.push_back(false);
3708 WeakIvars.push_back(true);
3709 break;
3710 default:
3711 StrongIvars.push_back(false);
3712 WeakIvars.push_back(false);
3713 }
3714 }
3715 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3716 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3717 llvm::GlobalVariable *IvarOffsetArray =
3718 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3719 CGM.getPointerAlign());
3720
3721 // Collect information about instance methods
3723 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3724 OID->instmeth_end());
3725
3727 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3728 OID->classmeth_end());
3729
3730 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3731
3732 // Collect the names of referenced protocols
3733 auto RefProtocols = ClassDecl->protocols();
3734 auto RuntimeProtocols =
3735 GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end());
3737 for (const auto *I : RuntimeProtocols)
3738 Protocols.push_back(I->getNameAsString());
3739
3740 // Get the superclass pointer.
3741 llvm::Constant *SuperClass;
3742 if (!SuperClassName.empty()) {
3743 SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3744 } else {
3745 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3746 }
3747 // Empty vector used to construct empty method lists
3749 // Generate the method and instance variable lists
3750 llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3751 InstanceMethods, false);
3752 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3753 ClassMethods, true);
3754 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3755 IvarOffsets, IvarAligns, IvarOwnership);
3756 // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3757 // we emit a symbol containing the offset for each ivar in the class. This
3758 // allows code compiled for the non-Fragile ABI to inherit from code compiled
3759 // for the legacy ABI, without causing problems. The converse is also
3760 // possible, but causes all ivar accesses to be fragile.
3761
3762 // Offset pointer for getting at the correct field in the ivar list when
3763 // setting up the alias. These are: The base address for the global, the
3764 // ivar array (second field), the ivar in this list (set for each ivar), and
3765 // the offset (third field in ivar structure)
3766 llvm::Type *IndexTy = Int32Ty;
3767 llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3768 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3769 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3770
3771 unsigned ivarIndex = 0;
3772 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3773 IVD = IVD->getNextIvar()) {
3774 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3775 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3776 // Get the correct ivar field
3777 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3778 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3779 offsetPointerIndexes);
3780 // Get the existing variable, if one exists.
3781 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3782 if (offset) {
3783 offset->setInitializer(offsetValue);
3784 // If this is the real definition, change its linkage type so that
3785 // different modules will use this one, rather than their private
3786 // copy.
3787 offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3788 } else
3789 // Add a new alias if there isn't one already.
3790 new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3791 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3792 ++ivarIndex;
3793 }
3794 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3795
3796 //Generate metaclass for class methods
3797 llvm::Constant *MetaClassStruct = GenerateClassStructure(
3798 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3799 NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3800 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3801 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3802 OID->getClassInterface());
3803
3804 // Generate the class structure
3805 llvm::Constant *ClassStruct = GenerateClassStructure(
3806 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3807 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3808 GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3809 StrongIvarBitmap, WeakIvarBitmap);
3810 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3811 OID->getClassInterface());
3812
3813 // Resolve the class aliases, if they exist.
3814 if (ClassPtrAlias) {
3815 ClassPtrAlias->replaceAllUsesWith(ClassStruct);
3816 ClassPtrAlias->eraseFromParent();
3817 ClassPtrAlias = nullptr;
3818 }
3819 if (MetaClassPtrAlias) {
3820 MetaClassPtrAlias->replaceAllUsesWith(MetaClassStruct);
3821 MetaClassPtrAlias->eraseFromParent();
3822 MetaClassPtrAlias = nullptr;
3823 }
3824
3825 // Add class structure to list to be added to the symtab later
3826 Classes.push_back(ClassStruct);
3827}
3828
3829llvm::Function *CGObjCGNU::ModuleInitFunction() {
3830 // Only emit an ObjC load function if no Objective-C stuff has been called
3831 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3832 ExistingProtocols.empty() && SelectorTable.empty())
3833 return nullptr;
3834
3835 // Add all referenced protocols to a category.
3836 GenerateProtocolHolderCategory();
3837
3838 llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy);
3839 if (!selStructTy) {
3840 selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3841 { PtrToInt8Ty, PtrToInt8Ty });
3842 }
3843
3844 // Generate statics list:
3845 llvm::Constant *statics = NULLPtr;
3846 if (!ConstantStrings.empty()) {
3847 llvm::GlobalVariable *fileStatics = [&] {
3848 ConstantInitBuilder builder(CGM);
3849 auto staticsStruct = builder.beginStruct();
3850
3851 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3852 if (stringClass.empty()) stringClass = "NXConstantString";
3853 staticsStruct.add(MakeConstantString(stringClass,
3854 ".objc_static_class_name"));
3855
3856 auto array = staticsStruct.beginArray();
3857 array.addAll(ConstantStrings);
3858 array.add(NULLPtr);
3859 array.finishAndAddTo(staticsStruct);
3860
3861 return staticsStruct.finishAndCreateGlobal(".objc_statics",
3862 CGM.getPointerAlign());
3863 }();
3864
3865 ConstantInitBuilder builder(CGM);
3866 auto allStaticsArray = builder.beginArray(fileStatics->getType());
3867 allStaticsArray.add(fileStatics);
3868 allStaticsArray.addNullPointer(fileStatics->getType());
3869
3870 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3871 CGM.getPointerAlign());
3872 }
3873
3874 // Array of classes, categories, and constant objects.
3875
3877 unsigned selectorCount;
3878
3879 // Pointer to an array of selectors used in this module.
