Skip to content

numpy,taco: sweep over sparsities in slicing benchmarks #27

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 27, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
84 changes: 48 additions & 36 deletions numpy/windowing.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,11 +32,12 @@ def sliceTensor(tensor, dim, config):
# Benchmark to measure the time it takes to perform the slice.
@pytest.mark.parametrize("dim", [5000, 10000, 20000])
@pytest.mark.parametrize("format", ['csr'])
@pytest.mark.parametrize("sparsity", [0.01, 0.005, 0.05])
@pytest.mark.parametrize("config", sizeConfigs[:len(sizeConfigs)-1])
def bench_slice_sparse_window(tacoBench, dim, format, config):
def bench_slice_sparse_window(tacoBench, dim, format, sparsity, config):
loader = RandomScipySparseTensorLoader(format)
matrix = loader.random((dim, dim), 0.01).astype('float64')
matrix2 = loader.random((dim, dim), 0.01, variant=1).astype('float64')
matrix = loader.random((dim, dim), sparsity).astype('float64')
matrix2 = loader.random((dim, dim), sparsity, variant=1).astype('float64')
def bench():
x = sliceTensor(matrix, dim, config)
x2 = sliceTensor(matrix2, dim, config)
Expand All @@ -46,11 +47,12 @@ def bench():
# Benchmark to measure the time it takes to perform the addition.
@pytest.mark.parametrize("dim", [5000, 10000, 20000])
@pytest.mark.parametrize("format", ['csr'])
@pytest.mark.parametrize("sparsity", [0.01, 0.005, 0.05])
@pytest.mark.parametrize("config", sizeConfigs[:len(sizeConfigs)-1])
def bench_add_sliced_sparse_window(tacoBench, dim, format, config):
def bench_add_sliced_sparse_window(tacoBench, dim, format, sparsity, config):
loader = RandomScipySparseTensorLoader(format)
matrix = loader.random((dim, dim), 0.01).astype('float64')
matrix2 = loader.random((dim, dim), 0.01, variant=1).astype('float64')
matrix = loader.random((dim, dim), sparsity).astype('float64')
matrix2 = loader.random((dim, dim), sparsity, variant=1).astype('float64')
x = sliceTensor(matrix, dim, config)
x2 = sliceTensor(matrix2, dim, config)
def bench():
Expand All @@ -60,11 +62,12 @@ def bench():
# Benchmark that performs the slice and addition.
@pytest.mark.parametrize("dim", [5000, 10000, 20000])
@pytest.mark.parametrize("format", ['csr'])
@pytest.mark.parametrize("sparsity", [0.01, 0.005, 0.05])
@pytest.mark.parametrize("config", sizeConfigs)
def bench_add_sparse_window(tacoBench, dim, format, config):
def bench_add_sparse_window(tacoBench, dim, format, sparsity, config):
loader = RandomScipySparseTensorLoader(format)
matrix = loader.random((dim, dim), 0.01).astype('float64')
matrix2 = loader.random((dim, dim), 0.01, variant=1).astype('float64')
matrix = loader.random((dim, dim), sparsity).astype('float64')
matrix2 = loader.random((dim, dim), sparsity, variant=1).astype('float64')
def bench():
x = sliceTensor(matrix, dim, config)
x2 = sliceTensor(matrix2, dim, config)
Expand All @@ -74,35 +77,38 @@ def bench():
tacoBench(bench)

@pytest.mark.parametrize("dim", [5000, 10000, 20000])
@pytest.mark.parametrize("sparsity", [0.01, 0.005, 0.05])
@pytest.mark.parametrize("config", sizeConfigs[:len(sizeConfigs)-1])
def bench_slice_pydata_sparse_window(tacoBench, dim, config):
def bench_slice_pydata_sparse_window(tacoBench, dim, sparsity, config):
loader = RandomPydataSparseTensorLoader()
matrix = loader.random((dim, dim), 0.01).astype('float64')
matrix2 = loader.random((dim, dim), 0.01, variant=1).astype('float64')
matrix = loader.random((dim, dim), sparsity).astype('float64')
matrix2 = loader.random((dim, dim), sparsity, variant=1).astype('float64')
def bench():
x = sliceTensor(matrix, dim, config)
x2 = sliceTensor(matrix2, dim, config)
return (x, x2)
tacoBench(bench)

@pytest.mark.parametrize("dim", [5000, 10000, 20000])
@pytest.mark.parametrize("sparsity", [0.01, 0.005, 0.05])
@pytest.mark.parametrize("config", sizeConfigs[:len(sizeConfigs)-1])
def bench_add_sliced_pydata_sparse_window(tacoBench, dim, config):
def bench_add_sliced_pydata_sparse_window(tacoBench, dim, sparsity, config):
loader = RandomPydataSparseTensorLoader()
matrix = loader.random((dim, dim), 0.01).astype('float64')
matrix2 = loader.random((dim, dim), 0.01, variant=1).astype('float64')
matrix = loader.random((dim, dim), sparsity).astype('float64')
matrix2 = loader.random((dim, dim), sparsity, variant=1).astype('float64')
x = sliceTensor(matrix, dim, config)
x2 = sliceTensor(matrix2, dim, config)
def bench():
return x + x2
tacoBench(bench)

