Skip to content

Update all translated document pages #1336

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 1, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 28 additions & 28 deletions docs/ja/agents.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,16 +4,16 @@ search:
---
# エージェント

エージェントはアプリの中核を成す基本コンポーネントです。エージェントとは、指示とツールで構成された大規模言語モデル ( LLM ) です
エージェントはアプリのコアとなる構成要素です。エージェントは、大規模言語モデル ( LLM ) に instructions と tools を設定したものです

## 基本設定

エージェントで最も一般的に設定するプロパティは以下のとおりです。
エージェントで最もよく設定するプロパティは次のとおりです:

- `name`: エージェントを識別する必須の文字列です。
- `instructions`: 開発者メッセージまたは system prompt とも呼ばれます。
- `model`: 使用する LLM と、temperature や top_p などのモデル調整パラメーターを指定する `model_settings` (任意)。
- `tools`: エージェントがタスクを達成するために使用できるツールです。
- `name`: エージェントを識別する必須の文字列。
- `instructions`: developer メッセージ、または system prompt とも呼ばれます。
- `model`: 使用する LLM と、temperature や top_p などのチューニングパラメーターを設定する `model_settings` (任意)。
- `tools`: エージェントがタスクを遂行するために使用できる tools。

```python
from agents import Agent, ModelSettings, function_tool
Expand All @@ -33,7 +33,7 @@ agent = Agent(

## コンテキスト

エージェントは `context` 型を汎用的に扱います。コンテキストは依存性注入のためのツールで、あなたが作成して `Runner.run()` に渡すオブジェクトです。これはすべてのエージェント、ツール、ハンドオフなどに渡され、実行中の依存関係や状態をまとめて保持します。任意の Python オブジェクトをコンテキストとして渡せます。
エージェントはその `context` 型に対してジェネリックです。コンテキストは依存性注入のためのツールで、`Runner.run()` に渡すオブジェクトです。これはすべてのエージェント、tool、handoff などに渡され、エージェント実行時の依存関係や状態をまとめて保持します。任意の Python オブジェクトをコンテキストとして渡せます。

```python
@dataclass
Expand All @@ -52,7 +52,7 @@ agent = Agent[UserContext](

## 出力タイプ

デフォルトでは、エージェントはプレーンテキスト (すなわち `str`) を出力します。特定の型で出力させたい場合は`output_type` パラメーターを使用します。一般的によく使われるのは [Pydantic](https://docs.pydantic.dev/) オブジェクトですが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップできる型dataclasslistTypedDict など—であれば何でも利用できます
デフォルトでは、エージェントはプレーンテキスト ( すなわち `str` ) を出力します。特定の型で出力させたい場合は `output_type` パラメーターを使用します。よく使われるのは [Pydantic](https://docs.pydantic.dev/) オブジェクトですが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップできる型dataclasslistTypedDict など ― であれば何でもサポートしています

```python
from pydantic import BaseModel
Expand All @@ -73,11 +73,11 @@ agent = Agent(

!!! note

`output_type` を渡すと、モデルは通常のプレーンテキスト応答ではなく [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用します
`output_type` を渡すと、モデルは通常のプレーンテキスト応答ではなく [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用するようになります

## ハンドオフ

ハンドオフは、エージェントが委任できるサブエージェントです。ハンドオフのリストを提供すると、エージェントは関連がある場合にそれらへ委任できます。これは単一タスクに特化したモジュール型エージェントを編成する強力なパターンです。詳細は [ハンドオフ](handoffs.md) のドキュメントをご覧ください。
ハンドオフは、エージェントが委任できるサブエージェントです。ハンドオフのリストを渡すと、エージェントは必要に応じてそれらに委任できます。これは、単一タスクに特化したモジュール型エージェントをオーケストレーションする強力なパターンです。詳細は [handoffs](handoffs.md) のドキュメントをご覧ください。

```python
from agents import Agent
Expand All @@ -96,9 +96,9 @@ triage_agent = Agent(
)
```

## 動的インストラクション
## 動的 instructions

多くの場合、エージェント作成時に instructions を指定しますが、関数を介して動的に提供することも可能です。この関数はエージェントとコンテキストを受け取り、プロンプトを返す必要があります。同期関数と `async` 関数の両方が利用できます
多くの場合、エージェント作成時に instructions を渡せますが、関数を使って動的に生成することも可能です。その関数はエージェントとコンテキストを受け取り、プロンプトを返す必要があります。通常の関数と `async` 関数の両方に対応しています

```python
def dynamic_instructions(
Expand All @@ -115,15 +115,15 @@ agent = Agent[UserContext](