3880 llvm::GlobalVariable *selectorList = [&] {
3881 ConstantInitBuilder builder(CGM);
3882 auto selectors = builder.beginArray(selStructTy);
3883 auto &table = SelectorTable; // MSVC workaround
3884 std::vector<Selector> allSelectors;
3885 for (auto &entry : table)
3886 allSelectors.push_back(entry.first);
3887 llvm::sort(allSelectors);
3888
3889 for (auto &untypedSel : allSelectors) {
3890 std::string selNameStr = untypedSel.getAsString();
3891 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3892
3893 for (TypedSelector &sel : table[untypedSel]) {
3894 llvm::Constant *selectorTypeEncoding = NULLPtr;
3895 if (!sel.first.empty())
3896 selectorTypeEncoding =
3897 MakeConstantString(sel.first, ".objc_sel_types");
3898
3899 auto selStruct = selectors.beginStruct(selStructTy);
3900 selStruct.add(selName);
3901 selStruct.add(selectorTypeEncoding);
3902 selStruct.finishAndAddTo(selectors);
3903
3904 // Store the selector alias for later replacement
3905 selectorAliases.push_back(sel.second);
3906 }
3907 }
3908
3909 // Remember the number of entries in the selector table.
3910 selectorCount = selectors.size();
3911
3912 // NULL-terminate the selector list. This should not actually be required,
3913 // because the selector list has a length field. Unfortunately, the GCC
3914 // runtime decides to ignore the length field and expects a NULL terminator,
3915 // and GCC cooperates with this by always setting the length to 0.
3916 auto selStruct = selectors.beginStruct(selStructTy);
3917 selStruct.add(NULLPtr);
3918 selStruct.add(NULLPtr);
3919 selStruct.finishAndAddTo(selectors);
3920
3921 return selectors.finishAndCreateGlobal(".objc_selector_list",
3922 CGM.getPointerAlign());
3923 }();
3924
3925 // Now that all of the static selectors exist, create pointers to them.
3926 for (unsigned i = 0; i < selectorCount; ++i) {
3927 llvm::Constant *idxs[] = {
3928 Zeros[0],
3929 llvm::ConstantInt::get(Int32Ty, i)
3930 };
3931 // FIXME: We're generating redundant loads and stores here!
3932 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
3933 selectorList->getValueType(), selectorList, idxs);
3934 selectorAliases[i]->replaceAllUsesWith(selPtr);
3935 selectorAliases[i]->eraseFromParent();
3936 }
3937
3938 llvm::GlobalVariable *symtab = [&] {
3939 ConstantInitBuilder builder(CGM);
3940 auto symtab = builder.beginStruct();
3941
3942 // Number of static selectors
3943 symtab.addInt(LongTy, selectorCount);
3944
3945 symtab.add(selectorList);
3946
3947 // Number of classes defined.
3948 symtab.addInt(CGM.Int16Ty, Classes.size());
3949 // Number of categories defined
3950 symtab.addInt(CGM.Int16Ty, Categories.size());
3951
3952 // Create an array of classes, then categories, then static object instances
3953 auto classList = symtab.beginArray(PtrToInt8Ty);
3954 classList.addAll(Classes);
3955 classList.addAll(Categories);
3956 // NULL-terminated list of static object instances (mainly constant strings)
3957 classList.add(statics);
3958 classList.add(NULLPtr);
3959 classList.finishAndAddTo(symtab);
3960
3961 // Construct the symbol table.
3962 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
3963 }();
3964
3965 // The symbol table is contained in a module which has some version-checking
3966 // constants
3967 llvm::Constant *module = [&] {
3968 llvm::Type *moduleEltTys[] = {
3969 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
3970 };
3971 llvm::StructType *moduleTy = llvm::StructType::get(
3972 CGM.getLLVMContext(),
3973 ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
3974
3975 ConstantInitBuilder builder(CGM);
3976 auto module = builder.beginStruct(moduleTy);
3977 // Runtime version, used for ABI compatibility checking.
3978 module.addInt(LongTy, RuntimeVersion);
3979 // sizeof(ModuleTy)
3980 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
3981
3982 // The path to the source file where this module was declared
3984 OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID());
3985 std::string path =
3986 (mainFile->getDir().getName() + "/" + mainFile->getName()).str();
3987 module.add(MakeConstantString(path, ".objc_source_file_name"));
3988 module.add(symtab);
3989
3990 if (RuntimeVersion >= 10) {
3991 switch (CGM.getLangOpts().getGC()) {
3992 case LangOptions::GCOnly:
3993 module.addInt(IntTy, 2);
3994 break;
3995 case LangOptions::NonGC:
3996 if (CGM.getLangOpts().ObjCAutoRefCount)
3997 module.addInt(IntTy, 1);
3998 else
3999 module.addInt(IntTy, 0);
4000 break;
4001 case LangOptions::HybridGC:
4002 module.addInt(IntTy, 1);
4003 break;
4004 }
4005 }
4006
4007 return module.finishAndCreateGlobal("", CGM.getPointerAlign());
4008 }();
4009
4010 // Create the load function calling the runtime entry point with the module
4011 // structure
4012 llvm::Function * LoadFunction = llvm::Function::Create(
4013 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
4014 llvm::GlobalValue::InternalLinkage, ".objc_load_function",
4015 &TheModule);
4016 llvm::BasicBlock *EntryBB =
4017 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
4018 CGBuilderTy Builder(CGM, VMContext);
4019 Builder.SetInsertPoint(EntryBB);
4020
4021 llvm::FunctionType *FT =
4022 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
4023 llvm::FunctionCallee Register =
4024 CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
4025 Builder.CreateCall(Register, module);
4026
4027 if (!ClassAliases.empty()) {
4028 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
4029 llvm::FunctionType *RegisterAliasTy =
4030 llvm::FunctionType::get(Builder.getVoidTy(),
4031 ArgTypes, false);
4032 llvm::Function *RegisterAlias = llvm::Function::Create(
4033 RegisterAliasTy,
4034 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
4035 &TheModule);
4036 llvm::BasicBlock *AliasBB =
4037 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
4038 llvm::BasicBlock *NoAliasBB =
4039 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