@pytest.mark.parametrize("dim", [5000, 10000, 20000])
@pytest.mark.parametrize("sparsity", [0.01, 0.005, 0.05])
@pytest.mark.parametrize("config", sizeConfigs)
def bench_add_pydata_sparse_window(tacoBench, dim, config):
def bench_add_pydata_sparse_window(tacoBench, dim, sparsity, config):
loader = RandomPydataSparseTensorLoader()
matrix = loader.random((dim, dim), 0.01).astype('float64')
matrix2 = loader.random((dim, dim), 0.01, variant=1).astype('float64')
matrix = loader.random((dim, dim), sparsity).astype('float64')
matrix2 = loader.random((dim, dim), sparsity, variant=1).astype('float64')
def bench():
x = sliceTensor(matrix, dim, config)
x2 = sliceTensor(matrix2, dim, config)
Expand All @@ -111,11 +117,12 @@ def bench():

@pytest.mark.parametrize("dim", [5000, 10000, 20000])
@pytest.mark.parametrize("format", ['csr'])
@pytest.mark.parametrize("sparsity", [0.01, 0.005, 0.05])
@pytest.mark.parametrize("strideWidth", [2, 4, 8])
def bench_slice_strided_window(tacoBench, dim, format, strideWidth):
def bench_slice_strided_window(tacoBench, dim, format, sparsity, strideWidth):
loader = RandomScipySparseTensorLoader(format)
matrix = loader.random((dim, dim), 0.01).astype('float64')
matrix2 = loader.random((dim, dim), 0.01, variant=1).astype('float64')
matrix = loader.random((dim, dim), sparsity).astype('float64')
matrix2 = loader.random((dim, dim), sparsity, variant=1).astype('float64')
def bench():
x = matrix[0:dim:strideWidth, 0:dim:strideWidth]
x2 = matrix2[0:dim:strideWidth, 0:dim:strideWidth]
Expand All @@ -124,11 +131,12 @@ def bench():

@pytest.mark.parametrize("dim", [5000, 10000, 20000])
@pytest.mark.parametrize("format", ['csr'])
@pytest.mark.parametrize("sparsity", [0.01, 0.005, 0.05])
@pytest.mark.parametrize("strideWidth", [2, 4, 8])
def bench_add_sliced_sparse_strided_window(tacoBench, dim, format, strideWidth):
def bench_add_sliced_sparse_strided_window(tacoBench, dim, format, sparsity, strideWidth):
loader = RandomScipySparseTensorLoader(format)
matrix = loader.random((dim, dim), 0.01).astype('float64')
matrix2 = loader.random((dim, dim), 0.01, variant=1).astype('float64')
matrix = loader.random((dim, dim), sparsity).astype('float64')
matrix2 = loader.random((dim, dim), sparsity, variant=1).astype('float64')
x = matrix[0:dim:strideWidth, 0:dim:strideWidth]
x2 = matrix2[0:dim:strideWidth, 0:dim:strideWidth]
def bench():
Expand All @@ -137,47 +145,51 @@ def bench():

@pytest.mark.parametrize("dim", [5000, 10000, 20000])
@pytest.mark.parametrize("format", ['csr'])
@pytest.mark.parametrize("sparsity", [0.01, 0.005, 0.05])
@pytest.mark.parametrize("strideWidth", [2, 4, 8])
def bench_add_sparse_strided_window(tacoBench, dim, format, strideWidth):
def bench_add_sparse_strided_window(tacoBench, dim, format, sparsity, strideWidth):
loader = RandomScipySparseTensorLoader(format)
matrix = loader.random((dim, dim), 0.01).astype('float64')
matrix2 = loader.random((dim, dim), 0.01, variant=1).astype('float64')
matrix = loader.random((dim, dim), sparsity).astype('float64')
matrix2 = loader.random((dim, dim), sparsity, variant=1).astype('float64')
def bench():
x = matrix[0:dim:strideWidth, 0:dim:strideWidth]
x2 = matrix2[0:dim:strideWidth, 0:dim:strideWidth]
res = x + x2
tacoBench(bench)

@pytest.mark.parametrize("dim", [5000, 10000, 20000])
@pytest.mark.parametrize("sparsity", [0.01, 0.005, 0.05])
@pytest.mark.parametrize("strideWidth", [2, 4, 8])
def bench_slice_pydata_sparse_strided_window(tacoBench, dim, strideWidth):
def bench_slice_pydata_sparse_strided_window(tacoBench, dim, sparsity, strideWidth):
loader = RandomPydataSparseTensorLoader()
matrix = loader.random((dim, dim), 0.01).astype('float64')
matrix2 = loader.random((dim, dim), 0.01, variant=1).astype('float64')
matrix = loader.random((dim, dim), sparsity).astype('float64')
matrix2 = loader.random((dim, dim), sparsity, variant=1).astype('float64')
def bench():
x = matrix[0:dim:strideWidth, 0:dim:strideWidth]
x2 = matrix2[0:dim:strideWidth, 0:dim:strideWidth]
return (x, x2)
tacoBench(bench)

