clang 21.0.0git
SemaARM.cpp
Go to the documentation of this file.
1//===------ SemaARM.cpp ---------- ARM target-specific routines -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis functions specific to ARM.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/SemaARM.h"
19#include "clang/Sema/Sema.h"
20
21namespace clang {
22
24
25/// BuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
27 CallExpr *TheCall) {
28 ASTContext &Context = getASTContext();
29
30 if (BuiltinID == AArch64::BI__builtin_arm_irg) {
31 if (SemaRef.checkArgCount(TheCall, 2))
32 return true;
33 Expr *Arg0 = TheCall->getArg(0);
34 Expr *Arg1 = TheCall->getArg(1);
35
37 if (FirstArg.isInvalid())
38 return true;
39 QualType FirstArgType = FirstArg.get()->getType();
40 if (!FirstArgType->isAnyPointerType())
41 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
42 << "first" << FirstArgType << Arg0->getSourceRange();
43 TheCall->setArg(0, FirstArg.get());
44
46 if (SecArg.isInvalid())
47 return true;
48 QualType SecArgType = SecArg.get()->getType();
49 if (!SecArgType->isIntegerType())
50 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
51 << "second" << SecArgType << Arg1->getSourceRange();
52
53 // Derive the return type from the pointer argument.
54 TheCall->setType(FirstArgType);
55 return false;
56 }
57
58 if (BuiltinID == AArch64::BI__builtin_arm_addg) {
59 if (SemaRef.checkArgCount(TheCall, 2))
60 return true;
61
62 Expr *Arg0 = TheCall->getArg(0);
64 if (FirstArg.isInvalid())
65 return true;
66 QualType FirstArgType = FirstArg.get()->getType();
67 if (!FirstArgType->isAnyPointerType())
68 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
69 << "first" << FirstArgType << Arg0->getSourceRange();
70 TheCall->setArg(0, FirstArg.get());
71
72 // Derive the return type from the pointer argument.
73 TheCall->setType(FirstArgType);
74
75 // Second arg must be an constant in range [0,15]
76 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, 15);
77 }
78
79 if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
80 if (SemaRef.checkArgCount(TheCall, 2))
81 return true;
82 Expr *Arg0 = TheCall->getArg(0);
83 Expr *Arg1 = TheCall->getArg(1);
84
86 if (FirstArg.isInvalid())
87 return true;
88 QualType FirstArgType = FirstArg.get()->getType();
89 if (!FirstArgType->isAnyPointerType())
90 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
91 << "first" << FirstArgType << Arg0->getSourceRange();
92
93 QualType SecArgType = Arg1->getType();
94 if (!SecArgType->isIntegerType())
95 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
96 << "second" << SecArgType << Arg1->getSourceRange();
97 TheCall->setType(Context.IntTy);
98 return false;
99 }
100
101 if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
102 BuiltinID == AArch64::BI__builtin_arm_stg) {
103 if (SemaRef.checkArgCount(TheCall, 1))
104 return true;
105 Expr *Arg0 = TheCall->getArg(0);
107 if (FirstArg.isInvalid())
108 return true;
109
110 QualType FirstArgType = FirstArg.get()->getType();
111 if (!FirstArgType->isAnyPointerType())
112 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
113 << "first" << FirstArgType << Arg0->getSourceRange();
114 TheCall->setArg(0, FirstArg.get());
115
116 // Derive the return type from the pointer argument.
117 if (BuiltinID == AArch64::BI__builtin_arm_ldg)
118 TheCall->setType(FirstArgType);
119 return false;
120 }
121
122 if (BuiltinID == AArch64::BI__builtin_arm_subp) {
123 Expr *ArgA = TheCall->getArg(0);
124 Expr *ArgB = TheCall->getArg(1);
125
128
129 if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
130 return true;
131
132 QualType ArgTypeA = ArgExprA.get()->getType();
133 QualType ArgTypeB = ArgExprB.get()->getType();
134
135 auto isNull = [&](Expr *E) -> bool {
136 return E->isNullPointerConstant(Context,
138 };
139
140 // argument should be either a pointer or null
141 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
142 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
143 << "first" << ArgTypeA << ArgA->getSourceRange();
144
145 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
146 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
147 << "second" << ArgTypeB << ArgB->getSourceRange();
148
149 // Ensure Pointee types are compatible
150 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
151 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
152 QualType pointeeA = ArgTypeA->getPointeeType();
153 QualType pointeeB = ArgTypeB->getPointeeType();
154 if (!Context.typesAreCompatible(
155 Context.getCanonicalType(pointeeA).getUnqualifiedType(),
156 Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
157 return Diag(TheCall->getBeginLoc(),
158 diag::err_typecheck_sub_ptr_compatible)
159 << ArgTypeA << ArgTypeB << ArgA->getSourceRange()
160 << ArgB->getSourceRange();
161 }
162 }
163
164 // at least one argument should be pointer type
165 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
166 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
167 << ArgTypeA << ArgTypeB << ArgA->getSourceRange();
168
169 if (isNull(ArgA)) // adopt type of the other pointer
170 ArgExprA =
171 SemaRef.ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
172
173 if (isNull(ArgB))
174 ArgExprB =
175 SemaRef.ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
176
177 TheCall->setArg(0, ArgExprA.get());
178 TheCall->setArg(1, ArgExprB.get());
179 TheCall->setType(Context.LongLongTy);
180 return false;
181 }
182 assert(false && "Unhandled ARM MTE intrinsic");
183 return true;
184}
185
186/// BuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
187/// TheCall is an ARM/AArch64 special register string literal.
188bool SemaARM::BuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
189 int ArgNum, unsigned ExpectedFieldNum,
190 bool AllowName) {
191 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
192 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
193 BuiltinID == ARM::BI__builtin_arm_rsr ||
194 BuiltinID == ARM::BI__builtin_arm_rsrp ||
195 BuiltinID == ARM::BI__builtin_arm_wsr ||
196 BuiltinID == ARM::BI__builtin_arm_wsrp;
197 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
198 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
199 BuiltinID == AArch64::BI__builtin_arm_rsr128 ||
200 BuiltinID == AArch64::BI__builtin_arm_wsr128 ||
201 BuiltinID == AArch64::BI__builtin_arm_rsr ||
202 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
203 BuiltinID == AArch64::BI__builtin_arm_wsr ||
204 BuiltinID == AArch64::BI__builtin_arm_wsrp;
205 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
206
207 // We can't check the value of a dependent argument.
208 Expr *Arg = TheCall->getArg(ArgNum);
209 if (Arg->isTypeDependent() || Arg->isValueDependent())
210 return false;
211
212 // Check if the argument is a string literal.
213 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
214 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
215 << Arg->getSourceRange();
216
217 // Check the type of special register given.
218 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
220 Reg.split(Fields, ":");
221
222 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
223 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
224 << Arg->getSourceRange();
225
226 // If the string is the name of a register then we cannot check that it is
227 // valid here but if the string is of one the forms described in ACLE then we
228 // can check that the supplied fields are integers and within the valid
229 // ranges.
230 if (Fields.size() > 1) {
231 bool FiveFields = Fields.size() == 5;
232
233 bool ValidString = true;
234 if (IsARMBuiltin) {
235 ValidString &= Fields[0].starts_with_insensitive("cp") ||
236 Fields[0].starts_with_insensitive("p");
237 if (ValidString)
238 Fields[0] = Fields[0].drop_front(
239 Fields[0].starts_with_insensitive("cp") ? 2 : 1);
240
241 ValidString &= Fields[2].starts_with_insensitive("c");
242 if (ValidString)
243 Fields[2] = Fields[2].drop_front(1);
244
245 if (FiveFields) {
246 ValidString &= Fields[3].starts_with_insensitive("c");
247 if (ValidString)
248 Fields[3] = Fields[3].drop_front(1);
249 }
250 }
251
252 SmallVector<int, 5> Ranges;
253 if (FiveFields)
254 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
255 else
256 Ranges.append({15, 7, 15});
257
258 for (unsigned i = 0; i < Fields.size(); ++i) {
259 int IntField;
260 ValidString &= !Fields[i].getAsInteger(10, IntField);
261 ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
262 }
263
264 if (!ValidString)
265 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
266 << Arg->getSourceRange();
267 } else if (IsAArch64Builtin && Fields.size() == 1) {
268 // This code validates writes to PSTATE registers.