4040
4041 // Branch based on whether the runtime provided class_registerAlias_np()
4042 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
4043 llvm::Constant::getNullValue(RegisterAlias->getType()));
4044 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
4045
4046 // The true branch (has alias registration function):
4047 Builder.SetInsertPoint(AliasBB);
4048 // Emit alias registration calls:
4049 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
4050 iter != ClassAliases.end(); ++iter) {
4051 llvm::Constant *TheClass =
4052 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
4053 if (TheClass) {
4054 Builder.CreateCall(RegisterAlias,
4055 {TheClass, MakeConstantString(iter->second)});
4056 }
4057 }
4058 // Jump to end:
4059 Builder.CreateBr(NoAliasBB);
4060
4061 // Missing alias registration function, just return from the function:
4062 Builder.SetInsertPoint(NoAliasBB);
4063 }
4064 Builder.CreateRetVoid();
4065
4066 return LoadFunction;
4067}
4068
4069llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
4070 const ObjCContainerDecl *CD) {
4071 CodeGenTypes &Types = CGM.getTypes();
4072 llvm::FunctionType *MethodTy =
4073 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
4074
4075 bool isDirect = OMD->isDirectMethod();
4076 std::string FunctionName =
4077 getSymbolNameForMethod(OMD, /*include category*/ !isDirect);
4078
4079 if (!isDirect)
4080 return llvm::Function::Create(MethodTy,
4081 llvm::GlobalVariable::InternalLinkage,
4082 FunctionName, &TheModule);
4083
4084 auto *COMD = OMD->getCanonicalDecl();
4085 auto I = DirectMethodDefinitions.find(COMD);
4086 llvm::Function *OldFn = nullptr, *Fn = nullptr;
4087
4088 if (I == DirectMethodDefinitions.end()) {
4089 auto *F =
4090 llvm::Function::Create(MethodTy, llvm::GlobalVariable::ExternalLinkage,
4091 FunctionName, &TheModule);
4092 DirectMethodDefinitions.insert(std::make_pair(COMD, F));
4093 return F;
4094 }
4095
4096 // Objective-C allows for the declaration and implementation types
4097 // to differ slightly.
4098 //
4099 // If we're being asked for the Function associated for a method
4100 // implementation, a previous value might have been cached
4101 // based on the type of the canonical declaration.
4102 //
4103 // If these do not match, then we'll replace this function with
4104 // a new one that has the proper type below.
4105 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType())
4106 return I->second;
4107
4108 OldFn = I->second;
4109 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, "",
4110 &CGM.getModule());
4111 Fn->takeName(OldFn);
4112 OldFn->replaceAllUsesWith(Fn);
4113 OldFn->eraseFromParent();
4114
4115 // Replace the cached function in the map.
4116 I->second = Fn;
4117 return Fn;
4118}
4119
4120void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF,
4121 llvm::Function *Fn,
4122 const ObjCMethodDecl *OMD,
4123 const ObjCContainerDecl *CD) {
4124 // GNU runtime doesn't support direct calls at this time
4125}
4126
4127llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() {
4128 return GetPropertyFn;
4129}
4130
4131llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() {
4132 return SetPropertyFn;
4133}
4134
4135llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
4136 bool copy) {
4137 return nullptr;
4138}
4139
4140llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() {
4141 return GetStructPropertyFn;
4142}
4143
4144llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() {
4145 return SetStructPropertyFn;
4146}
4147
4148llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() {
4149 return nullptr;
4150}
4151
4152llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() {
4153 return nullptr;
4154}
4155
4156llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() {
4157 return EnumerationMutationFn;
4158}
4159
4160void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
4161 const ObjCAtSynchronizedStmt &S) {
4162 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
4163}
4164
4165
4166void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
4167 const ObjCAtTryStmt &S) {
4168 // Unlike the Apple non-fragile runtimes, which also uses
4169 // unwind-based zero cost exceptions, the GNU Objective C runtime's
4170 // EH support isn't a veneer over C++ EH. Instead, exception
4171 // objects are created by objc_exception_throw and destroyed by
4172 // the personality function; this avoids the need for bracketing
4173 // catch handlers with calls to __blah_begin_catch/__blah_end_catch
4174 // (or even _Unwind_DeleteException), but probably doesn't
4175 // interoperate very well with foreign exceptions.
4176 //
4177 // In Objective-C++ mode, we actually emit something equivalent to the C++
4178 // exception handler.
4179 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
4180}
4181
4182void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
4183 const ObjCAtThrowStmt &S,
4184 bool ClearInsertionPoint) {
4185 llvm::Value *ExceptionAsObject;
4186 bool isRethrow = false;
4187
4188 if (const Expr *ThrowExpr = S.getThrowExpr()) {
4189 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4190 ExceptionAsObject = Exception;
4191 } else {
4192 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4193 "Unexpected rethrow outside @catch block.");
4194 ExceptionAsObject = CGF.ObjCEHValueStack.back();
4195 isRethrow = true;
4196 }
4197 if (isRethrow && (usesSEHExceptions || usesCxxExceptions)) {
4198 // For SEH, ExceptionAsObject may be undef, because the catch handler is
4199 // not passed it for catchalls and so it is not visible to the catch
4200 // funclet. The real thrown object will still be live on the stack at this
4201 // point and will be rethrown. If we are explicitly rethrowing the object
4202 // that was passed into the `@catch` block, then this code path is not
4203 // reached and we will instead call `objc_exception_throw` with an explicit
4204 // argument.