## ライフサイクルイベント (hooks)

エージェントのライフサイクルを監視したい場合があります。たとえば、イベントをログに記録したり、特定のイベント発生時にデータをプリフェッチしたりするケースです。`hooks` プロパティでエージェントのライフサイクルにフックできます。[`AgentHooks`][agents.lifecycle.AgentHooks] クラスを継承し、必要なメソッドをオーバーライドしてください。
エージェントのライフサイクルを観察したい場合があります。たとえば、イベントをログに記録したり、特定のイベント発生時にデータを事前取得したりするケースです。`hooks` プロパティを使用してエージェントのライフサイクルにフックできます。[`AgentHooks`][agents.lifecycle.AgentHooks] クラスを継承し、必要なメソッドをオーバーライドしてください。

## ガードレール

ガードレールを使うと、エージェント実行と並行してユーザー入力に対するチェックやバリデーションを行えます。たとえば、ユーザー入力の関連性をスクリーニングするなどです。詳細は [ガードレール](guardrails.md) のドキュメントを参照してください
ガードレールを使用すると、エージェント実行と並行してユーザー入力のチェック / バリデーションを行えます。たとえば、ユーザー入力の関連性を確認することができます。詳細は [guardrails](guardrails.md) のドキュメントをご覧ください

## エージェントのクローン作成 / コピー
## エージェントのクローン / 複製

エージェントの `clone()` メソッドを使用すると、エージェントを複製し、任意のプロパティを変更できます。
エージェントの `clone()` メソッドを使うと、エージェントを複製し、任意のプロパティを変更できます。

```python
pirate_agent = Agent(
Expand All @@ -140,12 +140,12 @@ robot_agent = pirate_agent.clone(

## ツール使用の強制

ツールのリストを渡しても、LLM が必ずしもツールを使用するとは限りません。[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定することでツール使用を強制できます。利用可能な値は以下のとおりです。
tool のリストを指定しても、 LLM が必ずしも tool を使用するとは限りません。[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定することで、tool 使用を強制できます。有効な値は次のとおりです:

1. `auto`LLM がツールを使うかどうかを判断します。
2. `required`LLM にツール使用を必須とします (ただし使用するツールは自動選択)。
3. `none`LLM がツールを使用しないことを必須とします。
4. 特定の文字列 (例: `my_tool`): LLM にそのツールの使用を必須とします。
1. `auto` : LLM が tool を使うかどうかを判断します。
2. `required` : LLM に tool の使用を必須とさせます ( どの tool を使うかは判断できます )。
3. `none` : LLM に tool を使用しないことを要求します。
4. 文字列を指定 ( 例: `my_tool` ) : 指定した tool の使用を要求します。

```python
from agents import Agent, Runner, function_tool, ModelSettings
Expand All @@ -163,11 +163,11 @@ agent = Agent(
)
```

## ツール使用時の挙動
## ツール使用時の動作

`Agent` の `tool_use_behavior` パラメーターは、ツール出力の処理方法を制御します。
- `"run_llm_again"`: 既定値。ツールを実行し、その結果を LLM が処理して最終応答を生成します。
- `"stop_on_first_tool"`: 最初のツール呼び出しの出力を最終応答として使用し、追加の LLM 処理を行いません。
`Agent` の `tool_use_behavior` パラメーターは、tool の出力をどのように扱うかを制御します:
- `"run_llm_again"` : デフォルト。tool を実行し、その結果を LLM が処理して最終応答を生成します。
- `"stop_on_first_tool"` : 最初の tool 呼び出しの出力をそのまま最終応答として使用し、以降の LLM 処理を行いません。

```python
from agents import Agent, Runner, function_tool, ModelSettings
Expand All @@ -185,7 +185,7 @@ agent = Agent(
)
```

- `StopAtTools(stop_at_tool_names=[...])`: 指定したいずれかのツールが呼び出された時点で停止し、その出力を最終応答として使用します。
- `StopAtTools(stop_at_tool_names=[...])` : 指定した tool が呼び出された時点で停止し、その出力を最終応答として使用します。
```python
from agents import Agent, Runner, function_tool
from agents.agent import StopAtTools
Expand All @@ -207,7 +207,7 @@ agent = Agent(
tool_use_behavior=StopAtTools(stop_at_tool_names=["get_weather"])
)
```
- `ToolsToFinalOutputFunction`: ツール結果を処理し、停止するか LLM 継続かを判断するカスタム関数です。
- `ToolsToFinalOutputFunction` : tool の結果を処理し、停止するか LLM を継続するかを判断するカスタム関数です。

```python
from agents import Agent, Runner, function_tool, FunctionToolResult, RunContextWrapper
Expand Down Expand Up @@ -245,4 +245,4 @@ agent = Agent(

!!! note

無限ループを防ぐため、フレームワークはツール呼び出し後に `tool_choice` を自動的に "auto" にリセットします。この挙動は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定可能です。ツール結果が LLM に送られ、その後 `tool_choice` により再度ツール呼び出しが生成され…と繰り返される無限ループを防止するためです
無限ループを防ぐため、フレームワークは tool 呼び出し後に `tool_choice` を自動的に "auto" にリセットします。この挙動は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定できます。無限ループは、tool の結果が LLM に渡され、`tool_choice` の指定により再び tool 呼び出しが生成される、というサイクルが続くことが原因です
26 changes: 13 additions & 13 deletions docs/ja/config.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,15 +6,15 @@ search:

## API キーとクライアント

デフォルトでは、SDK はインポート時に LLM リクエストおよびトレーシング用の `OPENAI_API_KEY` 環境変数を探します。アプリ起動前にこの環境変数を設定できない場合は、[set_default_openai_key()][agents.set_default_openai_key] 関数を使用してキーを設定できます。
デフォルトでは、 SDK はインポートされるとすぐに LLM リクエストとトレーシングのために `OPENAI_API_KEY` 環境変数を参照します。アプリの起動前にこの環境変数を設定できない場合は、 [set_default_openai_key()][agents.set_default_openai_key] 関数を使用してキーを設定できます。

```python
from agents import set_default_openai_key

set_default_openai_key("sk-...")
```

別の方法として、使用する OpenAI クライアントを設定することもできます。デフォルトでは、SDK は環境変数で指定された API キー、または前述の既定キーを用いて `AsyncOpenAI` インスタンスを生成します。これを変更するには、[set_default_openai_client()][agents.set_default_openai_client] 関数を利用してください
また、使用する OpenAI クライアントを設定することもできます。デフォルトでは、 SDK `AsyncOpenAI` インスタンスを作成し、環境変数または上記で設定したデフォルトキーから API キーを取得します。これを変更するには、 [set_default_openai_client()][agents.set_default_openai_client] 関数を使用してください

```python
from openai import AsyncOpenAI
Expand All @@ -24,7 +24,7 @@ custom_client = AsyncOpenAI(base_url="...", api_key="...")
set_default_openai_client(custom_client)
```

最後に、利用する OpenAI API をカスタマイズすることも可能です。デフォルトでは OpenAI Responses API が使用されます。これを Chat Completions API に切り替えるには、[set_default_openai_api()][agents.set_default_openai_api] 関数を使用してください。
最後に、使用する OpenAI API をカスタマイズすることも可能です。デフォルトではResponses API を使用しています。これを Chat Completions API に切り替えるには、 [set_default_openai_api()][agents.set_default_openai_api] 関数を使用してください。

```python
from agents import set_default_openai_api
Expand All @@ -34,35 +34,35 @@ set_default_openai_api("chat_completions")

## トレーシング

トレーシングはデフォルトで有効になっています。上記セクションの OpenAI API キー (環境変数または設定済みの既定キー) が自動的に使用されます。トレーシング専用の API キーを設定するには、[`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を使用してください
トレーシングはデフォルトで有効になっています。デフォルトでは、前述の OpenAI API キー(環境変数または設定したデフォルトキー)が使用されます。トレーシングに使用する API キーを個別に設定するには、 [`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を利用してください

```python
from agents import set_tracing_export_api_key

set_tracing_export_api_key("sk-...")
```

トレーシングを完全に無効化したい場合は、[`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を呼び出してください
トレーシングを完全に無効化するには、 [`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を使用します

```python
from agents import set_tracing_disabled

set_tracing_disabled(True)
```

## デバッグ ロギング
## デバッグログ

SDK にはハンドラーが設定されていない Python ロガーが 2 つ用意されています。デフォルトでは、warning と error は `stdout` に出力されますが、それ以外のログは抑制されています
SDK にはハンドラーが設定されていない Python ロガーが 2 つあります。デフォルトでは、警告とエラーは `stdout` に出力されますが、それ以外のログは抑制されます

詳細なログを有効にするには、[`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を呼び出してください
詳細なログを有効にするには、 [`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用してください

```python
from agents import enable_verbose_stdout_logging

enable_verbose_stdout_logging()
```

また、ハンドラーフィルターフォーマッターなどを追加してログをカスタマイズすることもできます。詳細は [Python logging guide](https://docs.python.org/3/howto/logging.html) を参照してください。
ハンドラーフィルターフォーマッターなどを追加してログをカスタマイズすることもできます。詳細は [Python ロギングガイド](https://docs.python.org/3/howto/logging.html) を参照してください。

```python
import logging
Expand All @@ -81,17 +81,17 @@ logger.setLevel(logging.WARNING)
logger.addHandler(logging.StreamHandler())
```

### ログ内の機密データ
### ログに含まれる機密データ

一部のログには (たとえば ユーザー データ など) 機密データが含まれる場合があります。これらを記録したくない場合は、次の環境変数を設定してください。
一部のログには機密データ(例: ユーザー データ)が含まれる場合があります。これらのデータが記録されないようにするには、次の環境変数を設定してください。

LLM の入力と出力のロギングを無効にする:
LLM の入力と出力のログを無効化する:

```bash
export OPENAI_AGENTS_DONT_LOG_MODEL_DATA=1
```

ツールの入力と出力のロギングを無効にする:
ツールの入力と出力のログを無効化する:

```bash
export OPENAI_AGENTS_DONT_LOG_TOOL_DATA=1
Expand Down
Loading