269
270 // Not a write.
271 if (TheCall->getNumArgs() != 2)
272 return false;
273
274 // The 128-bit system register accesses do not touch PSTATE.
275 if (BuiltinID == AArch64::BI__builtin_arm_rsr128 ||
276 BuiltinID == AArch64::BI__builtin_arm_wsr128)
277 return false;
278
279 // These are the named PSTATE accesses using "MSR (immediate)" instructions,
280 // along with the upper limit on the immediates allowed.
281 auto MaxLimit = llvm::StringSwitch<std::optional<unsigned>>(Reg)
282 .CaseLower("spsel", 15)
283 .CaseLower("daifclr", 15)
284 .CaseLower("daifset", 15)
285 .CaseLower("pan", 15)
286 .CaseLower("uao", 15)
287 .CaseLower("dit", 15)
288 .CaseLower("ssbs", 15)
289 .CaseLower("tco", 15)
290 .CaseLower("allint", 1)
291 .CaseLower("pm", 1)
292 .Default(std::nullopt);
293
294 // If this is not a named PSTATE, just continue without validating, as this
295 // will be lowered to an "MSR (register)" instruction directly
296 if (!MaxLimit)
297 return false;
298
299 // Here we only allow constants in the range for that pstate, as required by
300 // the ACLE.
301 //
302 // While clang also accepts the names of system registers in its ACLE
303 // intrinsics, we prevent this with the PSTATE names used in MSR (immediate)
304 // as the value written via a register is different to the value used as an
305 // immediate to have the same effect. e.g., for the instruction `msr tco,
306 // x0`, it is bit 25 of register x0 that is written into PSTATE.TCO, but
307 // with `msr tco, #imm`, it is bit 0 of xN that is written into PSTATE.TCO.
308 //
309 // If a programmer wants to codegen the MSR (register) form of `msr tco,
310 // xN`, they can still do so by specifying the register using five
311 // colon-separated numbers in a string.
312 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, *MaxLimit);
313 }
314
315 return false;
316}
317
318/// getNeonEltType - Return the QualType corresponding to the elements of
319/// the vector type specified by the NeonTypeFlags. This is used to check
320/// the pointer arguments for Neon load/store intrinsics.
322 bool IsPolyUnsigned, bool IsInt64Long) {
323 switch (Flags.getEltType()) {
325 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
327 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
329 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
331 if (IsInt64Long)
332 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
333 else
334 return Flags.isUnsigned() ? Context.UnsignedLongLongTy
335 : Context.LongLongTy;
337 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
339 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
341 if (IsInt64Long)
342 return Context.UnsignedLongTy;
343 else
344 return Context.UnsignedLongLongTy;
346 break;
348 return Context.HalfTy;
350 return Context.FloatTy;
352 return Context.DoubleTy;
354 return Context.BFloat16Ty;
356 return Context.MFloat8Ty;
357 }
358 llvm_unreachable("Invalid NeonTypeFlag!");
359}
360
361enum ArmSMEState : unsigned {
363
364 ArmInZA = 0b01,
365 ArmOutZA = 0b10,
367 ArmZAMask = 0b11,
368
369 ArmInZT0 = 0b01 << 2,
370 ArmOutZT0 = 0b10 << 2,
371 ArmInOutZT0 = 0b11 << 2,
372 ArmZT0Mask = 0b11 << 2
374
375bool SemaARM::CheckImmediateArg(CallExpr *TheCall, unsigned CheckTy,
376 unsigned ArgIdx, unsigned EltBitWidth,
377 unsigned ContainerBitWidth) {
378 // Function that checks whether the operand (ArgIdx) is an immediate
379 // that is one of a given set of values.
380 auto CheckImmediateInSet = [&](std::initializer_list<int64_t> Set,
381 int ErrDiag) -> bool {
382 // We can't check the value of a dependent argument.
383 Expr *Arg = TheCall->getArg(ArgIdx);
384 if (Arg->isTypeDependent() || Arg->isValueDependent())
385 return false;
386
387 // Check constant-ness first.
388 llvm::APSInt Imm;
389 if (SemaRef.BuiltinConstantArg(TheCall, ArgIdx, Imm))
390 return true;
391
392 if (std::find(Set.begin(), Set.end(), Imm.getSExtValue()) == Set.end())
393 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
394 return false;
395 };
396
397 switch ((ImmCheckType)CheckTy) {
398 case ImmCheckType::ImmCheck0_31:
399 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 31))
400 return true;
401 break;
402 case ImmCheckType::ImmCheck0_13:
403 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 13))
404 return true;
405 break;
406 case ImmCheckType::ImmCheck0_63:
407 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 63))
408 return true;
409 break;
410 case ImmCheckType::ImmCheck1_16:
411 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, 16))
412 return true;
413 break;
414 case ImmCheckType::ImmCheck0_7:
415 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 7))
416 return true;
417 break;
418 case ImmCheckType::ImmCheck1_1:
419 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, 1))
420 return true;
421 break;
422 case ImmCheckType::ImmCheck1_3:
423 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, 3))
424 return true;
425 break;
426 case ImmCheckType::ImmCheck1_7:
427 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, 7))
428 return true;
429 break;
430 case ImmCheckType::ImmCheckExtract:
431 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0,
432 (2048 / EltBitWidth) - 1))
433 return true;
434 break;
435 case ImmCheckType::ImmCheckCvt:
436 case ImmCheckType::ImmCheckShiftRight:
437 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, EltBitWidth))
438 return true;
439 break;
440 case ImmCheckType::ImmCheckShiftRightNarrow:
441 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, EltBitWidth / 2))
442 return true;
443 break;
444 case ImmCheckType::ImmCheckShiftLeft:
445 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, EltBitWidth - 1))
446 return true;
447 break;
448 case ImmCheckType::ImmCheckLaneIndex:
449 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0,
450 (ContainerBitWidth / EltBitWidth) - 1))
451 return true;
452 break;
453 case ImmCheckType::ImmCheckLaneIndexCompRotate:
455 TheCall, ArgIdx, 0, (ContainerBitWidth / (2 * EltBitWidth)) - 1))
456 return true;
457 break;
458 case ImmCheckType::ImmCheckLaneIndexDot:
460 TheCall, ArgIdx, 0, (ContainerBitWidth / (4 * EltBitWidth)) - 1))
461 return true;
462 break;
463 case ImmCheckType::ImmCheckComplexRot90_270:
464 if (CheckImmediateInSet({90, 270}, diag::err_rotation_argument_to_cadd))
465 return true;
466 break;
467 case ImmCheckType::ImmCheckComplexRotAll90:
468 if (CheckImmediateInSet({0, 90, 180, 270},
469 diag::err_rotation_argument_to_cmla))
470 return true;
471 break;
472 case ImmCheckType::ImmCheck0_1:
473 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 1))
474 return true;
475 break;
476 case ImmCheckType::ImmCheck0_2:
477 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 2))
478 return true;
479 break;
480 case ImmCheckType::ImmCheck0_3:
481 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 3))
482 return true;
483 break;
484 case ImmCheckType::ImmCheck0_0:
485 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 0))
486 return true;
487 break;
488 case ImmCheckType::ImmCheck0_15:
489 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 15))
490 return true;
491 break;
492 case ImmCheckType::ImmCheck0_255:
493 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 255))
494 return true;
495 break;
496 case ImmCheckType::ImmCheck1_32:
497 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, 32))
498 return true;
499 break;
500 case ImmCheckType::ImmCheck1_64:
501 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, 64))
502 return true;
503 break;
504 case ImmCheckType::ImmCheck2_4_Mul2:
505 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 2, 4) ||
506 SemaRef.BuiltinConstantArgMultiple(TheCall, ArgIdx, 2))
507 return true;
508 break;
509 }
510 return false;
511}
512
514 CallExpr *TheCall,
515 SmallVectorImpl<std::tuple<int, int, int, int>> &ImmChecks,
516 int OverloadType) {
517 bool HasError = false;
518
519 for (const auto &I : ImmChecks) {
520 auto [ArgIdx, CheckTy, ElementBitWidth, VecBitWidth] = I;
521
522 if (OverloadType >= 0)
523 ElementBitWidth = NeonTypeFlags(OverloadType).getEltSizeInBits();
524
525 HasError |= CheckImmediateArg(TheCall, CheckTy, ArgIdx, ElementBitWidth,
526 VecBitWidth);
527 }
528
529 return HasError;
530}
531
533 CallExpr *TheCall, SmallVectorImpl<std::tuple<int, int, int>> &ImmChecks) {
534 bool HasError = false;
535
536 for (const auto &I : ImmChecks) {
537 auto [ArgIdx, CheckTy, ElementBitWidth] = I;
538 HasError |=
539 CheckImmediateArg(TheCall, CheckTy, ArgIdx, ElementBitWidth, 128);
540 }
541
542 return HasError;
543}
544
546 if (FD->hasAttr<ArmLocallyStreamingAttr>())
548 if (const Type *Ty = FD->getType().getTypePtrOrNull()) {
549 if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
550 if (FPT->getAArch64SMEAttributes() &
553 if (FPT->getAArch64SMEAttributes() &
556 }
557 }
559}
560
561static bool checkArmStreamingBuiltin(Sema &S, CallExpr *TheCall,
562 const FunctionDecl *FD,
564 unsigned BuiltinID) {
566
567 // Check if the intrinsic is available in the right mode, i.e.