4205 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn);
4206 Throw->setDoesNotReturn();
4207 } else {
4208 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
4209 llvm::CallBase *Throw =
4210 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
4211 Throw->setDoesNotReturn();
4212 }
4213 CGF.Builder.CreateUnreachable();
4214 if (ClearInsertionPoint)
4215 CGF.Builder.ClearInsertionPoint();
4216}
4217
4218llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
4219 Address AddrWeakObj) {
4220 CGBuilderTy &B = CGF.Builder;
4221 return B.CreateCall(
4222 WeakReadFn, EnforceType(B, AddrWeakObj.emitRawPointer(CGF), PtrToIdTy));
4223}
4224
4225void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
4226 llvm::Value *src, Address dst) {
4227 CGBuilderTy &B = CGF.Builder;
4228 src = EnforceType(B, src, IdTy);
4229 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4230 B.CreateCall(WeakAssignFn, {src, dstVal});
4231}
4232
4233void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
4234 llvm::Value *src, Address dst,
4235 bool threadlocal) {
4236 CGBuilderTy &B = CGF.Builder;
4237 src = EnforceType(B, src, IdTy);
4238 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4239 // FIXME. Add threadloca assign API
4240 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
4241 B.CreateCall(GlobalAssignFn, {src, dstVal});
4242}
4243
4244void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
4245 llvm::Value *src, Address dst,
4246 llvm::Value *ivarOffset) {
4247 CGBuilderTy &B = CGF.Builder;
4248 src = EnforceType(B, src, IdTy);
4249 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), IdTy);
4250 B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset});
4251}
4252
4253void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
4254 llvm::Value *src, Address dst) {
4255 CGBuilderTy &B = CGF.Builder;
4256 src = EnforceType(B, src, IdTy);
4257 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4258 B.CreateCall(StrongCastAssignFn, {src, dstVal});
4259}
4260
4261void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
4262 Address DestPtr,
4263 Address SrcPtr,
4264 llvm::Value *Size) {
4265 CGBuilderTy &B = CGF.Builder;
4266 llvm::Value *DestPtrVal = EnforceType(B, DestPtr.emitRawPointer(CGF), PtrTy);
4267 llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.emitRawPointer(CGF), PtrTy);
4268
4269 B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size});
4270}
4271
4272llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
4273 const ObjCInterfaceDecl *ID,
4274 const ObjCIvarDecl *Ivar) {
4275 const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
4276 // Emit the variable and initialize it with what we think the correct value
4277 // is. This allows code compiled with non-fragile ivars to work correctly
4278 // when linked against code which isn't (most of the time).
4279 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
4280 if (!IvarOffsetPointer)
4281 IvarOffsetPointer = new llvm::GlobalVariable(
4282 TheModule, llvm::PointerType::getUnqual(VMContext), false,
4283 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
4284 return IvarOffsetPointer;
4285}
4286
4287LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
4288 QualType ObjectTy,
4289 llvm::Value *BaseValue,
4290 const ObjCIvarDecl *Ivar,
4291 unsigned CVRQualifiers) {
4292 const ObjCInterfaceDecl *ID =
4293 ObjectTy->castAs<ObjCObjectType>()->getInterface();
4294 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4295 EmitIvarOffset(CGF, ID, Ivar));
4296}
4297
4299 const ObjCInterfaceDecl *OID,
4300 const ObjCIvarDecl *OIVD) {
4301 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
4302 next = next->getNextIvar()) {
4303 if (OIVD == next)
4304 return OID;
4305 }
4306
4307 // Otherwise check in the super class.
4308 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
4309 return FindIvarInterface(Context, Super, OIVD);
4310
4311 return nullptr;
4312}
4313
4314llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
4316 const ObjCIvarDecl *Ivar) {
4317 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
4319
4320 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
4321 // and ExternalLinkage, so create a reference to the ivar global and rely on
4322 // the definition being created as part of GenerateClass.
4323 if (RuntimeVersion < 10 ||
4324 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
4325 return CGF.Builder.CreateZExtOrBitCast(
4327 Int32Ty,
4329 llvm::PointerType::getUnqual(VMContext),
4330 ObjCIvarOffsetVariable(Interface, Ivar),
4331 CGF.getPointerAlign(), "ivar"),
4333 PtrDiffTy);
4334 std::string name = "__objc_ivar_offset_value_" +
4335 Interface->getNameAsString() +"." + Ivar->getNameAsString();
4336 CharUnits Align = CGM.getIntAlign();
4337 llvm::Value *Offset = TheModule.getGlobalVariable(name);
4338 if (!Offset) {
4339 auto GV = new llvm::GlobalVariable(TheModule, IntTy,
4340 false, llvm::GlobalValue::LinkOnceAnyLinkage,
4341 llvm::Constant::getNullValue(IntTy), name);
4342 GV->setAlignment(Align.getAsAlign());
4343 Offset = GV;
4344 }
4345 Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align);
4346 if (Offset->getType() != PtrDiffTy)
4347 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
4348 return Offset;
4349 }
4350 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
4351 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
4352}
4353
4356 auto Runtime = CGM.getLangOpts().ObjCRuntime;
4357 switch (Runtime.getKind()) {
4359 if (Runtime.getVersion() >= VersionTuple(2, 0))
4360 return new CGObjCGNUstep2(CGM);
4361 return new CGObjCGNUstep(CGM);
4362
4363 case ObjCRuntime::GCC:
4364 return new CGObjCGCC(CGM);
4365
4366 case ObjCRuntime::ObjFW:
4367 return new CGObjCObjFW(CGM);
4368
4371 case ObjCRuntime::iOS:
4373 llvm_unreachable("these runtimes are not GNU runtimes");
4374 }
4375 llvm_unreachable("bad runtime");
4376}
Defines the clang::ASTContext interface.