@pytest.mark.parametrize("dim", [5000, 10000, 20000])
@pytest.mark.parametrize("sparsity", [0.01, 0.005, 0.05])
@pytest.mark.parametrize("strideWidth", [2, 4, 8])
def bench_add_sliced_pydata_sparse_strided_window(tacoBench, dim, strideWidth):
def bench_add_sliced_pydata_sparse_strided_window(tacoBench, dim, sparsity, strideWidth):
loader = RandomPydataSparseTensorLoader()
matrix = loader.random((dim, dim), 0.01).astype('float64')
matrix2 = loader.random((dim, dim), 0.01, variant=1).astype('float64')
matrix = loader.random((dim, dim), sparsity).astype('float64')
matrix2 = loader.random((dim, dim), sparsity, variant=1).astype('float64')
x = matrix[0:dim:strideWidth, 0:dim:strideWidth]
x2 = matrix2[0:dim:strideWidth, 0:dim:strideWidth]
def bench():
res = x + x2
tacoBench(bench)

@pytest.mark.parametrize("dim", [5000, 10000, 20000])
@pytest.mark.parametrize("sparsity", [0.01, 0.005, 0.05])
@pytest.mark.parametrize("strideWidth", [2, 4, 8])
def bench_add_pydata_sparse_strided_window(tacoBench, dim, strideWidth):
def bench_add_pydata_sparse_strided_window(tacoBench, dim, sparsity, strideWidth):
loader = RandomPydataSparseTensorLoader()
matrix = loader.random((dim, dim), 0.01).astype('float64')
matrix2 = loader.random((dim, dim), 0.01, variant=1).astype('float64')
matrix = loader.random((dim, dim), sparsity).astype('float64')
matrix2 = loader.random((dim, dim), sparsity, variant=1).astype('float64')
def bench():
x = matrix[0:dim:strideWidth, 0:dim:strideWidth]
x2 = matrix2[0:dim:strideWidth, 0:dim:strideWidth]
Expand Down
15 changes: 8 additions & 7 deletions taco/windowing.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -66,9 +66,8 @@ Tensor<double> windowedTensorOp(Tensor<double> input1, Tensor<double> input2, in
}
}

static void bench_add_sparse_window(benchmark::State& state, const Format& f, WindowConfig config) {
static void bench_add_sparse_window(benchmark::State& state, const Format& f, WindowConfig config, float sparsity) {
int dim = state.range(0);
auto sparsity = 0.01;
Tensor<double> matrix = loadRandomTensor("A", {dim, dim}, sparsity, f);
Tensor<double> matrix2 = loadRandomTensor("A2", {dim, dim}, sparsity, f, 1 /* variant */);
matrix.pack();
Expand All @@ -87,14 +86,15 @@ static void bench_add_sparse_window(benchmark::State& state, const Format& f, Wi
}

#define DECLARE_ADD_SPARSE_WINDOW_BENCH(configName, config) \
TACO_BENCH_ARGS(bench_add_sparse_window, csr/configName, CSR, config)->ArgsProduct({tensorSizes});
TACO_BENCH_ARGS(bench_add_sparse_window, csr/configName/0.01, CSR, config, 0.01)->ArgsProduct({tensorSizes}); \
TACO_BENCH_ARGS(bench_add_sparse_window, csr/configName/0.005, CSR, config, 0.005)->ArgsProduct({tensorSizes}); \
TACO_BENCH_ARGS(bench_add_sparse_window, csr/configName/0.05, CSR, config, 0.05)->ArgsProduct({tensorSizes}); \

FOREACH_WINDOW_CONFIG(DECLARE_ADD_SPARSE_WINDOW_BENCH)

static void bench_add_sparse_strided_window(benchmark::State& state, const Format& f) {
static void bench_add_sparse_strided_window(benchmark::State& state, const Format& f, float sparsity) {
int dim = state.range(0);
int strideWidth = state.range(1);
auto sparsity = 0.01;
Tensor<double> matrix = loadRandomTensor("A", {dim, dim}, sparsity, f);
Tensor<double> matrix2 = loadRandomTensor("A2", {dim, dim}, sparsity, f, 1 /* variant */);
matrix.pack();
Expand All @@ -113,8 +113,9 @@ static void bench_add_sparse_strided_window(benchmark::State& state, const Forma
}
}
std::vector<int64_t> strides({2, 4, 8});
TACO_BENCH_ARG(bench_add_sparse_strided_window, csr, CSR)
->ArgsProduct({tensorSizes, strides});
TACO_BENCH_ARGS(bench_add_sparse_strided_window, csr/0.01, CSR, 0.01)->ArgsProduct({tensorSizes, strides});
TACO_BENCH_ARGS(bench_add_sparse_strided_window, csr/0.005, CSR, 0.005)->ArgsProduct({tensorSizes, strides});
TACO_BENCH_ARGS(bench_add_sparse_strided_window, csr/0.05, CSR, 0.05)->ArgsProduct({tensorSizes, strides});

static void bench_add_sparse_index_set(benchmark::State& state, const Format& f) {
int dim = state.range(0);
Expand Down