568 // * When compiling for SME only, the caller must be in streaming mode.
569 // * When compiling for SVE only, the caller must be in non-streaming mode.
570 // * When compiling for both SVE and SME, the caller can be in either mode.
572 llvm::StringMap<bool> CallerFeatureMapWithoutSVE;
573 S.Context.getFunctionFeatureMap(CallerFeatureMapWithoutSVE, FD);
574 CallerFeatureMapWithoutSVE["sve"] = false;
575
576 // Avoid emitting diagnostics for a function that can never compile.
577 if (FnType == SemaARM::ArmStreaming && !CallerFeatureMapWithoutSVE["sme"])
578 return false;
579
580 llvm::StringMap<bool> CallerFeatureMapWithoutSME;
581 S.Context.getFunctionFeatureMap(CallerFeatureMapWithoutSME, FD);
582 CallerFeatureMapWithoutSME["sme"] = false;
583
584 // We know the builtin requires either some combination of SVE flags, or
585 // some combination of SME flags, but we need to figure out which part
586 // of the required features is satisfied by the target features.
587 //
588 // For a builtin with target guard 'sve2p1|sme2', if we compile with
589 // '+sve2p1,+sme', then we know that it satisfies the 'sve2p1' part if we
590 // evaluate the features for '+sve2p1,+sme,+nosme'.
591 //
592 // Similarly, if we compile with '+sve2,+sme2', then we know it satisfies
593 // the 'sme2' part if we evaluate the features for '+sve2,+sme2,+nosve'.
594 StringRef BuiltinTargetGuards(
596 bool SatisfiesSVE = Builtin::evaluateRequiredTargetFeatures(
597 BuiltinTargetGuards, CallerFeatureMapWithoutSME);
598 bool SatisfiesSME = Builtin::evaluateRequiredTargetFeatures(
599 BuiltinTargetGuards, CallerFeatureMapWithoutSVE);
600
601 if ((SatisfiesSVE && SatisfiesSME) ||
602 (SatisfiesSVE && FnType == SemaARM::ArmStreamingCompatible))
603 return false;
604 else if (SatisfiesSVE)
606 else if (SatisfiesSME)
608 else
609 // This should be diagnosed by CodeGen
610 return false;
611 }
612
613 if (FnType != SemaARM::ArmNonStreaming &&
615 S.Diag(TheCall->getBeginLoc(), diag::err_attribute_arm_sm_incompat_builtin)
616 << TheCall->getSourceRange() << "non-streaming";
617 else if (FnType != SemaARM::ArmStreaming &&
619 S.Diag(TheCall->getBeginLoc(), diag::err_attribute_arm_sm_incompat_builtin)
620 << TheCall->getSourceRange() << "streaming";
621 else
622 return false;
623
624 return true;
625}
626
627static ArmSMEState getSMEState(unsigned BuiltinID) {
628 switch (BuiltinID) {
629 default:
630 return ArmNoState;
631#define GET_SME_BUILTIN_GET_STATE
632#include "clang/Basic/arm_sme_builtins_za_state.inc"
633#undef GET_SME_BUILTIN_GET_STATE
634 }
635}
636
638 CallExpr *TheCall) {
639 if (const FunctionDecl *FD = SemaRef.getCurFunctionDecl()) {
640 std::optional<ArmStreamingType> BuiltinType;
641
642 switch (BuiltinID) {
643#define GET_SME_STREAMING_ATTRS
644#include "clang/Basic/arm_sme_streaming_attrs.inc"
645#undef GET_SME_STREAMING_ATTRS
646 }
647
648 if (BuiltinType &&
649 checkArmStreamingBuiltin(SemaRef, TheCall, FD, *BuiltinType, BuiltinID))
650 return true;
651
652 if ((getSMEState(BuiltinID) & ArmZAMask) && !hasArmZAState(FD))
653 Diag(TheCall->getBeginLoc(),
654 diag::warn_attribute_arm_za_builtin_no_za_state)
655 << TheCall->getSourceRange();
656
657 if ((getSMEState(BuiltinID) & ArmZT0Mask) && !hasArmZT0State(FD))
658 Diag(TheCall->getBeginLoc(),
659 diag::warn_attribute_arm_zt0_builtin_no_zt0_state)
660 << TheCall->getSourceRange();
661 }
662
663 // Range check SME intrinsics that take immediate values.
665
666 switch (BuiltinID) {
667 default:
668 return false;
669#define GET_SME_IMMEDIATE_CHECK
670#include "clang/Basic/arm_sme_sema_rangechecks.inc"
671#undef GET_SME_IMMEDIATE_CHECK
672 }
673
674 return PerformSVEImmChecks(TheCall, ImmChecks);
675}
676
678 CallExpr *TheCall) {
679 if (const FunctionDecl *FD = SemaRef.getCurFunctionDecl()) {
680 std::optional<ArmStreamingType> BuiltinType;
681
682 switch (BuiltinID) {
683#define GET_SVE_STREAMING_ATTRS
684#include "clang/Basic/arm_sve_streaming_attrs.inc"
685#undef GET_SVE_STREAMING_ATTRS
686 }
687 if (BuiltinType &&
688 checkArmStreamingBuiltin(SemaRef, TheCall, FD, *BuiltinType, BuiltinID))
689 return true;
690 }
691 // Range check SVE intrinsics that take immediate values.