#define V(N, I)
Definition: ASTContext.h:3460
StringRef P
#define SM(sm)
Definition: Cuda.cpp:85
static const ObjCInterfaceDecl * FindIvarInterface(ASTContext &Context, const ObjCInterfaceDecl *OID, const ObjCIvarDecl *OIVD)
Definition: CGObjCGNU.cpp:4298
static bool isNamed(const NamedDecl *ND, const char(&Str)[Len])
Definition: Decl.cpp:3267
int Category
Definition: Format.cpp:3059
Defines the SourceManager interface.
Defines the Objective-C statement AST node classes.
__device__ __2f16 b
__device__ __2f16 float __ockl_bool s
__device__ __2f16 float c
do v
Definition: arm_acle.h:91
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
SourceManager & getSourceManager()
Definition: ASTContext.h:741
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1141
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
CanQualType LongTy
Definition: ASTContext.h:1169
void getObjCEncodingForType(QualType T, std::string &S, const FieldDecl *Field=nullptr, QualType *NotEncodedT=nullptr) const
Emit the Objective-CC type encoding for the given type T into S.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2723
std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, bool Extended=false) const
Emit the encoded type for the method declaration Decl into S.
std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, const Decl *Container) const
getObjCEncodingForPropertyDecl - Return the encoded type for this method declaration.
const ASTRecordLayout & getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const
Get or compute information about the layout of the specified Objective-C implementation.
IdentifierTable & Idents
Definition: ASTContext.h:680
const ASTRecordLayout & getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const
Get or compute information about the layout of the specified Objective-C interface.
QualType getObjCProtoType() const
Retrieve the type of the Objective-C Protocol class.
Definition: ASTContext.h:2249
QualType getPointerDiffType() const
Return the unique type for "ptrdiff_t" (C99 7.17) defined in <stddef.h>.
ObjCPropertyImplDecl * getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl *PD, const Decl *Container) const
CanQualType BoolTy
Definition: ASTContext.h:1161
QualType getObjCSelType() const
Retrieve the type that corresponds to the predefined Objective-C 'SEL' type.
Definition: ASTContext.h:2213
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
CanQualType IntTy
Definition: ASTContext.h:1169
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:2203
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2489
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, QualType T, std::string &S, bool Extended) const
getObjCEncodingForMethodParameter - Return the encoded type for a single method parameter or return t...
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:799
uint64_t getCharWidth() const
Return the size of the character type, in bits.
Definition: ASTContext.h:2493
CharUnits getSize() const
getSize - Get the record size in characters.
Definition: RecordLayout.h:193
const T * getTypePtr() const
Retrieve the underlying type pointer, which refers to a canonical type.
Definition: CanonicalType.h:84
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition: Address.h:128
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition: Address.h:251
CGBlockInfo - Information to generate a block literal.
Definition: CGBlocks.h:156
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:136
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:108
llvm::LoadInst * CreateAlignedLoad(llvm::Type *Ty, llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:128
virtual llvm::Constant * getAddrOfRTTIDescriptor(QualType Ty)=0
virtual CatchTypeInfo getCatchAllTypeInfo()
Definition: CGCXXABI.cpp:338
Abstract information about a function or function prototype.
Definition: CGCall.h:41
All available information about a concrete callee.
Definition: CGCall.h:63
Implements runtime-specific code generation functions.
Definition: CGObjCRuntime.h:65
virtual llvm::Constant * GetEHType(QualType T)=0
Get the type constant to catch for the given ObjC pointer type.
virtual void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, llvm::Value *src, Address dest, llvm::Value *ivarOffset)=0
virtual llvm::FunctionCallee GetCppAtomicObjectGetFunction()=0
API for atomic copying of qualified aggregates with non-trivial copy assignment (c++) in getter.
virtual void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, llvm::Value *src, Address dest)=0
virtual llvm::Constant * BuildByrefLayout(CodeGen::CodeGenModule &CGM, QualType T)=0
Returns an i8* which points to the byref layout information.
virtual void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, Address DestPtr, Address SrcPtr, llvm::Value *Size)=0
virtual llvm::FunctionCallee GetPropertySetFunction()=0
Return the runtime function for setting properties.
virtual llvm::FunctionCallee GetCppAtomicObjectSetFunction()=0
API for atomic copying of qualified aggregates with non-trivial copy assignment (c++) in setter.
virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtTryStmt &S)=0
virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, llvm::Value *Receiver, const CallArgList &CallArgs, const ObjCInterfaceDecl *Class=nullptr, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation.
virtual LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers)=0
virtual void RegisterAlias(const ObjCCompatibleAliasDecl *OAD)=0
Register an class alias.
virtual void GenerateCategory(const ObjCCategoryImplDecl *OCD)=0
Generate a category.
virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, bool ClearInsertionPoint=true)=0
virtual llvm::Value * EmitIvarOffset(CodeGen::CodeGenFunction &CGF, const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar)=0
virtual llvm::Function * GenerateMethod(const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD)=0
Generate a function preamble for a method with the specified types.
virtual llvm::Value * GenerateProtocolRef(CodeGenFunction &CGF, const ObjCProtocolDecl *OPD)=0
Emit the code to return the named protocol as an object, as in a @protocol expression.
virtual llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, Address AddrWeakObj)=0
virtual llvm::Function * ModuleInitFunction()=0
Generate the function required to register all Objective-C components in this compilation unit with t...
virtual CodeGen::RValue GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, const ObjCInterfaceDecl *Class, bool isCategoryImpl, llvm::Value *Self, bool IsClassMessage, const CallArgList &CallArgs, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation to the super class initiated in a method for Class and...
virtual void GenerateClass(const ObjCImplementationDecl *OID)=0
Generate a class structure for this class.
virtual llvm::FunctionCallee EnumerationMutationFunction()=0
EnumerationMutationFunction - Return the function that's called by the compiler when a mutation is de...
virtual llvm::Constant * BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, const CodeGen::CGBlockInfo &blockInfo)=0
virtual llvm::FunctionCallee GetGetStructFunction()=0
virtual llvm::Constant * GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0
GetOrEmitProtocol - Get the protocol object for the given declaration, emitting it if necessary.
virtual ConstantAddress GenerateConstantString(const StringLiteral *)=0
Generate a constant string object.
virtual llvm::Value * GetClass(CodeGenFunction &CGF, const ObjCInterfaceDecl *OID)=0
GetClass - Return a reference to the class for the given interface decl.
virtual void GenerateProtocol(const ObjCProtocolDecl *OPD)=0
Generate the named protocol.
virtual llvm::Constant * BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, const CodeGen::CGBlockInfo &blockInfo)=0
virtual llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, bool copy)=0
Return the runtime function for optimized setting properties.
virtual llvm::Value * GetSelector(CodeGenFunction &CGF, Selector Sel)=0
Get a selector for the specified name and type values.
virtual void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD)=0
Generates prologue for direct Objective-C Methods.
virtual Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel)=0
Get the address of a selector for the specified name and type values.
virtual void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, llvm::Value *src, Address dest)=0
virtual llvm::Value * EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF)
virtual void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, llvm::Value *src, Address dest, bool threadlocal=false)=0
virtual llvm::FunctionCallee GetPropertyGetFunction()=0
Return the runtime function for getting properties.
virtual llvm::FunctionCallee GetSetStructFunction()=0
virtual void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtSynchronizedStmt &S)=0
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:274
void add(RValue rvalue, QualType type)
Definition: CGCall.h:305
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition: CGCall.h:314
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void EmitNullInitialization(Address DestPtr, QualType Ty)
EmitNullInitialization - Generate code to set a value of the given type to null, If the type contains...
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
SmallVector< llvm::Value *, 8 > ObjCEHValueStack
ObjCEHValueStack - Stack of Objective-C exception values, used for rethrows.
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
JumpDest ReturnBlock
ReturnBlock - Unified return block.
llvm::Value * EmitObjCThrowOperand(const Expr *expr)
llvm::Value * LoadObjCSelf()
LoadObjCSelf - Load the value of self.
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **CallOrInvoke, bool IsMustTail, SourceLocation Loc, bool IsVirtualFunctionPointerThunk=false)
EmitCall - Generate a call of the given function, expecting the given result type,...
void EmitVarDecl(const VarDecl &D)
EmitVarDecl - Emit a local variable declaration.
llvm::CallInst * EmitNounwindRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
void EmitBranchThroughCleanup(JumpDest Dest)
EmitBranchThroughCleanup - Emit a branch from the current insert block through the normal cleanup han...
llvm::CallInst * EmitRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
llvm::CallBase * EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, ArrayRef< llvm::Value * > args, const Twine &name="")
static bool hasAggregateEvaluationKind(QualType T)
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
llvm::LLVMContext & getLLVMContext()
This class organizes the cross-function state that is used while generating LLVM code.
void setGVProperties(llvm::GlobalValue *GV, GlobalDecl GD) const
Set visibility, dllimport/dllexport and dso_local.
llvm::Module & getModule() const
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false, bool AssumeConvergent=false)
Create or return a runtime function declaration with the specified type and name.
void addCompilerUsedGlobal(llvm::GlobalValue *GV)
Add a global to a list to be added to the llvm.compiler.used metadata.
bool ReturnTypeUsesFPRet(QualType ResultType)
Return true iff the given type uses 'fpret' when used as a return type.
Definition: CGCall.cpp:1596
const LangOptions & getLangOpts() const
const TargetInfo & getTarget() const
void addUsedGlobal(llvm::GlobalValue *GV)
Add a global to a list to be added to the llvm.used metadata.
const llvm::DataLayout & getDataLayout() const
CGCXXABI & getCXXABI() const
const llvm::Triple & getTriple() const
bool ReturnTypeHasInReg(const CGFunctionInfo &FI)
Return true iff the given type has inreg set.
Definition: CGCall.cpp:1586
ASTContext & getContext() const
bool ReturnTypeUsesSRet(const CGFunctionInfo &FI)
Return true iff the given type uses 'sret' when used as a return type.
Definition: CGCall.cpp:1581
const CodeGenOptions & getCodeGenOpts() const
llvm::LLVMContext & getLLVMContext()
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.
ConstantAddress GetAddrOfConstantCString(const std::string &Str, const char *GlobalName=nullptr)
Returns a pointer to a character array containing the literal and a terminating '\0' character.
This class organizes the cross-module state that is used while lowering AST types to LLVM types.
Definition: CodeGenTypes.h:54
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
llvm::Type * ConvertTypeForMem(QualType T)
ConvertTypeForMem - Convert type T into a llvm::Type.
bool isZeroInitializable(QualType T)
IsZeroInitializable - Return whether a type can be zero-initialized (in the C++ sense) with an LLVM z...
A specialization of Address that requires the address to be an LLVM Constant.
Definition: Address.h:294
ArrayBuilder beginArray(llvm::Type *eltTy=nullptr)
llvm::GlobalVariable * finishAndCreateGlobal(As &&...args)
Given that this builder was created by beginning an array or struct directly on a ConstantInitBuilder...
StructBuilder beginStruct(llvm::StructType *ty=nullptr)
void finishAndAddTo(AggregateBuilderBase &parent)
Given that this builder was created by beginning an array or struct component on the given parent bui...