693
694 switch (BuiltinID) {
695 default:
696 return false;
697#define GET_SVE_IMMEDIATE_CHECK
698#include "clang/Basic/arm_sve_sema_rangechecks.inc"
699#undef GET_SVE_IMMEDIATE_CHECK
700 }
701
702 return PerformSVEImmChecks(TheCall, ImmChecks);
703}
704
706 unsigned BuiltinID,
707 CallExpr *TheCall) {
708 if (const FunctionDecl *FD = SemaRef.getCurFunctionDecl()) {
709
710 switch (BuiltinID) {
711 default:
712 break;
713#define GET_NEON_BUILTINS
714#define TARGET_BUILTIN(id, ...) case NEON::BI##id:
715#define BUILTIN(id, ...) case NEON::BI##id:
716#include "clang/Basic/arm_neon.inc"
718 BuiltinID))
719 return true;
720 break;
721#undef TARGET_BUILTIN
722#undef BUILTIN
723#undef GET_NEON_BUILTINS
724 }
725 }
726
727 llvm::APSInt Result;
728 uint64_t mask = 0;
729 int TV = -1;
730 int PtrArgNum = -1;
731 bool HasConstPtr = false;
732 switch (BuiltinID) {
733#define GET_NEON_OVERLOAD_CHECK
734#include "clang/Basic/arm_fp16.inc"
735#include "clang/Basic/arm_neon.inc"
736#undef GET_NEON_OVERLOAD_CHECK
737 }
738
739 // For NEON intrinsics which are overloaded on vector element type, validate
740 // the immediate which specifies which variant to emit.
741 unsigned ImmArg = TheCall->getNumArgs() - 1;
742 if (mask) {
743 if (SemaRef.BuiltinConstantArg(TheCall, ImmArg, Result))
744 return true;
745
746 TV = Result.getLimitedValue(64);
747 if ((TV > 63) || (mask & (1ULL << TV)) == 0)
748 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
749 << TheCall->getArg(ImmArg)->getSourceRange();
750 }
751
752 if (PtrArgNum >= 0) {
753 // Check that pointer arguments have the specified type.
754 Expr *Arg = TheCall->getArg(PtrArgNum);
755 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
756 Arg = ICE->getSubExpr();
758 QualType RHSTy = RHS.get()->getType();
759
760 llvm::Triple::ArchType Arch = TI.getTriple().getArch();
761 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
762 Arch == llvm::Triple::aarch64_32 ||
763 Arch == llvm::Triple::aarch64_be;
764 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
766 IsPolyUnsigned, IsInt64Long);
767 if (HasConstPtr)
768 EltTy = EltTy.withConst();
769 QualType LHSTy = getASTContext().getPointerType(EltTy);
771 ConvTy = SemaRef.CheckSingleAssignmentConstraints(LHSTy, RHS);
772 if (RHS.isInvalid())
773 return true;
774 if (SemaRef.DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy,
775 RHSTy, RHS.get(),
777 return true;
778 }
779
780 // For NEON intrinsics which take an immediate value as part of the
781 // instruction, range check them here.
783 switch (BuiltinID) {
784 default:
785 return false;
786#define GET_NEON_IMMEDIATE_CHECK
787#include "clang/Basic/arm_fp16.inc"
788#include "clang/Basic/arm_neon.inc"
789#undef GET_NEON_IMMEDIATE_CHECK
790 }
791
792 return PerformNeonImmChecks(TheCall, ImmChecks, TV);
793}
794
796 CallExpr *TheCall) {
797 switch (BuiltinID) {
798 default:
799 return false;
800#include "clang/Basic/arm_mve_builtin_sema.inc"
801 }
802}
803
805 unsigned BuiltinID,
806 CallExpr *TheCall) {
807 bool Err = false;
808 switch (BuiltinID) {
809 default:
810 return false;
811#include "clang/Basic/arm_cde_builtin_sema.inc"
812 }
813
814 if (Err)
815 return true;
816
817 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
818}
819
821 const Expr *CoprocArg,
822 bool WantCDE) {
823 ASTContext &Context = getASTContext();
825 return false;
826
827 // We can't check the value of a dependent argument.
828 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
829 return false;
830
831 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
832 int64_t CoprocNo = CoprocNoAP.getExtValue();
833 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
834
835 uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
836 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
837
838 if (IsCDECoproc != WantCDE)
839 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
840 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
841
842 return false;
843}
844
846 CallExpr *TheCall,
847 unsigned MaxWidth) {
848 assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
849 BuiltinID == ARM::BI__builtin_arm_ldaex ||
850 BuiltinID == ARM::BI__builtin_arm_strex ||
851 BuiltinID == ARM::BI__builtin_arm_stlex ||
852 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
853 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
854 BuiltinID == AArch64::BI__builtin_arm_strex ||
855 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
856 "unexpected ARM builtin");
857 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
858 BuiltinID == ARM::BI__builtin_arm_ldaex ||
859 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
860 BuiltinID == AArch64::BI__builtin_arm_ldaex;
861
862 ASTContext &Context = getASTContext();
863 DeclRefExpr *DRE =
864 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
865
866 // Ensure that we have the proper number of arguments.
867 if (SemaRef.checkArgCount(TheCall, IsLdrex ? 1 : 2))
868 return true;
869
870 // Inspect the pointer argument of the atomic builtin. This should always be
871 // a pointer type, whose element is an integral scalar or pointer type.
872 // Because it is a pointer type, we don't have to worry about any implicit
873 // casts here.
874 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
875 ExprResult PointerArgRes =
877 if (PointerArgRes.isInvalid())
878 return true;
879 PointerArg = PointerArgRes.get();
880
881 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
882 if (!pointerType) {
883 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
884 << PointerArg->getType() << 0 << PointerArg->getSourceRange();
885 return true;
886 }
887
888 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
889 // task is to insert the appropriate casts into the AST. First work out just
890 // what the appropriate type is.
891 QualType ValType = pointerType->getPointeeType();
892 QualType AddrType = ValType.getUnqualifiedType().withVolatile();
893 if (IsLdrex)
894 AddrType.addConst();
895
896 // Issue a warning if the cast is dodgy.
897 CastKind CastNeeded = CK_NoOp;
898 if (!AddrType.isAtLeastAsQualifiedAs(ValType, getASTContext())) {
899 CastNeeded = CK_BitCast;
900 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
901 << PointerArg->getType() << Context.getPointerType(AddrType)
902 << AssignmentAction::Passing << PointerArg->getSourceRange();
903 }
904
905 // Finally, do the cast and replace the argument with the corrected version.
906 AddrType = Context.getPointerType(AddrType);
907 PointerArgRes = SemaRef.ImpCastExprToType(PointerArg, AddrType, CastNeeded);
908 if (PointerArgRes.isInvalid())
909 return true;
910 PointerArg = PointerArgRes.get();
911
912 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
913
914 // In general, we allow ints, floats and pointers to be loaded and stored.
915 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
916 !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
917 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
918 << PointerArg->getType() << 0 << PointerArg->getSourceRange();
919 return true;
920 }
921
922 // But ARM doesn't have instructions to deal with 128-bit versions.
923 if (Context.getTypeSize(ValType) > MaxWidth) {
924 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
925 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
926 << PointerArg->getType() << PointerArg->getSourceRange();
927 return true;
928 }
929
930 switch (ValType.getObjCLifetime()) {
933 // okay
934 break;
935
939 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
940 << ValType << PointerArg->getSourceRange();
941 return true;
942 }
943
944 if (IsLdrex) {
945 TheCall->setType(ValType);
946 return false;
947 }
948
949 // Initialize the argument to be stored.
950 ExprResult ValArg = TheCall->getArg(0);
952 Context, ValType, /*consume*/ false);
953 ValArg = SemaRef.PerformCopyInitialization(Entity, SourceLocation(), ValArg);
954 if (ValArg.isInvalid())
955 return true;
956 TheCall->setArg(0, ValArg.get());
957
958 // __builtin_arm_strex always returns an int. It's marked as such in the .def,
959 // but the custom checker bypasses all default analysis.