A helper class of ConstantInitBuilder, used for building constant array initializers.
The standard implementation of ConstantInitBuilder used in Clang.
A helper class of ConstantInitBuilder, used for building constant struct initializers.
LValue - This represents an lvalue references.
Definition: CGValue.h:182
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition: CGValue.h:42
bool isScalar() const
Definition: CGValue.h:64
static RValue get(llvm::Value *V)
Definition: CGValue.h:98
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
Definition: CGValue.h:108
bool isAggregate() const
Definition: CGValue.h:66
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition: CGValue.h:83
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:71
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:78
An abstract representation of an aligned address.
Definition: Address.h:42
llvm::Value * getPointer() const
Definition: Address.h:66
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition: CGCall.h:386
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1439
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1866
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
static void add(Kind k)
Definition: DeclBase.cpp:229
bool isWeakImported() const
Determine whether this is a weak-imported symbol.
Definition: DeclBase.cpp:848
@ OBJC_TQ_None
Definition: DeclBase.h:199
bool isUsed(bool CheckUsedAttr=true) const
Whether any (re-)declaration of the entity was used, meaning that a definition is required.
Definition: DeclBase.cpp:557
bool hasAttr() const
Definition: DeclBase.h:580
StringRef getName() const
This represents one expression.
Definition: Expr.h:110
StringRef getName() const
The name of this FileEntry.
Definition: FileEntry.h:61
DirectoryEntryRef getDir() const
Definition: FileEntry.h:78
One of these records is kept for each identifier that is lexed.
StringRef getName() const
Return the actual identifier string.
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:500
clang::ObjCRuntime ObjCRuntime
Definition: LangOptions.h:535
std::string ObjCConstantStringClass
Definition: LangOptions.h:539
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:274
Visibility getVisibility() const
Determines the visibility of this entity.
Definition: Decl.h:423
std::string getNameAsString() const
Get a human-readable name for the declaration, even if it is one of the special kinds of names (C++ c...
Definition: Decl.h:296
Represents Objective-C's @synchronized statement.
Definition: StmtObjC.h:303
Represents Objective-C's @throw statement.
Definition: StmtObjC.h:358
Represents Objective-C's @try ... @catch ... @finally statement.
Definition: StmtObjC.h:167
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2328
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2395
ObjCCategoryImplDecl - An object of this class encapsulates a category @implementation declaration.
Definition: DeclObjC.h:2544
ObjCCategoryDecl * getCategoryDecl() const
Definition: DeclObjC.cpp:2197
ObjCCompatibleAliasDecl - Represents alias of a class.
Definition: DeclObjC.h:2774
const ObjCInterfaceDecl * getClassInterface() const
Definition: DeclObjC.h:2792
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:947
classmeth_iterator classmeth_end() const
Definition: DeclObjC.h:1057
classmeth_iterator classmeth_begin() const
Definition: DeclObjC.h:1053
instmeth_range instance_methods() const
Definition: DeclObjC.h:1032
instmeth_iterator instmeth_end() const
Definition: DeclObjC.h:1040
instmeth_iterator instmeth_begin() const
Definition: DeclObjC.h:1036
prop_range properties() const
Definition: DeclObjC.h:966
classmeth_range class_methods() const
Definition: DeclObjC.h:1049
propimpl_range property_impls() const
Definition: DeclObjC.h:2512
const ObjCInterfaceDecl * getClassInterface() const
Definition: DeclObjC.h:2485
ObjCImplementationDecl - Represents a class definition - this is where method definitions are specifi...
Definition: DeclObjC.h:2596
Represents an ObjC class declaration.
Definition: DeclObjC.h:1153
all_protocol_range all_referenced_protocols() const
Definition: DeclObjC.h:1416
ObjCIvarDecl * all_declared_ivar_begin()
all_declared_ivar_begin - return first ivar declared in this class, its extensions and its implementa...
Definition: DeclObjC.cpp:1670
protocol_range protocols() const
Definition: DeclObjC.h:1358
protocol_iterator protocol_end() const
Definition: DeclObjC.h:1373
protocol_iterator protocol_begin() const
Definition: DeclObjC.h:1362
ObjCInterfaceDecl * getSuperClass() const
Definition: DeclObjC.cpp:350
ObjCInterfaceDecl * getDefinition()
Retrieve the definition of this class, or NULL if this class has been forward-declared (with @class) ...
Definition: DeclObjC.h:1541
known_extensions_range known_extensions() const
Definition: DeclObjC.h:1761
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:7530
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.cpp:936
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1951
AccessControl getAccessControl() const
Definition: DeclObjC.h:1999
ObjCInterfaceDecl * getContainingInterface()
Return the class interface that this ivar is logically contained in; this is either the interface whe...
Definition: DeclObjC.cpp:1873
ObjCIvarDecl * getNextIvar()
Definition: DeclObjC.h:1986
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:140
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:418
bool hasParamDestroyedInCallee() const
True if the method has a parameter that's destroyed in the callee.
Definition: DeclObjC.cpp:899
Stmt * getBody() const override
Retrieve the body of this method, if it has one.
Definition: DeclObjC.cpp:907
ObjCMethodDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclObjC.cpp:1010
bool isDirectMethod() const
True if the method is tagged as objc_direct.
Definition: DeclObjC.cpp:869
Selector getSelector() const
Definition: DeclObjC.h:327
ImplicitParamDecl * getCmdDecl() const
Definition: DeclObjC.h:420
QualType getReturnType() const
Definition: DeclObjC.h:329
bool isClassMethod() const
Definition: DeclObjC.h:434
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.cpp:1209
Represents a pointer to an Objective C object.
Definition: Type.h:7586
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:7623
const ObjCInterfaceType * getInterfaceType() const
If this pointer points to an Objective C @interface type, gets the type for that interface.
Definition: Type.cpp:1833
Represents a class type in Objective C.
Definition: Type.h:7332
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface.
Definition: Type.h:7565
Represents one property declaration in an Objective-C interface.
Definition: DeclObjC.h:730
ObjCMethodDecl * getGetterMethodDecl() const
Definition: DeclObjC.h:900
ObjCMethodDecl * getSetterMethodDecl() const
Definition: DeclObjC.h:903
QualType getType() const
Definition: DeclObjC.h:803
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2083
ObjCProtocolDecl * getDefinition()
Retrieve the definition of this protocol, if any.
Definition: DeclObjC.h:2249
bool isNonRuntimeProtocol() const
This is true iff the protocol is tagged with the objc_non_runtime_protocol attribute.
Definition: DeclObjC.cpp:1959
protocol_iterator protocol_begin() const
Definition: DeclObjC.h:2164
protocol_range protocols() const
Definition: DeclObjC.h:2160
protocol_iterator protocol_end() const
Definition: DeclObjC.h:2171
The basic abstraction for the target Objective-C runtime.
Definition: ObjCRuntime.h:28
Kind getKind() const
Definition: ObjCRuntime.h:77
const VersionTuple & getVersion() const
Definition: ObjCRuntime.h:78
bool isNonFragile() const
Does this runtime follow the set of implied behaviors for a "non-fragile" ABI?
Definition: ObjCRuntime.h:82
Kind
The basic Objective-C runtimes that we know about.
Definition: ObjCRuntime.h:31
@ MacOSX
'macosx' is the Apple-provided NeXT-derived runtime on Mac OS X platforms that use the non-fragile AB...
Definition: ObjCRuntime.h:35
@ FragileMacOSX
'macosx-fragile' is the Apple-provided NeXT-derived runtime on Mac OS X platforms that use the fragil...
Definition: ObjCRuntime.h:40
@ GNUstep
'gnustep' is the modern non-fragile GNUstep runtime.
Definition: ObjCRuntime.h:56
@ ObjFW
'objfw' is the Objective-C runtime included in ObjFW
Definition: ObjCRuntime.h:59
@ iOS
'ios' is the Apple-provided NeXT-derived runtime on iOS or the iOS simulator; it is always non-fragil...
Definition: ObjCRuntime.h:45
@ GCC
'gcc' is the Objective-C runtime shipped with GCC, implementing a fragile Objective-C ABI
Definition: ObjCRuntime.h:53
@ WatchOS
'watchos' is a variant of iOS for Apple's watchOS.
Definition: ObjCRuntime.h:49
A (possibly-)qualified type.
Definition: Type.h:929
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition: Type.h:354
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition: Type.h:347
@ OCL_None
There is no lifetime qualification on this type.
Definition: Type.h:343
@ OCL_Weak
Reading or writing from this object requires a barrier call.
Definition: Type.h:357
@ OCL_Autoreleasing
Assigning into this object requires a lifetime extension.
Definition: Type.h:360
This table allows us to fully hide how we implement multi-keyword caching.
Smart pointer class that efficiently represents Objective-C method names.
std::string getAsString() const
Derive the full selector name (e.g.
This class handles loading and caching of source files into memory.
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1778
bool containsNonAscii() const
Definition: Expr.h:1910
unsigned getLength() const
Definition: Expr.h:1895
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1870
StringRef getString() const
Definition: Expr.h:1855
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1262
uint64_t getPointerWidth(LangAS AddrSpace) const
Return the width of pointers on this target, for the specified address space.
Definition: TargetInfo.h:478
The top declaration context.
Definition: Decl.h:84
static DeclContext * castToDeclContext(const TranslationUnitDecl *D)
Definition: Decl.h:130
bool isVoidType() const
Definition: Type.h:8516
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:8810
bool isObjCQualifiedIdType() const
Definition: Type.h:8355
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:8635
bool isObjCIdType() const
Definition: Type.h:8367
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8741
bool hasPointerRepresentation() const
Whether this type is represented natively as a pointer.
Definition: Type.h:8682
QualType getType() const
Definition: Decl.h:682
Represents a variable declaration or definition.
Definition: Decl.h:886
CGObjCRuntime * CreateGNUObjCRuntime(CodeGenModule &CGM)
Creates an instance of an Objective-C runtime class.
Definition: CGObjCGNU.cpp:4355
constexpr size_t align(size_t Size)
Aligns a size to the pointer alignment.
Definition: PrimType.h:131
bool Zero(InterpState &S, CodePtr OpPC)
Definition: Interp.h:2350
RangeSelector node(std::string ID)
Selects a node, including trailing semicolon, if any (for declarations and non-expression statements)...
RangeSelector name(std::string ID)
Given a node with a "name", (like NamedDecl, DeclRefExpr, CxxCtorInitializer, and TypeLoc) selects th...
The JSON file list parser is used to communicate input to InstallAPI.
bool isa(CodeGen::Address addr)
Definition: Address.h:328
CanQual< Type > CanQualType
Represents a canonical, potentially-qualified type.
Selector GetNullarySelector(StringRef name, ASTContext &Ctx)
Utility function for constructing a nullary selector.
Definition: ASTContext.h:3609
const FunctionProtoType * T
@ Interface
The "__interface" keyword introduces the elaborated-type-specifier.
@ Class
The "class" keyword introduces the elaborated-type-specifier.
@ HiddenVisibility
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:37
int int32_t
unsigned long uint64_t
unsigned int uint32_t
The MS C++ ABI needs a pointer to RTTI data plus some flags to describe the type of a catch handler,...
Definition: CGCleanup.h:39