960 TheCall->setType(Context.IntTy);
961 return false;
962}
963
965 unsigned BuiltinID,
966 CallExpr *TheCall) {
967 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
968 BuiltinID == ARM::BI__builtin_arm_ldaex ||
969 BuiltinID == ARM::BI__builtin_arm_strex ||
970 BuiltinID == ARM::BI__builtin_arm_stlex) {
971 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
972 }
973
974 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
975 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, 1) ||
976 SemaRef.BuiltinConstantArgRange(TheCall, 2, 0, 1);
977 }
978
979 if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
980 BuiltinID == ARM::BI__builtin_arm_wsr64)
981 return BuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
982
983 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
984 BuiltinID == ARM::BI__builtin_arm_rsrp ||
985 BuiltinID == ARM::BI__builtin_arm_wsr ||
986 BuiltinID == ARM::BI__builtin_arm_wsrp)
987 return BuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
988
989 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
990 return true;
991 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
992 return true;
993 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
994 return true;
995
996 // For intrinsics which take an immediate value as part of the instruction,
997 // range check them here.
998 // FIXME: VFP Intrinsics should error if VFP not present.
999 switch (BuiltinID) {
1000 default:
1001 return false;
1002 case ARM::BI__builtin_arm_ssat:
1003 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 1, 32);
1004 case ARM::BI__builtin_arm_usat:
1005 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, 31);
1006 case ARM::BI__builtin_arm_ssat16:
1007 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 1, 16);
1008 case ARM::BI__builtin_arm_usat16:
1009 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, 15);
1010 case ARM::BI__builtin_arm_vcvtr_f:
1011 case ARM::BI__builtin_arm_vcvtr_d:
1012 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, 1);
1013 case ARM::BI__builtin_arm_dmb:
1014 case ARM::BI__builtin_arm_dsb:
1015 case ARM::BI__builtin_arm_isb:
1016 case ARM::BI__builtin_arm_dbg:
1017 return SemaRef.BuiltinConstantArgRange(TheCall, 0, 0, 15);
1018 case ARM::BI__builtin_arm_cdp:
1019 case ARM::BI__builtin_arm_cdp2:
1020 case ARM::BI__builtin_arm_mcr:
1021 case ARM::BI__builtin_arm_mcr2:
1022 case ARM::BI__builtin_arm_mrc:
1023 case ARM::BI__builtin_arm_mrc2:
1024 case ARM::BI__builtin_arm_mcrr:
1025 case ARM::BI__builtin_arm_mcrr2:
1026 case ARM::BI__builtin_arm_mrrc:
1027 case ARM::BI__builtin_arm_mrrc2:
1028 case ARM::BI__builtin_arm_ldc:
1029 case ARM::BI__builtin_arm_ldcl:
1030 case ARM::BI__builtin_arm_ldc2:
1031 case ARM::BI__builtin_arm_ldc2l:
1032 case ARM::BI__builtin_arm_stc:
1033 case ARM::BI__builtin_arm_stcl:
1034 case ARM::BI__builtin_arm_stc2:
1035 case ARM::BI__builtin_arm_stc2l:
1036 return SemaRef.BuiltinConstantArgRange(TheCall, 0, 0, 15) ||
1037 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
1038 /*WantCDE*/ false);
1039 }
1040}
1041
1043 unsigned BuiltinID,
1044 CallExpr *TheCall) {
1045 if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1046 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1047 BuiltinID == AArch64::BI__builtin_arm_strex ||
1048 BuiltinID == AArch64::BI__builtin_arm_stlex) {
1049 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
1050 }
1051
1052 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
1053 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1054 SemaRef.BuiltinConstantArgRange(TheCall, 2, 0, 3) ||
1055 SemaRef.BuiltinConstantArgRange(TheCall, 3, 0, 1) ||
1056 SemaRef.BuiltinConstantArgRange(TheCall, 4, 0, 1);
1057 }
1058
1059 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
1060 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
1061 BuiltinID == AArch64::BI__builtin_arm_rsr128 ||
1062 BuiltinID == AArch64::BI__builtin_arm_wsr128)
1063 return BuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1064
1065 // Memory Tagging Extensions (MTE) Intrinsics
1066 if (BuiltinID == AArch64::BI__builtin_arm_irg ||
1067 BuiltinID == AArch64::BI__builtin_arm_addg ||
1068 BuiltinID == AArch64::BI__builtin_arm_gmi ||
1069 BuiltinID == AArch64::BI__builtin_arm_ldg ||
1070 BuiltinID == AArch64::BI__builtin_arm_stg ||
1071 BuiltinID == AArch64::BI__builtin_arm_subp) {
1072 return BuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
1073 }
1074
1075 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
1076 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
1077 BuiltinID == AArch64::BI__builtin_arm_wsr ||
1078 BuiltinID == AArch64::BI__builtin_arm_wsrp)
1079 return BuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1080
1081 // Only check the valid encoding range. Any constant in this range would be
1082 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
1083 // an exception for incorrect registers. This matches MSVC behavior.
1084 if (BuiltinID == AArch64::BI_ReadStatusReg ||
1085 BuiltinID == AArch64::BI_WriteStatusReg)
1086 return SemaRef.BuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
1087
1088 if (BuiltinID == AArch64::BI__getReg)
1089 return SemaRef.BuiltinConstantArgRange(TheCall, 0, 0, 31);
1090
1091 if (BuiltinID == AArch64::BI__break)
1092 return SemaRef.BuiltinConstantArgRange(TheCall, 0, 0, 0xffff);
1093
1094 if (BuiltinID == AArch64::BI__hlt)
1095 return SemaRef.BuiltinConstantArgRange(TheCall, 0, 0, 0xffff);
1096
1097 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
1098 return true;
1099
1100 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
1101 return true;
1102
1103 if (CheckSMEBuiltinFunctionCall(BuiltinID, TheCall))
1104 return true;
1105
1106 // For intrinsics which take an immediate value as part of the instruction,
1107 // range check them here.
1108 unsigned i = 0, l = 0, u = 0;
1109 switch (BuiltinID) {
1110 default: return false;
1111 case AArch64::BI__builtin_arm_dmb:
1112 case AArch64::BI__builtin_arm_dsb:
1113 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
1114 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
1115 }
1116
1117 return SemaRef.BuiltinConstantArgRange(TheCall, i, l, u + l);
1118}
1119
1120namespace {
1121struct IntrinToName {
1122 uint32_t Id;
1123 int32_t FullName;
1124 int32_t ShortName;
1125};
1126} // unnamed namespace
1127
1128static bool BuiltinAliasValid(unsigned BuiltinID, StringRef AliasName,
1130 const char *IntrinNames) {
1131 AliasName.consume_front("__arm_");
1132 const IntrinToName *It =
1133 llvm::lower_bound(Map, BuiltinID, [](const IntrinToName &L, unsigned Id) {
1134 return L.Id < Id;
1135 });
1136 if (It == Map.end() || It->Id != BuiltinID)
1137 return false;
1138 StringRef FullName(&IntrinNames[It->FullName]);
1139 if (AliasName == FullName)
1140 return true;
1141 if (It->ShortName == -1)
1142 return false;
1143 StringRef ShortName(&IntrinNames[It->ShortName]);
1144 return AliasName == ShortName;
1145}
1146
1147bool SemaARM::MveAliasValid(unsigned BuiltinID, StringRef AliasName) {
1148#include "clang/Basic/arm_mve_builtin_aliases.inc"
1149 // The included file defines:
1150 // - ArrayRef<IntrinToName> Map
1151 // - const char IntrinNames[]
1152 return BuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
1153}
1154
1155bool SemaARM::CdeAliasValid(unsigned BuiltinID, StringRef AliasName) {
1156#include "clang/Basic/arm_cde_builtin_aliases.inc"
1157 return BuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
1158}
1159
1160bool SemaARM::SveAliasValid(unsigned BuiltinID, StringRef AliasName) {
1161 if (getASTContext().BuiltinInfo.isAuxBuiltinID(BuiltinID))
1162 BuiltinID = getASTContext().BuiltinInfo.getAuxBuiltinID(BuiltinID);
1163 return BuiltinID >= AArch64::FirstSVEBuiltin &&
1164 BuiltinID <= AArch64::LastSVEBuiltin;
1165}
1166
1167bool SemaARM::SmeAliasValid(unsigned BuiltinID, StringRef AliasName) {
1168 if (getASTContext().BuiltinInfo.isAuxBuiltinID(BuiltinID))
1169 BuiltinID = getASTContext().BuiltinInfo.getAuxBuiltinID(BuiltinID);
1170 return BuiltinID >= AArch64::FirstSMEBuiltin &&
1171 BuiltinID <= AArch64::LastSMEBuiltin;
1172}
1173
1175 ASTContext &Context = getASTContext();
1176 if (!AL.isArgIdent(0)) {
1177 Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1178 << AL << 1 << AANT_ArgumentIdentifier;
1179 return;
1180 }
1181
1182 IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
1183 unsigned BuiltinID = Ident->getBuiltinID();
1184 StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
1185
1186 bool IsAArch64 = Context.getTargetInfo().getTriple().isAArch64();
1187 if ((IsAArch64 && !SveAliasValid(BuiltinID, AliasName) &&
1188 !SmeAliasValid(BuiltinID, AliasName)) ||
1189 (!IsAArch64 && !MveAliasValid(BuiltinID, AliasName) &&
1190 !CdeAliasValid(BuiltinID, AliasName))) {
1191 Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias);
1192 return;
1193 }
1194
1195 D->addAttr(::new (Context) ArmBuiltinAliasAttr(Context, AL, Ident));
1196}
1197
1199 Sema &S, const ParsedAttr &AL, const FunctionProtoType *FPT,
1200 FunctionType::ArmStateValue CurrentState, StringRef StateName) {
1201 auto CheckForIncompatibleAttr =
1202 [&](FunctionType::ArmStateValue IncompatibleState,
1203 StringRef IncompatibleStateName) {
1204 if (CurrentState == IncompatibleState) {
1205 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1206 << (std::string("'__arm_new(\"") + StateName.str() + "\")'")
1207 << (std::string("'") + IncompatibleStateName.str() + "(\"" +
1208 StateName.str() + "\")'")
1209 << true;
1210 AL.setInvalid();
1211 }
1212 };
1213
1214 CheckForIncompatibleAttr(FunctionType::ARM_In, "__arm_in");
1215 CheckForIncompatibleAttr(FunctionType::ARM_Out, "__arm_out");
1216 CheckForIncompatibleAttr(FunctionType::ARM_InOut, "__arm_inout");
1217 CheckForIncompatibleAttr(FunctionType::ARM_Preserves, "__arm_preserves");
1218 return AL.isInvalid();
1219}
1220
1222 if (!AL.getNumArgs()) {
1223 Diag(AL.getLoc(), diag::err_missing_arm_state) << AL;
1224 AL.setInvalid();
1225 return;
1226 }
1227
1228 std::vector<StringRef> NewState;
1229 if (const auto *ExistingAttr = D->getAttr<ArmNewAttr>()) {
1230 for (StringRef S : ExistingAttr->newArgs())
1231 NewState.push_back(S);
1232 }
1233
1234 bool HasZA = false;
1235 bool HasZT0 = false;
1236 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
1237 StringRef StateName;
1238 SourceLocation LiteralLoc;
1239 if (!SemaRef.checkStringLiteralArgumentAttr(AL, I, StateName, &LiteralLoc))
1240 return;
1241
1242 if (StateName == "za")
1243 HasZA = true;
1244 else if (StateName == "zt0")
1245 HasZT0 = true;
1246 else {
1247 Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName;
1248 AL.setInvalid();
1249 return;
1250 }
1251
1252 if (!llvm::is_contained(NewState, StateName)) // Avoid adding duplicates.
1253 NewState.push_back(StateName);
1254 }
1255
1256 if (auto *FPT = dyn_cast<FunctionProtoType>(D->getFunctionType())) {
1258 FunctionType::getArmZAState(FPT->getAArch64SMEAttributes());
1259 if (HasZA && ZAState != FunctionType::ARM_None &&
1260 checkNewAttrMutualExclusion(SemaRef, AL, FPT, ZAState, "za"))
1261 return;
1263 FunctionType::getArmZT0State(FPT->getAArch64SMEAttributes());
1264 if (HasZT0 && ZT0State != FunctionType::ARM_None &&
1265 checkNewAttrMutualExclusion(SemaRef, AL, FPT, ZT0State, "zt0"))
1266 return;
1267 }
1268
1269 D->dropAttr<ArmNewAttr>();
1270 D->addAttr(::new (getASTContext()) ArmNewAttr(
1271 getASTContext(), AL, NewState.data(), NewState.size()));
1272}
1273
1275 if (getLangOpts().CPlusPlus && !D->getDeclContext()->isExternCContext()) {
1276 Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL;
1277 return;
1278 }
1279
1280 const auto *FD = cast<FunctionDecl>(D);
1281 if (!FD->isExternallyVisible()) {
1282 Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static);
1283 return;
1284 }
1285
1286 D->addAttr(::new (getASTContext()) CmseNSEntryAttr(getASTContext(), AL));
1287}
1288
1290 // Check the attribute arguments.
1291 if (AL.getNumArgs() > 1) {
1292 Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
1293 return;
1294 }
1295
1296 StringRef Str;
1297 SourceLocation ArgLoc;
1298
1299 if (AL.getNumArgs() == 0)
1300 Str = "";
1301 else if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
1302 return;
1303
1304 ARMInterruptAttr::InterruptType Kind;
1305 if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
1306 Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
1307 << AL << Str << ArgLoc;
1308 return;
1309 }
1310
1311 const TargetInfo &TI = getASTContext().getTargetInfo();
1312 if (TI.hasFeature("vfp"))
1313 Diag(D->getLocation(), diag::warn_arm_interrupt_vfp_clobber);
1314
1315 D->addAttr(::new (getASTContext())
1316 ARMInterruptAttr(getASTContext(), AL, Kind));
1317}
1318
1319// Check if the function definition uses any AArch64 SME features without
1320// having the '+sme' feature enabled and warn user if sme locally streaming
1321// function returns or uses arguments with VL-based types.
1323 const auto *Attr = FD->getAttr<ArmNewAttr>();
1324 bool UsesSM = FD->hasAttr<ArmLocallyStreamingAttr>();
1325 bool UsesZA = Attr && Attr->isNewZA();
1326 bool UsesZT0 = Attr && Attr->isNewZT0();
1327
1328 if (UsesZA || UsesZT0) {
1329 if (const auto *FPT = FD->getType()->getAs<FunctionProtoType>()) {
1330 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1332 Diag(FD->getLocation(), diag::err_sme_unsupported_agnostic_new);
1333 }
1334 }
1335
1336 if (FD->hasAttr<ArmLocallyStreamingAttr>()) {
1338 Diag(FD->getLocation(),
1339 diag::warn_sme_locally_streaming_has_vl_args_returns)
1340 << /*IsArg=*/false;
1341 if (llvm::any_of(FD->parameters(), [](ParmVarDecl *P) {
1342 return P->getOriginalType()->isSizelessVectorType();
1343 }))
1344 Diag(FD->getLocation(),
1345 diag::warn_sme_locally_streaming_has_vl_args_returns)
1346 << /*IsArg=*/true;
1347 }
1348 if (const auto *FPT = FD->getType()->getAs<FunctionProtoType>()) {
1349 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1355 }
1356
1357 ASTContext &Context = getASTContext();
1358 if (UsesSM || UsesZA) {
1359 llvm::StringMap<bool> FeatureMap;
1360 Context.getFunctionFeatureMap(FeatureMap, FD);
1361 if (!FeatureMap.contains("sme")) {
1362 if (UsesSM)
1363 Diag(FD->getLocation(),
1364 diag::err_sme_definition_using_sm_in_non_sme_target);
1365 else
1366 Diag(FD->getLocation(),
1367 diag::err_sme_definition_using_za_in_non_sme_target);
1368 }
1369 }
1370 if (UsesZT0) {
1371 llvm::StringMap<bool> FeatureMap;
1372 Context.getFunctionFeatureMap(FeatureMap, FD);
1373 if (!FeatureMap.contains("sme2")) {
1374 Diag(FD->getLocation(),
1375 diag::err_sme_definition_using_zt0_in_non_sme2_target);
1376 }
1377 }
1378}
1379
1380} // namespace clang
StringRef P
static constexpr Builtin::Info BuiltinInfo[]
Definition: Builtins.cpp:32
const Decl * D
enum clang::sema::@1727::IndirectLocalPathEntry::EntryKind Kind
Expr * E
uint32_t Id
Definition: SemaARM.cpp:1122
int32_t ShortName
Definition: SemaARM.cpp:1124
int32_t FullName
Definition: SemaARM.cpp:1123
This file declares semantic analysis functions specific to ARM.
Enumerates target-specific builtins in their own namespaces within namespace clang.
__device__ int
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
CanQualType LongTy
Definition: ASTContext.h:1169
CanQualType FloatTy
Definition: ASTContext.h:1172
CanQualType DoubleTy
Definition: ASTContext.h:1172
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:682
CanQualType UnsignedLongTy
Definition: ASTContext.h:1170
CanQualType IntTy
Definition: ASTContext.h:1169
CanQualType SignedCharTy
Definition: ASTContext.h:1169
CanQualType UnsignedCharTy
Definition: ASTContext.h:1170
CanQualType UnsignedIntTy
Definition: ASTContext.h:1170
CanQualType UnsignedLongLongTy
Definition: ASTContext.h:1171
CanQualType UnsignedShortTy
Definition: ASTContext.h:1170
CanQualType ShortTy
Definition: ASTContext.h:1169
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:799
CanQualType BFloat16Ty
Definition: ASTContext.h:1185
void getFunctionFeatureMap(llvm::StringMap< bool > &FeatureMap, const FunctionDecl *) const
CanQualType LongLongTy
Definition: ASTContext.h:1169
CanQualType HalfTy
Definition: ASTContext.h:1184
PtrTy get() const
Definition: Ownership.h:170
bool isInvalid() const
Definition: Ownership.h:166
Attr - This represents one attribute.
Definition: Attr.h:43
SourceLocation getLoc() const
This class is used for builtin types like 'int'.
Definition: Type.h:3035
unsigned getAuxBuiltinID(unsigned ID) const
Return real builtin ID (i.e.
Definition: Builtins.h:269
const char * getRequiredFeatures(unsigned ID) const
Definition: Builtins.h:256
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2874
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:3068
void setArg(unsigned Arg, Expr *ArgExpr)
setArg - Set the specified argument.
Definition: Expr.h:3081
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1644
Expr * getCallee()
Definition: Expr.h:3024
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:3055
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1265
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:550
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
T * getAttr() const
Definition: DeclBase.h:576
SourceLocation getLocation() const
Definition: DeclBase.h:442
bool hasAttr() const
Definition: DeclBase.h:580
This represents one expression.
Definition: Expr.h:110
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3101
void setType(QualType t)
Definition: Expr.h:143
bool isValueDependent() const
Determines whether the value of this expression depends on.
Definition: Expr.h:175
bool isTypeDependent() const
Determines whether the type of this expression depends on.
Definition: Expr.h:192
Expr * IgnoreParenImpCasts() LLVM_READONLY
Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...
Definition: Expr.cpp:3096
@ NPC_ValueDependentIsNotNull
Specifies that a value-dependent expression should be considered to never be a null pointer constant.
Definition: Expr.h:830
std::optional< llvm::APSInt > getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc=nullptr) const
isIntegerConstantExpr - Return the value if this expression is a valid integer constant expression.
QualType getType() const
Definition: Expr.h:142
Represents a function declaration or definition.
Definition: Decl.h:1935
QualType getReturnType() const
Definition: Decl.h:2727
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2656
Represents a prototype with parameter type info, e.g.
Definition: Type.h:5108
static ArmStateValue getArmZT0State(unsigned AttrBits)
Definition: Type.h:4619
static ArmStateValue getArmZAState(unsigned AttrBits)
Definition: Type.h:4615
@ SME_PStateSMEnabledMask
Definition: Type.h:4588
@ SME_PStateSMCompatibleMask
Definition: Type.h:4589
@ SME_AgnosticZAStateMask
Definition: Type.h:4599
One of these records is kept for each identifier that is lexed.
unsigned getBuiltinID() const
Return a value indicating whether this is a builtin function.
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3724
Describes an entity that is being initialized.
static InitializedEntity InitializeParameter(ASTContext &Context, ParmVarDecl *Parm)
Create the initialization entity for a parameter.
Flags to identify the types for overloaded Neon builtins.
bool isUnsigned() const
unsigned getEltSizeInBits() const
EltType getEltType() const
Represents a parameter to a function.
Definition: Decl.h:1725
ParsedAttr - Represents a syntactic attribute.
Definition: ParsedAttr.h:129
IdentifierLoc * getArgAsIdent(unsigned Arg) const
Definition: ParsedAttr.h:404
void setInvalid(bool b=true) const
Definition: ParsedAttr.h:360
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this attribute.
Definition: ParsedAttr.h:386
bool isArgIdent(unsigned Arg) const
Definition: ParsedAttr.h:400
bool isInvalid() const
Definition: ParsedAttr.h:359
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:3199
A (possibly-)qualified type.
Definition: Type.h:929
QualType withConst() const
Definition: Type.h:1154
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:1151
QualType withVolatile() const
Definition: Type.h:1162
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1433
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:8031
const Type * getTypePtrOrNull() const
Definition: Type.h:7941
bool isAtLeastAsQualifiedAs(QualType Other, const ASTContext &Ctx) const
Determine whether this type is at least as qualified as the other given type, requiring exact equalit...
Definition: Type.h:8120
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition: Type.h:354
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition: Type.h:347
@ OCL_None
There is no lifetime qualification on this type.
Definition: Type.h:343
@ OCL_Weak
Reading or writing from this object requires a barrier call.
Definition: Type.h:357
@ OCL_Autoreleasing
Assigning into this object requires a lifetime extension.
Definition: Type.h:360
void CheckSMEFunctionDefAttributes(const FunctionDecl *FD)
Definition: SemaARM.cpp:1322
bool CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:964
bool CheckSMEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:637
bool CheckARMCoprocessorImmediate(const TargetInfo &TI, const Expr *CoprocArg, bool WantCDE)
Definition: SemaARM.cpp:820
bool CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:677
bool CheckNeonBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:705
bool CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:804
bool PerformNeonImmChecks(CallExpr *TheCall, SmallVectorImpl< std::tuple< int, int, int, int > > &ImmChecks, int OverloadType=-1)
Definition: SemaARM.cpp:513
bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:795
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition: SemaARM.cpp:1289
bool PerformSVEImmChecks(CallExpr *TheCall, SmallVectorImpl< std::tuple< int, int, int > > &ImmChecks)
Definition: SemaARM.cpp:532
void handleBuiltinAliasAttr(Decl *D, const ParsedAttr &AL)
Definition: SemaARM.cpp:1174
@ ArmStreaming
Intrinsic is only available in normal mode.
Definition: SemaARM.h:37
@ ArmNonStreaming
Definition: SemaARM.h:36
@ VerifyRuntimeMode
Intrinsic is available both in normal and Streaming-SVE mode.
Definition: SemaARM.h:40
@ ArmStreamingCompatible
Intrinsic is only available in Streaming-SVE mode.
Definition: SemaARM.h:38
void handleNewAttr(Decl *D, const ParsedAttr &AL)
Definition: SemaARM.cpp:1221
bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, unsigned MaxWidth)
Definition: SemaARM.cpp:845
bool SveAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition: SemaARM.cpp:1160
bool CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:1042
bool MveAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition: SemaARM.cpp:1147
bool BuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall)
BuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions.
Definition: SemaARM.cpp:26
void handleCmseNSEntryAttr(Decl *D, const ParsedAttr &AL)
Definition: SemaARM.cpp:1274
bool CheckImmediateArg(CallExpr *TheCall, unsigned CheckTy, unsigned ArgIdx, unsigned EltBitWidth, unsigned VecBitWidth)
Definition: SemaARM.cpp:375
bool BuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, int ArgNum, unsigned ExpectedFieldNum, bool AllowName)
BuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr TheCall is an ARM/AArch64 specia...
Definition: SemaARM.cpp:188
bool SmeAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition: SemaARM.cpp:1167
bool CdeAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition: SemaARM.cpp:1155
SemaARM(Sema &S)
Definition: SemaARM.cpp:23
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint=false)
Emit a diagnostic.
Definition: SemaBase.cpp:60
ASTContext & getASTContext() const
Definition: SemaBase.cpp:9
Sema & SemaRef
Definition: SemaBase.h:40
const LangOptions & getLangOpts() const
Definition: SemaBase.cpp:11
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:466
bool BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, unsigned Multiple)
BuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr TheCall is a constant expr...
FunctionDecl * getCurFunctionDecl(bool AllowLambda=false) const
Returns a pointer to the innermost enclosing function, or nullptr if the current context is not insid...
Definition: Sema.cpp:1570
ASTContext & Context
Definition: Sema.h:911
ExprResult DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose=true)
Definition: SemaExpr.cpp:752
ExprResult ImpCastExprToType(Expr *E, QualType Type, CastKind CK, ExprValueKind VK=VK_PRValue, const CXXCastPath *BasePath=nullptr, CheckedConversionKind CCK=CheckedConversionKind::Implicit)
ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
Definition: Sema.cpp:692
AssignConvertType CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS, bool Diagnose=true, bool DiagnoseCFAudited=false, bool ConvertRHS=true)
Check assignment constraints for an assignment of RHS to LHSType.
Definition: SemaExpr.cpp:9647
ExprResult DefaultLvalueConversion(Expr *E)
Definition: SemaExpr.cpp:640
AssignConvertType
AssignConvertType - All of the 'assignment' semantic checks return this enum to indicate whether the ...
Definition: Sema.h:7594
bool BuiltinConstantArg(CallExpr *TheCall, int ArgNum, llvm::APSInt &Result)
BuiltinConstantArg - Handle a check if argument ArgNum of CallExpr TheCall is a constant expression.
bool isConstantEvaluatedContext() const
Definition: Sema.h:2153
bool checkArgCount(CallExpr *Call, unsigned DesiredArgCount)
Checks that a call expression's argument count is the desired number.
ExprResult PerformCopyInitialization(const InitializedEntity &Entity, SourceLocation EqualLoc, ExprResult Init, bool TopLevelOfInitList=false, bool AllowExplicit=false)
Definition: SemaInit.cpp:9771
bool DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, AssignmentAction Action, bool *Complained=nullptr)
DiagnoseAssignmentResult - Emit a diagnostic, if required, for the assignment conversion type specifi...
Definition: SemaExpr.cpp:16843
bool BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low, int High, bool RangeIsError=true)
BuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr TheCall is a constant express...
bool checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI, const Expr *E, StringRef &Str, SourceLocation *ArgLocation=nullptr)
Check if the argument E is a ASCII string literal.
Encodes a location in the source.
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:334
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:346
Exposes information about the current target.
Definition: TargetInfo.h:220
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1262
IntType getInt64Type() const
Definition: TargetInfo.h:411
uint32_t getARMCDECoprocMask() const
For ARM targets returns a mask defining which coprocessors are configured as Custom Datapath.
Definition: TargetInfo.h:1058
virtual bool hasFeature(StringRef Feature) const
Determine whether the given target has the given feature.
Definition: TargetInfo.h:1493
The base class of the type hierarchy.
Definition: Type.h:1828
bool isBlockPointerType() const
Definition: Type.h:8206
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:8560
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isFloatingType() const
Definition: Type.cpp:2283
bool isAnyPointerType() const
Definition: Type.h:8200
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8741
bool isSizelessVectorType() const
Returns true for all scalable vector types.
Definition: Type.cpp:2513
QualType getType() const
Definition: Decl.h:682
Defines the clang::TargetInfo interface.
bool evaluateRequiredTargetFeatures(llvm::StringRef RequiredFatures, const llvm::StringMap< bool > &TargetFetureMap)
Returns true if the required target features of a builtin function are enabled.
const AstTypeMatcher< PointerType > pointerType
Matches pointer types, but does not match Objective-C object pointer types.
The JSON file list parser is used to communicate input to InstallAPI.
@ CPlusPlus
Definition: LangStandard.h:55
static bool BuiltinAliasValid(unsigned BuiltinID, StringRef AliasName, ArrayRef< IntrinToName > Map, const char *IntrinNames)
Definition: SemaARM.cpp:1128
static ArmSMEState getSMEState(unsigned BuiltinID)
Definition: SemaARM.cpp:627
static bool checkArmStreamingBuiltin(Sema &S, CallExpr *TheCall, const FunctionDecl *FD, SemaARM::ArmStreamingType BuiltinType, unsigned BuiltinID)
Definition: SemaARM.cpp:561
ArmSMEState
Definition: SemaARM.cpp:361
@ ArmInOutZA
Definition: SemaARM.cpp:366
@ ArmZT0Mask
Definition: SemaARM.cpp:372
@ ArmInOutZT0
Definition: SemaARM.cpp:371
@ ArmInZA
Definition: SemaARM.cpp:364
@ ArmInZT0
Definition: SemaARM.cpp:369
@ ArmZAMask
Definition: SemaARM.cpp:367
@ ArmOutZA
Definition: SemaARM.cpp:365
@ ArmOutZT0
Definition: SemaARM.cpp:370
@ ArmNoState
Definition: SemaARM.cpp:362
SemaARM::ArmStreamingType getArmStreamingFnType(const FunctionDecl *FD)
Definition: SemaARM.cpp:545
@ AANT_ArgumentIdentifier
Definition: ParsedAttr.h:1081
@ Result
The result type of a method or function.
bool hasArmZT0State(const FunctionDecl *FD)
Returns whether the given FunctionDecl has Arm ZT0 state.
Definition: Decl.cpp:5860
CastKind
CastKind - The kind of operation required for a conversion.
static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, bool IsPolyUnsigned, bool IsInt64Long)
getNeonEltType - Return the QualType corresponding to the elements of the vector type specified by th...
Definition: SemaARM.cpp:321
static bool checkNewAttrMutualExclusion(Sema &S, const ParsedAttr &AL, const FunctionProtoType *FPT, FunctionType::ArmStateValue CurrentState, StringRef StateName)
Definition: SemaARM.cpp:1198
bool hasArmZAState(const FunctionDecl *FD)
Returns whether the given FunctionDecl has Arm ZA state.
Definition: Decl.cpp:5853
Extra information about a function prototype.
Definition: Type.h:5193
IdentifierInfo * Ident
Definition: ParsedAttr.h:105